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1. Introduction

The wall effects in cavity flows have been long recognized to be more
important and more difficult to determine than those in single-phase, non-
separated flows. Earlier theoretical investigations of this problem have been
limited largely to simple body forms in plane flows, based on some commonly
used cavity-flow models, such as the Riabouchinsky, the reentrant jet, or
the linearized flow model, to represent a finite cavity. Although not meant
to be exhaustive, references may be made to Cisotti (1922), Birkhoff, Plesset
and Simmons (1950, 1952), Gurevich (1953), Cohen et al. (1957, 1958), and
Fabula (1964). The wall effects in axisymmetric flows with a finite cavity has
been evaluated numerically by Brennen (1969) for a disk and a sphere. Some
intricate features of the wall effects have been noted in experimental studies
by Morgan (1966) and Dobay (1967). Also, an empirical method for correcting
the wall effect has been proposed by Meijer (1967).

The presence of lateral flow boundaries in a closed water tunnel introduces
the following physical effects: (i) First, in dealing with the part of irrotational
flow outside the viscous region, these flow boundaries will impose a condition

on the flow direction at the rigid tunnel walls. €his “streamline-blocking” _

effect will produce extraneous forces and modifications of cavity shape. (ii) The
boundary layer built up at the tunnel walls may effectively reduce the tunnel
cross-sectional area, and generate a longitudinal pressure gradient in the work-
ing section, giving rise to an additional drag force known as the “horizontal
buoyancy”. (iii) The lateral constraint of tunnel walls results in a higheryelocit
outside the boundary layer, and hence a greater skin friction at the wetted
body surface. (iv) The lateral constraint also affects the spreading of the viscous
wake behind the cavity, an effect known as the “wake-blocking”. (v) It may
modify the location of the “smooth detachment” of cavity boundary from a con-
tinuously curved body.

In the present paper, the aforementioned effect (i) will be investigated
for the pure-drag flows so that this primary effect can be clarified first. Two
cavity flow models, namely, the Riabouchinsky and the open-wake (the latter
has been attributed, independently, to Joukowsky, Roshko, and Eppler) models,
are adopted for detailed examination. The asymptotic representations of these
theoretical solutions, with the wall effect treated as a small correction to the
unbounded-flow limit, have yielded two different wall-correction rules, both
of which can be applied very effectively in practice. 1t is of interest to note
that the most critical range for comparison of these results lies in the case
when the cavitating body is slender, rather than blunt ones, and when the

in this critical range do these flow models deviate significantly fro ach‘j(o/tﬁer,

s

A

cavity is short, instead of very long ones in the nearly choked—ﬂov:gttate. Only *F/
\

thereby permitting a refined differentiation and a critical examindtion of the
accuracy of these flow models in representing physical flows. A series of experi-
ments carefully planned for this purpose has provided conclusive evidences,
which seem to be beyond possible experimental uncertainties, that the Riabou-
chinsky model gives a very satisfactory agreement with the experimental
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results, and is superior to other models, even in the most critical range when
the wall effects are especially significant and the differences between these
theoretical flow models become noticeably large.

These outstanding features are effectively demonstrated by the relatlvely
simple case of a symmetric wedge held in a non-lifting flow within .a closed
tunnel, which we discuss in the sequel.: M

2. Riabouchinsky Model
The two-dimensional symmetric cavity flow in question is depicted in

fig. 1 for the physical plane z = x + iy, the complex potential plane f =
= ¢ - i}, and a related parametric complex plane [ = § +- in. For a cavitat-
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Fig. 1. The Riabouchinsky model for pure-drag cavity flow in a tunnel.

ing wedge of halfvertex angle f, base chord I, placed symmetrically in a flow
bounded within a tunnel of spacing &, the parametric solution is readily found as

(1) L —a@ray @y a-Lune—a)'”
@) w (€)= = eI+ (1) Y (0 <p <),

where the real, positive constants a, b are related to the upstream velocity U
and the maximum velocity V along the wall at point B by

(3) U=U (a)={a/l1 + (1 - a®)! 2}, or a=a (U)=2 (U U6,
(4) V=U® or b=al(V).

The base-chord to tunnel-spacing ratio can be determined from (1), (2) to yield
©) =t 2 (sin ) (4 — a2 1, (a, b),

Where Iy (and I. for other flow quantities) is given by

1 i
(6 [t (g8
( ) L (a, b) - S - (g24-a?) (§2+b2)f‘/?

0
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The drag coefficient, Cp ::D/ (% pU’ZZ) , is obtained by direct integration of
the pressure as

7) Cp(o, A) = (1 + o)1 — I_{(a, b)/I; (a, b,
where the cavitation number o is defined, as usual, by

1 . -
® E(poo—pc)/(—z—pUz):U‘—150([]),

P~ being the free siream pressure, p. the constant cavity pressure, with the

corresponding velocity g. on the cavity boundary. Henceforth, g. will be nor-
malized to unity for simplicity.

The choked flow state (i.e. when the cavity becomes infinitely long in

a closed tunnel) is reached as V — 1, or b — oo. The expression (5) for A in
the limit as b — oo is obviously

() A= U (U,), 3
where
(10)  FU)—F (U (a) =
1
=2 sinpn 5 (14 (1 — )Ly

CiAZB
Erat

The quantity U,, and hence a, = a(U*)
by (3), denotes the choked-flow limit of
U as determined by (9), (10) and (3) to
give U, = U, (B, &) as a function of B
and A. The corresponding limit of cavi-
tation number, o, = ¢ (U,) by (8), is
called the “choking cavitation number”
(or the “blockage constant”), which is
also a function of f§ and A, say o, =
=0, (B, 4). The corresponding drag
coefficient at the choked-flow state can
be derived directly by a momentum
consideration to yield

) Co ()= (1),

dg.

i;vhich iis of course also the choked-flow  Fig/%. Choked tiow drag Cp, (O B l/h)bot
imit of (7) as b — oo. The choked-flow w¥dges versus the choked cavitation number
results (9)-(11) are shown in fig. 2. Both Ox (B, 1. Cavity o> é;n.ne i lengthfor
o, (B, M) and Cp_ (B, M) increase as g
increases (with A fixed), or as A increases (with B fixed). When both B and A
are kept fixed, the cavity flow is finite in length for 6 > o, infinite at 0 = g,
and no cavity flow is physically feasible for o << o,. It is further noted that
the above choked-flow solution is common to all theoretical flow models in
the same limit.

On the other hand, the unbounded-flow limit A — O is reached as b — a,

which implies V— U, or ¢" — o, where @;}, defined by

(12) ) 0”2(&53*1;&/4%91/2) — V1 —a(V),

[

Is a new cavitation number based on the minimum pressure p, and maximum S o,

velocity V glong the tunnel wall at point B of fig. 1. For small A, an asymptotic
representation of the drag coefficient can be derived from the above exact
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solution by first expanding Cp (o, A)/(1 + o) in Taylor’s series,

Cplo, A Cplo, 0 " /] Cplo, 7t : "
(13 B =R 0 — o) 5 (FEe) ]+ 010" 0.
From (7) and (6) it follows that
8 Cp(o, A B o (I_-(a b)7] db B
(14) AR ]b:a“'[ﬁ(_’—'u(a, b)}w]bzp
. | 1 (@)l (@, a))da 1 d Cp(s,0) -
@’”"’L[\ = 3%“——1% o 1dc — 3 a6 ifo

Upon substituting (14) in (13), the resulting expression on the right hand side
of (13) can be regarded as an expansion of Cp (0’, 0)/(1 + o) for small
] o — o], and hence

G
g [ 6 ] : Cp (O, A Cp(o’, 0
of — (15) HE= Gt rom)
by Opeg;dtglake s A where '
09 / .
. : (16)

’ 1 1" 2 1 1"
¢ =0+5(0 —0)=50+50.

Equations (15), (16) are the desired

L o7k Ufgﬂyg‘% Filow / o/ |  wall-correction rule, which takes a
| chokes 70w in /ked measured drag coefficient Cp (0, M),
. p6\-Jinearized soluion Amokes 4 in a tunnel of known A, and con-

(Coken and 6ilbert)

[ha’{red flow 7
- C 7 (G)

’esr/fz’z‘é”f’e[fgmyi verts it by (15) to an estimated
L el { unbounded drag coefficient Cp, (o’, 0)

05

7

04 ' Al
: on number, o iven by (16) as
’ Computed Corrected Meijer’s u ’ ) y (16)

A=ifp ColGA) Go(G,0) e @ linear combination of the cavita-

a3 azs v v G4 {jon number ¢ in bounded flow and

] % » & ¢”. The new cavitation number o”
orl—J a2 nr o, .. 8 can be acquired either by actual
. , o oz 04 05 05 . 0 measurement together with ¢ in
g s T e T experiments or by calculation from

Fig. 3. Correction rules tested against theoretical re- (4) and (5)-
sults for 30° wedge. An example of use of this rule in
estimating the unbounded drag coefi-
cient from the exact values of Cp, (0, A) calculated from (7) and () is shown in
fig. 3 for P = 15°. The agreement of predicted Cp (¢’, 0) by (15), (16) with
the calculated exact values of Cp, (0, A) from (7) and (5) is found to be excellent
for all angles, with A up to 1/6 and o up to 1. Also shown in fig. 3 is the empiri-
cal rule of Meijer (1967), which is based on a different drag coefficient Cp (0”)
as a function of the cavitation number ¢” according to

(7) Co(@)=D[ (3 0v*), o' =(p—pa) (5 0V%).

where D is the drag measured at cavitation number o, p, is the minimum
pressure and V is the corresponding maximum velocity on the tunnel wall
(this 0” agrees with the definition (12) for the theoretical Riabouchinsky model).
As shown in fig. 3, Meijer’s rule is found to over-correct the wall effect predicted
by the Riabouchinsky model, while the latter is well supported by the expe-
rimental results, as will be discussed more fully later. ’

// of the same wedge in unbounded.
7/ Rinbouchinsky model flow (A = 0) at a different cavita-

o
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3. Open-Wake Model

The same physical flow as dealt with in the previous case is shown in
fig. 4 for the open-wake model, with the parametric {-plane denoted by the
same symbol, except it is now referred to the present flow model. The para-
metric solution in this case is found to be M

(18) L@ +a) @480, A= Uh(Br—a),

and the complex velocity w == w ({) for the cavity flow past a wedge is again
given by (2). It thus follows that the functional forms of U (a) and V = U (b)

4 z -plane
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Fig. 4. The open-wake model fdr pure drag flows in a tunnel.

are the same as (3), (4) given before. The velocity V also gives the maximum
value on the wall, but now at downstream infinity. The base-chord-to-tunnel-
spacing ratio is found to be

(19) A=1Uh=UIF (U)— F(V)],

where F (U) is given by (10). The drag coefficient can be obtained directly by
the momentum consideration as .

(20) Cp (o, x):%(gq) (?%—1).

Upon eliminating V between (19), (20), the result provides Cp (0o, A) with the
wall effect.

The cheked-flow state of this model is reached also as b — oo, or equi-
valently, as ¥ — 1. The corresponding limit of @ and U, denoted by a, and
U, respectively, are readily seen to be given again by (9), (10), while the drag
coefficient of (20) reduces to (11). The choked-flow state of these two models,
in fact of all theoretical models, are the same.

When A (=U/h) is small, as is usually the case in experimental practice,
the asymptotic representation of the preceding exact solution can be derived
as follows. First, by substituting (19) for A in (20), the unbounded-flow limit-
(as A — 0, or equivalently, as V — U) of the drag coefficient Cyp(0, A)-of -
300718 127
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wedges is obtained by letting V — U, giving, upon using !'Hospital’s rule,

Colo, 0) = = =[S D
. i —— S

1f this equation is solved for F” (U), and integrated from U to V, an alternative
expression for X is ohtained (using again (19)), ‘

e T 14
- L ut e 1)
@1 | K_Ué Coo (@, 0) 4

where o (u) = u? — 1. For given wedge angle, (21) determines V implicitly
as a function of ¢ and A. Next, partial differentiation of (20) and (21) with
respect to o and A and elimination of terms involving V gives a parital diffe-
rential equation for Cp (0, A), which reduces in the limit as A — 0 to

a W 1+o a - 1
(22) 7 Co o, 0) -+ 15 Co(0, 0) 5 Co (0, 0) =5 Ch (0, 0).
Now, by integrating (22) from ‘o’ to o (=0’, with 0 — ¢’ = O (A)) along the
mathematical characteristics of (22):

Ld0 A0 . o a0 dCp  Cp(0,0)
o= (o0, 0), FP=—375—,
we obtain , E -
e, 40’ g

(23) . Cplo 30):THCD(U, M40 (33,
where ‘ '
(24a) o' =0~ (EL) Co (o', 0) 0 (W),
or, to the same order of accuracy,
(24b) o' —0— (Eg—") Ch (o, M A+ 0 (Y.

Thus, (23) and (24) play the same role of a two-way correction from Cy, (0, A)'
in & bounded flow to Cp (0, 0) in unbounded flow, and vice versa, as in the
case of (15), (16) based on the Riabouchinsky model. In fact, (15) and (23) are-
identical up to the order O (A). An essential difference between these two sets’
of rules, in the sense of their prerequisite for application, arises from the sig-
nificance of o' in these two cases. For the Riabouchinsky model, it is necessary
to make an additional measurement of a new cavitation number o”, whereas:
in the case of the open-wake model, no such additional measurement is required.
The wall corrections predicted by (23) and (24) have been computed for
the same configuration of fn = 15°; the result, as shown in fig. 3, is again
in excellent agreement with the exact solution, (19) and (20), for A up to 1/6
and o up to 1. In fact, the accuracy of the rule (23), (24) is uniformly good for
all wedge angles. More specifically, the following features of the wall effects
predicted by these two theoretical flow models are of interest Lo note.

4. Main Féatures of the Theoretical Results of Wall Effects

While the over-all accuracy of the two sets of wall correction rules (namely,
(15), (16) for the Riabouchinsky model and (23), (24) for the openwake model)
has been established by comparison with their respective exact solution, direct
comparison.of the drag coefficients based on these cavity flow models, however,
exhibits refined differences. A detailed comparison between the Riabouchinsky
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and open-wake models is given for the representative cases of 30° and 90° wed-
ges, as shown in fig. 5.

As can be seen from this comparison, the open-wake model predicts, in
general, greater drag coefficients than the Riabouchinsky model, other quanti-
ties being equal. This difference is actually inherent to their predictions of
the unbounded flow. More specifically, starting from the same limit of the
choked-flow state, the difference between these two flow models becomes more
appreciable for thinner wedges (smaller B) and shorter cavities (larger o),
reaching the widest discrepancy as
A — 0 when the unbounded-flow limit - T T
is approached. N ' ‘

This inherent. difference notwith-
standing, the results of these two flow
models exhibit the following similar
features of the wall effect. First, the
effect of the lateral constraint by the
tunnel walls is to make Cp lower than
in an unbounded flow at the same cavi-
tation number. Actually, this stream-
line blocking effect results in an in-
crease of flow velocity, and hence a
decrease of pressure over the wetted
surface of body, and also causes the

cavity pressure to be somewhat lower h/L
than in an unbounded flow with the 85} gr=15% »
same free stream condition. These two ) 7 —— Open-wake mode
. . hit =20 e Choked  Tlow

effects reinforce each other to yield a C o/l =40 = Rigbauchinsky model |
lower Cp, at the same o. ‘

Another remarkable feature of the \ . . :
results is that the percentage drag 9 05 w1520

reduction due to the wall éffect, for G

fixed o and 7\,, actually" incréases Wi’[,h Fig. 5. Comparisons of the drag coefficient for 30°
decreasing Wedge angle. Physically, and 90° wedges based on the different models.
this is likely due to two reasons: first,

a thinner body has longer wetted surface exposed to the wall effect, and second,
the singularity of the cavity-boundary curvature becomes weaker for thinner
bodies at the point of detachment. The former feature is actually borne out
by the experimental measurements of pressure distribution. In contrast, the

and fall to insignificant magnitude for pr > 90°.

wall effects become increasingly smaller as § increases for blunter wedgeCs)//
i)

5. Experimental Verification; a Critical Examination of the Flow Models

In attempt to verify the theoretical results and to conduct a critical exa-
mination of the cavity flow models in regard to their accuracy in representing
physical flow, a series of experiments was carried out with due consideration
of the viscous effects, which generate -a boundary layer on the body surface
and along the tunnel wall, and other real-fluid effects. Four wedges of vertex

angles 2fn =7 %o, 9°, 15° and 30° (chord ~6 in.) were tested in the 6 in. span,

two-dimensional working section of a high-speed water tunnel for a set of
values of A = U/h. The values of drag coefficient on these wedges were obtained
both by pressure integration and by direct balance measurement, with the
viscous drag estimated and subtracted in the latter method. The results by
pressure integration were found to be more accurate, as indicated by its repeata-

: 30%

-
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bility, whereas the direct force measurements showed more scatter of data.
Also, a series ol static pressure taps on'the lower wall of the tunnel were used

for the purpose of determining the

rall pressure distribution.
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Drag coefficient of the D° wedge (Bm = 4.5°).

As shown in figs 6, 7 for two representative cases of 2frw = 9° and 30°
wedges, the Riabouchinsky model yields results closest to the experimental
measurcments over a range of A up to values as high as A = 0.236. For clarity,
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Fig. 7. Drag coefficient of the 30° wedge (fm = 15°).

comparison is made only with that model, as the extent of difference between
the two models is already known. In addition, comparison is also made with
the results of the linearized theory of Cohen and Gilbert (1957). As shown in
Hg. 3, the linearized theory yields values of C;, appreciably greater than either
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the exact theory or the experiments. The difference is of course less for wedges
of smaller vertex angle. " o

The pressure-integrated drag on the 9° and 30° wedges are corrected for
wall effects using the relations (23), (24) and the experimental values of mini-
mum wall pressure. The results are the solid points in fig. 6 and fig. 7. Clearly

0 0f 020304050607 0 0204060810 1214 1618
T T T T T T ]

: ) cp A T T T T ¥ T T
mmn \\ —-0/
— Q051+ \\ 2
-3
—0il}
~04
=015 . -05
\ 281 Ifk
i A
—020F Nl 9 nozis W \
15° 00527 x | ~O7T 287 1n \
Theory —05~300 0070 \
-025 \ Choked flow..—.] | 07 0236 \\
[ T YN SO S W -08 A

Fig. 8. Minimum wall pregsure versus cavitation number. Arrows indicate
corresponding curves.

the results are very satisfactory, since the rule collapses the points for different
A = l/h onto a single line very close to the unbounded-flow theoretical line.
We further note that the theoretically predicted values of minimum wall pres-
sure are in good agreement with the experiments, as shown in fig. 8.
Although the experimental investigation has been limited to symmetric
wedges only, the correction rule (23), (24) is expected to possess a wider validity,

at least gor symmetric bodies without too large curvatures, since the geometry

of the body profile is only implicitly invelved in the correction formula.
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