### 6.2.1 Multiphase Flow Notation

The notation that will be used for multiphase flow is as follows. Uppercase subscripts will refer to the property of a specific phase or component, for example, $C$ for a continuous phase, $D$ for a disperse phase, $L$ for liquid, $G$ for gas, $V$ for vapor. In some contexts generic subscripts $N, A$, or $B$ will be used for generality. Specific properties frequently used are as follows. The densities of individual components or phases are denoted by $\rho_{N}$. Volumetric fluxes (volume flow per unit area) of individual components will be denoted by $j_{N}$ and the total volumetric flux is denoted by $j=j_{A}+j_{B}$. Mass fluxes will then be given by $\rho_{N} j_{N}$ and velocities of the individual components or phases will be denoted by $u_{N}$.

The volume fraction of a component or phase is denoted by $\alpha_{N}$ and in the case of two components or phases, $A$ and $B$, it follows that $\alpha_{B}=1-\alpha_{A}$. Then the mixture density, denoted by $\rho$, is given by

$$
\begin{equation*}
\rho=\alpha_{A} \rho_{A}+\alpha_{B} \rho_{B} \tag{1}
\end{equation*}
$$

It also follows that the volume flux of a component, $N$, and its velocity are related by $j_{N}=\alpha_{N} u_{N}$.

Two other fractional properties are the volume quality, $\beta_{N}$, defined as the ratio of the volumetric flux of the component, $N$, to the total volumetric flux so that, for example, $\beta_{A}=j_{A} / j$. Note that, in general, $\beta$ is not necessarily equal to $\alpha$. The mass fraction, $x_{A}$, of a phase or component, $A$, is simply given by $\rho_{A} \alpha_{A} /\left(\rho_{A} \alpha_{A}+\rho_{B} \alpha_{B}\right)$. On the other hand the mass quality, $\mathcal{X}_{A}$, often referred to simply as the quality, is the ratio of the mass flux of component, $A$, to the total mass flux, or

$$
\begin{equation*}
\mathcal{X}_{A}=\frac{\rho_{A} j_{A}}{\rho_{B} j_{B}+\rho_{A} j_{A}} \tag{2}
\end{equation*}
$$

Furthermore, when only two components or phases are present it is often redundant to use subscripts on the volume fraction and the qualities since $\alpha_{A}=$ $1-\alpha_{B}, \beta_{A}=1-\beta_{B}$ and $\mathcal{X}_{A}=1-\mathcal{X}_{B}$. Thus unsubscripted quantities $\alpha, \beta$ and $\mathcal{X}$ will often be used in these circumstances.

Finally, note for future use, that the relation between the volume fraction, $\alpha_{A}$, and the mass quality, $\mathcal{X}_{A}$, for a given phase or component, $A$, in a two-phase or two-component mixture of $A$ and $B$ follows from equation 2, namely

$$
\begin{equation*}
\mathcal{X}_{A}=\frac{\rho_{A} \alpha_{A} u_{A}}{\rho_{B}\left(1-\alpha_{A}\right) u_{B}+\rho_{A} \alpha_{A} u_{A}} \tag{3}
\end{equation*}
$$

where $u_{A}$ and $u_{B}$ are the velocities of the two phases or components. Therefore $\mathcal{X}_{A}$ and $\alpha_{A}$ may be quite different.

