
3.6.1 Diffusion theory

It is appropriate to recall at this point that diffusion theory for the neutronics
of a reactor core avoids much complexity posed by the interior structure of the
reactor core by assuming:

1. that the reactor core can be considered to be homogeneous. As previously
described this requires the assumption that the neutron mean free paths
are long compared with the typical small-scale interior dimensions of the
reactor core (such as the fuel rod dimensions). This then allows character-
ization of the dynamics by a single neutron flux, φ, though one that varies
with time and from place to place. Fuel rods are typically only a few cm
in diameter and with neutron diffusion lengths, L (see equation 3.19), of
about 60 cm this criterion is crudely satisfied in most thermal reactors.

2. that the characteristic neutron flux does not vary substantially over one
mean free path. This is known as a weakly absorbing medium.

3. that the reactor core is large compared with the neutron mean free paths
so that a neutron will generally experience many interactions within the
core before encountering one of the core boundaries. Most thermal reactor
cores are only a few neutron diffusion lengths, L, in typical dimension so
this criterion is only very crudely satisfied.

These last two assumptions effectively mean that neutrons diffuse within the
core and the overall population variations can be characterized by a diffusion
equation.

In addition to the governing equation, it is necessary to establish both initial
conditions and boundary conditions on the neutron flux, φ. Initial conditions
will be simply given by some known neutron flux, φ(xi, 0), at the initial time,
t = 0. The evaluation of boundary conditions requires the development of
relations for the one-way flux of neutrons through a surface or discontinuity.
To establish such relations the one-way flux of neutrons through any surface
or boundary (the coordinate xn is defined as normal to this boundary in the
positive direction) will be denoted by J+

n in the positive direction and by J−
n in

the negative direction. Clearly the net flux of neutrons will be equal to Jn so
that
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using equations 3.11 and 3.12. On the other hand the sum of these same two
fluxes must be related to the neutron flux; specifically
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(see, for example, Glasstone and Sesonske 1981). The factor of one half is
geometric: since the flux φ is in all directions, the resultant in the direction xn

requires the average value of the cosine of the angle relative to xn.



It follows from equations 1 and 2 that
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These relations allow the establishment of boundary conditions when the con-
dition involves some constraint on the neutron flux. Two examples will suffice.

At an interface between two different media denoted by subscripts 1 and 2
(and with diffusion coefficients D1 and D2), the neutron flux into medium 1 must
be equal to the neutron flux out of medium 2 and, conversely, the neutron flux
out of medium 1 must be equal to the neutron flux into medium 2. Therefore
from equations 3 it follows that, at the interface:
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A second, practical example is the boundary between one medium (subscript
1) and a vacuum from which there will be no neutron flux back into the first
medium. This is an approximation to the condition at the surface boundary of
a reactor. Then on that boundary it is clear that J−

n = 0 where xn is in the
direction of the vacuum. Then it follows that at the boundary
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One way to implement this numerically is to use a linear extrapolation and set
φ1 to be zero at a displaced, virtual boundary that is a distance 1/2D into the
vacuum from the actual boundary. This displacement, 1/2D, is known as the
linear extrapolation length.


