
3.7.1 Spherical and Cylindrical Reactors

Notwithstanding the limitations of the one-speed diffusion theory, it is appro-
priate to pursue further reactor analyses because they yield qualitatively useful
results and concepts. As previously mentioned, the Helmholtz diffusion equa-
tion 5, section 3.6.3, permits solutions by separation of variables in many simple
coordinate systems. Perhaps the most useful are the solutions in cylindrical co-
ordinates since this closely approximates the geometry of most reactor cores.

However, the solutions in spherical coordinates are also instructive and it is
useful to begin with these. It is readily seen that, in a spherically symmetric
core (radial coordinate, r) the solution to equation 5, section 3.6.3, takes the
form
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where C1 and C2 are constants to be determined. For φ to be finite in the
center, C2 must be zero. The boundary condition at the surface, r = R, of
this spherical reactor follows from the assumption that it is surrounded by a
vacuum. Consequently the appropriate boundary condition is given by equation
5, section 3.6.1, or more conveniently φ = 0 at the extrapolated boundary at
r = RE = R + 1/2D. Thus

sin BgRE = 0 or BgRE = nπ (2)

where n is an integer. Since Bg and n are positive and φ cannot be negative
anywhere within the core, the only acceptable, non-trivial value for n is unity
and therefore

RE = π/Bg and thus R = π/Bg − 1/2D (3)

Therefore, R = RC = π/Bm − 1/2D is the critical size of a spherical reactor,
that is to say the only size for which a steady neutron flux state is possible for
the given value of the material buckling, Bm. It is readily seen from equation
1, section 3.5, that ∂φ/∂t will be positive if R > RC and that the neutron flux
will then grow exponentially with time. Conversely when R < RC , the neutron
flux will decay exponentially with time.

In summary, the neutron flux solution for the steady state operation of a
spherically symmetric reactor is

φ = C1
sin Bgr

r
for 0 < r < RC (4)

Note that the neutron flux is largest in the center and declines near the boundary
due to the increased leakage. Also note that though the functional form of the
neutron flux variation has been determined, the magnitude of the neutron flux as
defined by C1 remains undetermined since the governing equation and boundary
conditions are all homogeneous in φ.

Most common reactors are cylindrical and so, as a second example, it is useful
to construct the solution for a cylinder of radius, R, and axial length, H , using



Figure 1: Sketch of a simple cylindrical reactor.

cylindrical coordinates, (r, θ, z), with the origin at the mid-length of the core.
It is assumed that the reactor is homogeneous so that there are no gradients in
the θ direction and that both the sides and ends see vacuum conditions. Again
it is convenient to apply the condition φ = 0 on extrapolated boundary surfaces
at r = RE = R + 1/2D and at z = ±HE/2 = ±(H/2 + 1/2D) as depicted
in figure 1. Obtaining solutions to equation 5, section 3.6.3, by separation of
variables and eliminating possible solutions that are singular on the axis, it is
readily seen that the neutron flux has the form:
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where, as before, C1 is an undetermined constant and J0() is the zero-order
Bessel function of the first kind (2.405 is the argument that gives the first zero
of this function). As in the spherical case the higher order functions are rejected
since they would imply negative neutron fluxes within the cylindrical reactor.
Substituting this solution into the governing equation 5, section 3.6.3, yields the
expression that determines the critical size of this cylindrical reactor namely
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If HE and RE are such that the left-hand side is greater than the material
buckling, B2

m, then the reactor is supercritical and the neutron flux will grow
exponentially with time; if the left hand side is less than B2

m the flux will decay
exponentially. In the critical reactor (B2

g = B2
m), the neutron flux is greatest

in the center and decays toward the outer radii or the ends since the leakage is
greatest near the boundaries.

These two examples assumed homogeneous reactors surrounded by vacuum
conditions. There are a number of ways in which these simple solutions can



be modified in order to incorporate common, practical variations. Often the
reactor core is surrounded, not by a vacuum, but by a blanket of moderator
that causes some of the leaking neutrons to be scattered back into the core.
Such a blanket is called a reflector; examples of diffusion theory solutions that
incorporate the effect of a reflector are explored in the next section. Another
practical modification is to consider two core regions rather than one in order
to model that region into which control rods have been inserted. Section 3.7.4
includes an example of such a two-region solution.


