CAVITATION AND BUBBLE DYNAMICS

by     Christopher Earls Brennen     © Oxford University Press 1995

Preface
Nomenclature
 
CHAPTER 1.      PHASE CHANGE, NUCLEATION, AND CAVITATION
1.1 Introduction
1.2 The Liquid State
1.3 Fluidity and Elasticity
1.4 Illustration of Tensile Strength
1.5 Cavitation and Boiling
1.6 Types of Nucleation
1.7 Homogeneous Nucleation Theory
1.8 Comparison with Experiments
1.9 Experiments on Tensile Strength
1.10 Heterogeneous Nucleation
1.11 Nucleation Site Populations
1.12 Effect of Contaminant Gas
1.13 Nucleation in Flowing Liquids
1.14 Viscous Effects in Cavitation Inception
1.15 Cavitation Inception Measurements
1.16 Cavitation Inception Data
1.17 Scaling of Cavitation Inception
References
 
CHAPTER 2.SPHERICAL BUBBLE DYNAMICS
2.1 Introduction
2.2 Rayleigh-Plesset Equation
2.3 Bubble Contents
2.4 In the Absence of Thermal Effects
2.5 Stability of Vapor/Gas Bubbles
2.6 Growth by Mass Diffusion
2.7 Thermal Effects on Growth
2.8 Thermally Controlled Growth
2.9 Nonequilibrium Effects
2.10 Convective Effects
2.11 Surface Roughening Effects
2.12 Nonspherical Perturbations
References
 
CHAPTER 3.CAVITATION BUBBLE COLLAPSE
3.1 Introduction
3.2 Bubble Collapse
3.3 Thermally Controlled Collapse
3.4 Thermal Effects in Bubble Collapse
3.5 Nonspherical Shape during Collapse
3.6 Cavitation Damage
3.7 Damage due to Cloud Collapse
3.8 Cavitation Noise
3.9 Cavitation Luminescence
References
 
CHAPTER 4.DYNAMICS OF OSCILLATING BUBBLES
4.1 Introduction
4.2 Bubble Natural Frequencies
4.3 Effective Polytropic Constant
4.4 Additional Damping Terms
4.5 Nonlinear Effects
4.6 Weakly Nonlinear Analysis
4.7 Chaotic Oscillations
4.8 Threshold for Transient Cavitation
4.9 Rectified Mass Diffusion
4.10 Bjerknes Forces
References
 
CHAPTER 5.TRANSLATION OF BUBBLES
5.1 Introduction
5.2 High Re Flows around a Sphere
5.3 Low Re Flows around a Sphere
5.4 Marangoni Effects
5.5 Molecular Effects
5.6 Unsteady Particle Motions
5.7 Unsteady Potential Flow
5.8 Unsteady Stokes Flow
5.9 Growing or Collapsing Bubbles
5.10 Equation of Motion
5.11 Magnitude of Relative Motion
5.12 Deformation due to Translation
References
 
CHAPTER 6.HOMOGENEOUS BUBBLY FLOWS
6.1 Introduction
6.2 Sonic Speed
6.3 Sonic Speed with Change of Phase
6.4 Barotropic Relations
6.5 Nozzle Flows
6.6 Vapor/Liquid Nozzle Flow
6.7 Flows with Bubble Dynamics
6.8 Acoustics of Bubbly Mixtures
6.9 Shock Waves in Bubbly Flows
6.10 Spherical Bubble Cloud
References
 
CHAPTER 7.CAVITATING FLOWS
7.1 Introduction
7.2 Traveling Bubble Cavitation
7.3 Bubble/Flow Interactions
7.4 Experimental Observations
7.5 Large-Scale Cavitation Structures
7.6 Vortex Cavitation
7.7 Cloud Cavitation
7.8 Attached or Sheet Cavitation
7.9 Cavitating Foils
7.10 Cavity Closure
References
 
CHAPTER 8.FREE STREAMLINE FLOWS
8.1 Introduction
8.2 Cavity Closure Models
8.3 Cavity Detachment Models
8.4 Wall Effects and Choked Flows
8.5 Steady Planar Flows
8.6 Some Nonlinear Results
8.7 Linearized Methods
8.8 Flat Plate Hydrofoil
8.9 Cavitating Cascades
8.10 Three-Dimensional Flows
8.11 Numerical Methods
8.12 Unsteady Flows
References

Back to front page


Last updated 1/1/00.
Christopher E. Brennen