THERMO-HYDRAULICS OF NUCLEAR REACTORS

by     Christopher Earls Brennen     © Cambridge University Press 2013

Preface
Nomenclature
 
CHAPTER 1.    Introduction
       1.1 Scope
       1.2 This Book
       1.3 References
CHAPTER 2.    Basic Nuclear Power Generation
       2.1 Nuclear Power
       2.2 Nuclear Fuel Cycle
             2.2.1 Thorium Fuel Cycle
             2.2.2 Fuel Changes in the Reactor
             2.2.3 The post-reactor stages
       2.3 Nuclear Physics
             2.3.1 Basic Nuclear Fission
             2.3.2 Neutron Energy Spectrum
             2.3.3 Cross-sections and mean free paths
             2.3.4 Delayed neutrons and emissions
       2.4 Radioactivity and radioactive decay
             2.4.1 Half-Life
             2.4.2 Decay in a Nuclear Reactor
      2.5 Radiation
       2.6 Containment Systems
             2.6.1 Radioactive Release
             2.6.2 Reactor Shielding
      2.7 Natural Uranium Reactors
      2.8 Thermal Reactors
             2.8.1 Moderator
             2.8.2 Neutron History in a Thermal Reactor
      2.9 Fast Reactors
      2.10 Criticality
      2.11 Fuel Cycle Variations
      2.12 References
CHAPTER 3.    Core Neutronics
       3.1 Introduction
       3.2 Neutron Density and Neutron Flux
       3.3 Discretizing the Energy or Speed Range
       3.4 Averaging over Material Components
       3.5 Neutron Transport Theory
       Diffusion Theory
             3.6.1 Introduction
             3.6.2 One-Speed and Two-Speed Approximations
             3.6.3 Steady State One-Speed Diffusion Theory
             3.6.4 Two-Speed Diffusion Theory
             3.6.5 Nonisotropic Neutron Flux Treatments
             3.6.6 Multigroup Diffusion Theories and Calculations
             3.6.7 Lattice Cell Calculations
       3.7 Simple Solutions to the Diffusion Equations
             3.7.1 Spherical and Cylindrical Reactors
             3.7.2 Effect of a Reflector on a Spherical Reactor
             3.7.3 Effect of a Reflector on a Cylindrical Reactor
             3.7.4 Effect of Control Rod Insertion
       3.8 Steady State Lattice Calculations
             3.8.1 Introduction
             3.8.2 Fuel Rod Lattice Cell
             3.8.3 Control Rod Lattice Cell
             3.8.4 Other Lattice Scales
       3.9 Unsteady or Quasi-Steady Neutronics
             3.9.1 Unsteady One-Speed Diffusion Theory
             3.9.2 Point Kinetics Model
       3.10 More advanced Neutronic Theory
       3.11 Monte Carlo Calculations
       3.12 References
CHAPTER 4.    Some Reactor Designs
       4.1 Introduction
       4.2 Current Nuclear Reactors
       4.3 Light Water Reactors (LWRS)
             4.3.1 Types of Light Water Reactors
             4.3.2 Pressurized Water Reactors (PWRs)
             4.3.3 Boiling Water Reactors (BWRs)
             4.3.4 Fuel and Control Rods for LWRs
             4.3.5 Small Modular Reactors
             4.3.6 LWR Control
       4.4 Heavy Water Reactors (HWRs)
       4.5 Graphite Moderated Reactors
       4.6 Gas-Cooled Reactors
       4.7 Fast Neutron Reactors (FNRs)
       4.8 Liquid Metal Fast Breeder Reactors
       4.9 Generation IV Reactors
             4.9.1 Generation IV Thermal Reactors
             4.9.2 Generation IV Fast Reactors
       4.10 References
CHAPTER 5.    5.1 Heat Production in a Nuclear Reactor
             5.1.1 Introduction
             5.1.2 Heat Source
             5.1.3 Fuel Rod Heat Transfer
             5.1.4 Heat Transfer to Coolant
       5.2 Core Temperature Distributions
       5.3 Core Design: An Illustrative LWR Example
       5.4 Core Design: A LMFBR Example
       5.5 Boiling Water Reactor
             5.5.1 Temperature Distribution
             5.5.2 Mass Quality and Void Fraction Distribution
       5.6 Critical Heat Flux
       5.7 References
CHAPTER 6.    Multiphase Flow
       6.1 Introduction
       6.2 Multiphase Flow Regimes
             6.2.1 Multiphase Flow Notation
             6.2.2 Multiphase Flow Patterns
             6.2.3 Flow Regime Maps
             6.2.4 Flow Pattern Classifications
             6.2.5 Limits of Disperse Flow Regimes
             6.2.6 Limits on Separated Flow
       6.3 Pressure Drop
             6.3.1 Introduction
             6.3.2 Horizontal Disperse Flow
             6.3.3 Homogenous Flow Friction
             6.3.4 Frictional Loss in Separated Flow
       6.4 Vaporization
             6.4.1 Classes of Vaporization
             6.4.2 Homogeneous Vaporization
             6.4.3 Effect of Interfacial Roughness
       6.5 Heterogeneous Vaporization
             6.5.1 Pool Boiling
             6.5.2 Pool Boiling on a Horizontal Surface
             6.5.3 Nucleate Boiling
             6.5.4 Pool Boiling Crisis
             6.5.5 Film Boiling
             6.5.6 Boiling on vertical surfaces
       6.6 Multiphase Flow Instabilities
             6.6.1 Introduction
             6.6.2 Concentration wave oscillations
             6.6.3 Ledinegg instability
             6.6.4 Chugging and condensation oscillations
       6.7 Nuclear reactor context
       6.8 References
CHAPTER 7.    Reactor Multiphase Flows and Accidents
       7.1 Multiphase Flows in Nuclear Reactors
             7.1.1 Multiphase Flow in Normal Operation
             7.1.2 Void Fraction Effect on Reactivity
             7.1.3 Multiphase Flow during Overheating
       7.2 Multiphase Flows in Nuclear Accidents
       7.3 Safety Concerns
       7.4 Safety Systems
             7.4.1 PWR Safety Systems
             7.4.2 BWR Safety Systems
       7.5 Major Accidents
             7.5.1 Three Mile Island
             7.5.2 Chernobyl
             7.5.3 Fukushima
             7.5.4 Other Accidents
       7.6 Hypothetical Accident Analyses
             7.6.1 Hypothetical Accident Analyses for LWRs
             7.6.2 Loss-of-Coolant Accident: LWRs
             7.6.3 Loss-of-Coolant Accident: LMFBRs
             7.6.4 Vapor Explosions
             7.6.5 Fuel-Coolant Interaction
       7.7 Hypothetical Accident Analyses for FBRs
             7.7.1 Hypothetical Core Disassembly Accident
       7.8 References


Last updated 4/9/04.
Christopher E. Brennen