
6.2.6 Limits on separated flow

Attention will now be turned to the limits on separated flow regimes and the pri-
mary mechanism that determines that limit is the Kelvin-Helmholtz instability.
Separated flow regimes such as stratified horizontal flow or vertical annular flow
can become unstable when waves form on the interface between the two fluid
streams (subscripts 1 and 2). As indicated in figure 1, the densities of the fluids
will be denoted by ρ1 and ρ2 and the velocities by u1 and u2. If these waves
continue to grow in amplitude they cause a transition to another flow regime,
typically one with greater intermittency and involving plugs or slugs. Therefore,
in order to determine this particular boundary of the separated flow regime, it
is necessary to investigate the potential growth of the interfacial waves, whose
wavelength will be denoted by λ (wavenumber, κ = 2π/λ). Studies of such waves
have a long history originating with the work of Kelvin and Helmholtz and the
phenomena they revealed have come to be called Kelvin-Helmholtz instabilities
(see, for example, Yih 1965). In general this class of instabilities involves the
interplay between at least two of the following three types of forces:

Figure 1: Sketch showing the notation for Kelvin-Helmholtz instability.

• a buoyancy force due to gravity and proportional to the difference in the
densities of the two fluids. In a horizontal flow in which the upper fluid
is lighter than the lower fluid this force is stabilizing. When the reverse
is true the buoyancy force is destabilizing and this causes Rayleigh-Taylor
instabilities. When the streams are vertical as in vertical annular flow the
role played by the buoyancy force is less clear.

• a surface tension force that is always stabilizing.

• a Bernoulli effect that implies a change in the pressure acting on the
interface caused by a change in velocity resulting from the displacement,
a, of that surface. For example, if the upward displacement of the point
A in figure 2 were to cause an increase in the local velocity of fluid 1 and
a decrease in the local velocity of fluid 2, this would imply an induced
pressure difference at the point A that would increase the amplitude of
the distortion, a.



The interplay between these forces is most readily illustrated by a simple
example. Neglecting viscous effects, one can readily construct the planar, in-
compressible potential flow solution for two semi-infinite horizontal streams sep-
arated by a plane horizontal interface (as in figure 1) on which small amplitude
waves have formed. Then it is readily shown (Lamb 1879, Yih 1965) that
Kelvin-Helmholtz instability will occur when
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where S is the surface tension of the interface. The contributions from the three
previously mentioned forces are self-evident. Note that the surface tension effect
is stabilizing since that term is always positive, the buoyancy effect may be
stabilizing or destabilizing depending on the sign of Δρ and the Bernoulli effect
is always destabilizing. Clearly, one subset of this class of Kelvin-Helmholtz
instabilities are the Rayleigh-Taylor instabilities that occur in the absence of
flow (Δu = 0) when Δρ is negative. In that static case, the above relation
shows that the interface is unstable to all wave numbers less than the critical
value, κ = κc, where
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Figure 2: Sketch showing the notation for stratified flow instability.

The Bernoulli effect is frequently the primary cause of instability in a sep-
arated flow and can lead to transition to a plug or slug flow regime. As a first
example of the instability induced by the Bernoulli effect, consider the stabil-
ity of the horizontal stratified flow depicted in figure 2 where the destabilizing
Bernoulli effect is primarily opposed by a stabilizing buoyancy force. An approx-
imate instability condition is readily derived by observing that the formation of
a wave (such as that depicted in figure 2) will lead to a reduced pressure, pA, in
the gas in the orifice formed by that wave. The reduction below the mean gas
pressure, p̄G, will be given by Bernoulli’s equation as

pA − p̄G = −ρGu2
Ga/H (3)

provided a � H . The restraining pressure is given by the buoyancy effect of
the elevated interface, namely (ρL − ρG)ga. It follows that the flow will become



unstable when
u2

G > gHΔρ/ρG (4)

In this case the liquid velocity has been neglected since it is normally small
compared with the gas velocity. Consequently, the instability criterion provides
an upper limit on the gas velocity that is, in effect, the velocity difference. Taitel
and Dukler (1976) compared this prediction for the boundary of the stratified
flow regime in a horizontal pipe with the experimental observations of Mandhane
et al. (1974) and found substantial agreement.

As a second example consider vertical annular flow that becomes unstable
when the Bernoulli force overcomes the stabilizing surface tension force. From
equation 1, this implies that disturbances with wavelengths greater than a crit-
ical value, λc, will be unstable and that

λc = 2πS(ρ1 + ρ2)
/
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For a liquid stream and a gas stream (as is normally the case in annular flow)
and with ρL � ρG this becomes

λc = 2πS/
ρG(Δu)2 (6)

Now consider the application of this criterion to a well-developed annular flow
at high gas volume fraction in which Δu ≈ jG. Then for a water/air mixture
equation 6 predicts critical wavelengths of 0.4 cm and 40 cm for jG = 10 m/s
and jG = 1 m/s respectively. In other words, at low values of jG only larger
wavelengths are unstable and this seems to be in accord with the break-up of
the flow into large slugs. On the other hand at higher jG flow rates, even quite
small wavelengths are unstable and the liquid gets torn apart into the small
droplets carried in the core gas flow.


