
3.2 Neutron density and neutron flux

It is convenient to begin by defining several characteristic features of neutron
transport and by introducing the concept of neutron density, N , a measure
of the number of free neutrons per unit volume. Of course, this may be a
function of time, t, and of position, xi, within the core. Furthermore, these
neutrons may have a range of different energies, E, and the number traveling in
a particular angular direction, Ωj (a unit vector), may have a different density
than those traveling in another direction. Consequently, to fully describe the
neutron density N must be considered to be a function of xi, t, E and Ωj and
the number of neutrons in a differential volume dV that have energies between
E and E + dE and are traveling within the small solid angle, dΩ, around the
direction Ωj would be

N(xi, t, E, Ωj) dV dE dΩ (1)

Consequently N has units of number per unit volume per unit energy per unit
solid angle. Even for a simple core geometry N , when discretized, is a huge
matrix, especially since the energy spectrum may require very fine discretization
in order to accurately portray the variation with E (see, for example, figure 1).

Figure 1: Qualitative representations of how the fission cross-sections for 235U
and 238U as well as the absorption cross-section for 238U vary with the neutron
energy.

Denoting the magnitude of the neutron velocity by ū(xi, t, E) (a function
of position, time and energy but assumed independent of direction, Ωj) it is
conventional to define the angular neutron flux, ϕ, by

ϕ(xi, t, E, Ωj) = N(xi, t, E, Ωj) ū(E) (2)

The conventional semantics here are somewhat misleading since ϕ is not a flux
in the sense that term is commonly used in physics (indeed ϕ as defined above



is a scalar whereas a conventional flux is a vector); it is perhaps best to regard
ϕ as a convenient mathematical variable whose usefulness will become apparent
later.

A more physically recognizable characteristic is the conventional vector quan-
tity known as the angular current density, J∗

j , given by

J∗
j (xi, t, E, Ωj) = ū Ωj N(xi, t, E, Ωj) = Ωj ϕ(xi, t, E, Ωj) (3)

since ūΩj is the vector velocity of a neutron traveling in the direction Ωj . This
angular current density, J∗

j , might be more properly called the neutron flux
but confusion would result from altering the standard semantics. The physical
interpretation is that J∗

j dEdΩ is the number of neutrons (with energies between
E and E + dE) traveling within the solid angle dΩ about the direction Ωj per
unit area normal to that direction per unit time. Note that since Ωj is a unit
vector, the magnitude of J∗

j is ϕ.
The above definitions allow for the fundamental quantities ϕ and J∗

j to vary
with the angular orientation Ωj . However it will often be assumed that these
variations with orientation are small or negligible. Then integration over all
orientations allows the definition of an angle-integrated neutron flux, φ(xi, t, E)
(later abbreviated to neutron flux), and an angle-integrated current density,
Jj(xi, t, E):

φ(xi, t, E) =
∫

4π

ϕ(xi, t, E, Ωj)dΩ (4)

Jj(xi, t, E) =
∫

4π

J∗
k (xi, t, E, Ωj)dΩ (5)

Note that if ϕ(xi, t, E, Ωj) and/or J∗
j (xi, t, E, Ωj) are isotropic and therefore

independent of Ωj then

φ = 4πϕ ; Jj = 4πJ∗
j (6)

In the simpler neutronics calculations later in this book, the neutron flux, φ, is
the dependent variable normally used in the calculations.


