
6.3.4 Frictional Loss in Separated Flow

Having discussed homogeneous and disperse flows, attention will now be turned
to the friction in separated flows and, in particular, describe the commonly
used Martinelli correlations. The Lockhart-Martinelli (Lockhart and Martinelli,
1949) and Martinelli-Nelson (Martinelli and Nelson, 1948) correlations are widely
documented in multiphase flow texts (see, for example, Wallis 1969 or Bren-
nen 2005). These attempt to predict the frictional pressure gradient in two-
component or two-phase pipe flows. It is assumed that these flows consist of
two separate co-current streams that, for convenience, will be referred to as the
liquid and the gas though they could be any two immiscible fluids. The correla-
tions use the results for the frictional pressure gradient in single phase pipe flows
of each of the two fluid streams. In two-phase flow, the volume fraction is often
changing as the mixture progresses along the pipe and such phase change nec-
essarily implies acceleration or deceleration of the fluids. Associated with this
acceleration is an additional acceleration component of the pressure gradient
that is addressed with the Martinelli-Nelson correlation. Obviously, it is conve-
nient to begin with the simpler, two-component case (the Lockhart-Martinelli
correlation); this also neglects the effects of changes in the fluid densities with
distance, s, along the pipe axis so that the fluid velocities also remain invari-
ant with s. Moreover, in all cases, it is assumed that the hydrostatic pressure
gradient has been accounted for so that the only remaining contribution to the
pressure gradient, −dp/ds, is that due to the wall shear stress, τw. A simple
balance of forces requires that
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where P and A are the perimeter and cross-sectional area of the stream or pipe.
For a circular stream or pipe, P/A = 4/d, where d is the stream/pipe diameter.
For non-circular cross-sections, it is convenient to define a hydraulic diameter,
4A/P . Then, defining the dimensionless friction coefficient, Cf , as

Cf = τw/
1
2
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the more general form of equation 1, section 6.3.2, becomes
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In single phase flow the coefficient, Cf , is a function of the Reynolds number,
ρdj/μ, of the form

Cf = K
{

ρdj

μ

}−m

(4)

where K is a constant that depends on the roughness of the pipe surface and
will be different for laminar and turbulent flow. The index, m, is also different,
being 1 in the case of laminar flow and 1/4 in the case of turbulent flow.



These relations from single phase flow are applied to the two cocurrent
streams in the following way. First, hydraulic diameters, dL and dG, will be
defined for each of the two streams and the corresponding area ratios, κL and
κG, are then given by

κL = 4AL/πd2
L ; κG = 4AG/πd2

G (5)

where AL = A(1 − α) and AG = Aα are the actual cross-sectional areas of the
two streams. The quantities κL and κG are shape parameters that depend on
the geometry of the flow pattern. In the absence of any specific information on
this geometry, one might choose the values pertinent to streams of circular cross-
section, namely κL = κG = 1, and the commonly used form of the Lockhart-
Martinelli correlation employs these values. (Note that Brennen (2005) also
presents results for an alternative choice.)

The basic geometric relations yield

α = 1 − κLd2
L/d2 = κGd2

G/d2 (6)

Then, the pressure gradient in each stream is assumed given by the following
coefficients taken from single phase pipe flow:

CfL = KL

{
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; CfG = KG
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(7)

and, since the pressure gradients must be the same in the two streams, this
imposes the following relation between the flows:
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In the above, mL and mG are 1 or 1/4 depending on whether the stream is
laminar or turbulent.

Equations 6 and 8 are the basic relations used to construct the Lockhart-
Martinelli correlation. The solutions to these equations are normally and most
conveniently presented in non-dimensional form by defining the following di-
mensionless pressure gradient parameters:
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where (dp/ds)L and (dp/ds)G are respectively the hypothetical pressure gradi-
ents that would occur in the same pipe if only the liquid flow were present and
if only the gas flow were present. The ratio of these two hypothetical gradients,
Ma, given by
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has come to be called the Martinelli parameter and allows presentation of the
solutions to equations 6 and 8 in a convenient parametric form. Using the
definitions of equations 9, the non-dimensional forms of equations 6 become

α = 1 − κ
(3−mL)/(mL−5)
L φ

4/(mL−5)
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(3−mG)/(mG−5)
G φ
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G (11)

and the solution of these equations produces the Lockhart-Martinelli prediction
of the non-dimensional pressure gradient.

To summarize: for given values of (a) the fluid properties, ρL, ρG, μL and
μG (b) the nature of the flow, laminar or turbulent, in the two streams and the
phase correlation constants, mL, mG, KL and KG (c) the parameters defined by
the flow pattern geometry, κL and κG and (d) a given value of α equations 11
can be solved to find the non-dimensional solution to the flow, namely the values
of φ2

L and φ2
G. The value of Ma2 also follows and the rightmost expression in

equation 10 then yields a relation between the liquid mass flux, ρLjL, and the
gas mass flux, ρGjG. Thus, if one is also given just one mass flux (often this will
be the total mass flux, ṁ = ρLjL + ρGjG), the solution will yield the individual
mass fluxes, the mass quality and other flow properties. Alternatively one could
begin the calculation with the mass quality rather than the void fraction and
find the void fraction as one of the results. Finally the pressure gradient, dp/ds,
follows from the values of φ2

L and φ2
G.

Figure 1: Comparison of the Lockhart-Martinelli correlation (the TT case) for
φG (solid line) with experimental data. Adapted from Turner and Wallis (1965).

Charts for the results are presented by Wallis (1969), Brennen (2005) and
others. Charts like these are commonly used in the manner described above to
obtain solutions for two-component gas/liquid flows in pipes. A typical com-
parison of the Lockhart-Martinelli prediction with the experimental data is pre-
sented in figure 1. Note that the scatter in the data is significant (about a factor
of 3 in φG) and that the Lockhart-Martinelli prediction often yields an overes-
timate of the friction or pressure gradient. This is the result of the assumption



that the entire perimeter of both phases experiences static wall friction. This
is not the case and part of the perimeter of each phase is in contact with the
other phase. If the interface is smooth this could result in a decrease in the
friction; on the other hand a roughened interface could also result in increased
interfacial friction.

It is important to recognize that there are many deficiencies in the Lockhart-
Martinelli approach. First, it is assumed that the flow pattern consists of two
parallel streams and any departure from this topology could result in substan-
tial errors. Second, there is the previously discussed deficiency regarding the
suitability of assuming that the perimeters of both phases experience friction
that is effectively equivalent to that of a static solid wall. A third source of
error arises because the multiphase flows are often unsteady and this yields a
multitude of quadratic interaction terms that contribute to the mean flow in the
same way that Reynolds stress terms contribute to turbulent single phase flow.

The Lockhart-Martinelli correlation was extended by Martinelli and Nelson
(1948) to include the effects of phase change. This extension includes evaluation
of the additional pressure gradient due to the acceleration of the flow caused
by the phase change. To evaluate this one must know the variation of the mass
quality, X , with distance, s, along the pipe. In many boilers, evaporators or
condensers, the rate of heat supply or removal per unit length of the pipe, Q�,
is roughly uniform and the latent heat, L, can be also be considered constant.
It follows that for a flow rate of ṁ in a pipe of cross-sectional area, A, the mass
quality varies linearly with distance, s, since

dX
ds

=
Q�

AṁL (12)

Given the quantities on the right-hand side this allows evaluation of the mass
quality as a function of distance along the conduit and also allows evaluation of
the additional acceleration contributions to the pressure gradient. For further
details the reader is referred to Brennen (2005).


