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ABSTRACT

The nonlinear dynamics of a spherical cloud of cavitation
bubbles have been simulated numerically in order to learn
more about the physical phenomena occurring in cloud
cavitation. A finite cloud of nuclei is subject to a de-
crease in the ambient pressure which causes the cloud to
cavitate. A subsequent pressure recovery then causes the
cloud to collapse. This is typical of the transient behav-
ior exhibited by a bubble cloud as it passes a body or the
blade of a ship propeller. The simulations employ the fully
nonlinear continuum mixture equations coupled with the
Rayleigh-Plesset equation for the dynamics of bubbles. A
Lagrangian integral method is developed to solve this set
of equations. It was found that, with strong bubble in-
teraction effects, the collapse of the cloud is accompanied
by the formation of an inward propagating bubbly shock
wave. A large pressure pulse is produced when this shock
passes the bubbles and causes them to collapse. The fo-
cusing of the shock at the center of the cloud produces a
very large pressure pulse which radiates a substantial im-
pulse to the far field and provides an explanation for the
severe noise and damage potential in cloud cavitation.

NOMENCLATURE
A Dimensionless radius of bubble cloud
Ag Dimensionless initial cloud radius
c* Sonic speed in bubbly mixture
Cp Pressure coefficient
Cpoo  Pressure coefficient at infinity from the
2
cloud, (pi, —p5)/ 307U

Cparrny Minimum pressure coefficient at infinity
D Dimensionless length scale of the low pressure

Ny

Bl

perturbation

Length scale of the low pressure perturbation
Dimensionless frequency

Dimensionless acoustic impulse

Jacobian of the transformation from Lagrangian
coordinates to Eulerian coordinates
Polytropic index for the gas inside the bubbles
Dimensionless far-field acoustic pressure
radiated by the cloud

Pressure at infinity from the cloud

Fluid pressure

Fluid pressure at undisturbed reference
condition

Far-field acoustic pressure radiated by the
cloud

Vapor pressure

Dimensionless Eulerian radial coordinate
measured from the center of cloud, r*/ R}
Dimensionless Lagrangian radial coordinate
measured from the center of cloud and equal
to r at the undisturbed reference condition
Eulerian radial coordinate measured from the
center of cloud

Dimensionless bubble radius

Dimensionless initial bubble radius

Initial bubble radius at undisturbed
reference condition

Reynolds number

Surface tension of the liquid

Dimensionless time

Dimensionless duration of the low pressure
perturbation

Time

Natural period of bubble pulsation



T¢ Time scale of acoustic wave propagation
through the cloud

U Dimensionless fluid velocity
u* Fluid velocity
U* Reference velocity

1% Volume of the cloud

Vemax Dimensionless maximum total volume of
bubbles in the cloud

We Weber number

e Void fraction

o) Initial void fraction

Jé; cloud interaction parameter, ag(1 — ag)A3/R3

n Dimensionless bubble population per unit
liquid volume, n*RZ}S

n* Bubble population per unit liquid volume

W Effective dynamic viscosity of the liquid

wh Natural frequency of bubble pulsation

p Dimensionless mixture density

o) Dimensionless mixture density at ¢t =0

Pg Dimensionless gas density inside a bubble, pj /p7,

Py Gas density inside a bubble

13 Liquid Density

o Cavitation number

At Time step

1. INTRODUCTION

Experimental studies have shown that intensive noise and
damage potential are associated with the collapse of a
cavitating cloud of bubbles (see, for example, Bark and
Berlekom, 1978; Shen and Peterson, 1978, 1980; Bark,
1985; Franc and Michel, 1988; Kubota et al., 1989; Le
et al., 1993; Reisman et al., 1994). Moreover, it has
been demonstrated that when clouds of cavitation bubbles
collapse coherently, they result in greater material dam-
age (see, for example, Soyama et al., 1992) and greater
noise generation (see, for example, Reisman and Bren-
nen, 1996) than would be expected from the cumulative
effect of the collapse of the individual bubbles which make
up the cloud. However, the precise physical phenomena
involved in cloud cavitation have not, as yet, been com-
pletely identified. This paper presents numerical studies
of the nonlinear dynamics of finite clouds of cavitation
bubbles. Some preliminary results were presented earlier
in Reisman, Wang and Brennen (1997); here we provide
more details and further results. The purpose is to ex-
plore the mechanisms for the enhanced noise and damage
potential associated with cloud cavitation.

Analytical studies of the dynamics of cavitation clouds
can be traced to the work of van Wijngaarden (1964) who
proposed a continuum model to study the behavior of a
collapsing layer of bubbly fluid next to a flat wall and

found higher average pressures at the wall as result of the
interactive effects of bubbles. Chahine (1982a, 1982b) ex-
plored numerical methods which incorporate the individ-
ual bubbles using matched asymptotic expansions. Later,
d’Agostino and Brennen (1983, 1989) investigated the lin-
earized dynamics of a spherical cloud of bubbles using
a continuum mixture model coupled with the Rayleigh-
Plesset equation for the dynamics of the bubbles. They
showed that the interaction between bubbles leads to a co-
herent dynamics of the cloud, including natural frequen-
cies that can be much smaller than the natural frequen-
cies of individual bubbles. Omta (1987) linearized the
Biesheuvel-van Wijngaarden homogeneous flow equations
for bubbly mixtures (Biesheuvel and Wijngaarden, 1984)
and obtained solutions to the flow in a spherical bubble
cloud under a number of simplified assumptions. Thus
while the linearized dynamics of clouds of bubbles have
been extensively investigated (see also, for example, Pros-
peretti, 1988; d’Agostino and Brennen, 1983, 1988, 1989),
the nonlinear effects in cloud cavitation have received com-
paratively little attention; in practice, of course, flows with
cloud cavitation experience very large pressure perturba-
tions. Both the dynamics of an individual bubble and the
bubble/bubble interaction through the hydrodynamics of
the surrounding liquid are highly nonlinear. An attempt
to understand these nonlinear effects was undertaken in
the work of Kumar and Brennen (1991, 1992, 1993). They
found weakly nonlinear solutions to a number of cloud
problems by retaining only the terms that are quadratic
in the amplitude. The nonlinear, chaotic behavior of peri-
odically driven bubble clouds have been recently examined
by Smereka and Banerjee (1988) and Birnir and Smereka
(1990). These studies employed the methods of dynam-
ical systems analysis and reveal a complicated system of
bifurcations and strange attractors in the oscillations of
bubble clouds. It is clear that much remains to be learned
about the massively nonlinear response of a bubble cloud
in a cavitating flow.

All the above researches were based on continuum mix-
ture models which were developed using ensemble volume
averaging (Biesheuvel and Wijngaarden, 1984) or time av-
eraging (Ishii, 1975). Effects of bubble dynamics, liquid
compressibility and relative motion between phases can
be included. Such continuum mixture models have been
successfully applied to investigate shock wave propagation
in liquids containing small gas bubbles (see, for exam-
ple, Noordzij, 1973; Noordzij and van Wijngaarden, 1974;
Kameda and Matsumoto, 1995).

Another approach to the modeling of the interaction
dynamics of cavities was developed by Chahine and his
coworkers (Chahine and Duraiswami, 1992; Chahine et
al., 1992). Three-dimensional boundary element methods



have been employed to simulate the deformations of the
individual bubbles within collapsing clouds in inhomoge-
neous flow fields or close to solid boundaries. However,
most clouds contain many thousands of bubbles, impos-
sible to handle by any high speed computer at this time.
It therefore is advantageous to examine the nonlinear be-
havior of cavitation clouds using continuum mixture mod-
els. The recent numerical modeling of unsteady cavitat-
ing flows on a two-dimensional hydrofoil by Kubota et al.
(1992) is an important step in this direction. Solving the
Navier-Stokes equations of the mixture coupled with the
Rayleigh equation for bubble dynamics, they reproduced
the shedding of cavitation clouds and the generation of
vortex cavitation. Unfortunately, there appear to be some
limitations in their approach. They artificially prevented
the bubbles from collapsing to a size smaller than the ini-
tial value. Under these circumstances, the collapse of the
bubbles is severely suppressed and highly nonlinear phe-
nomena such as the formation of shock waves are elimi-
nated. Parenthetically, it is shown in this paper that very
large pressure pulses can occur due to the violent bubble
collapse. In Wang (1996), it was shown that such large
pulses cause substantial computational difficulties.

Another perspective on the subject of collapsing clouds
was that introduced by Mgrch, Hanson and Kedrinskii
(Mgrch, 1980, 1981, 1982; Hanson et al., 1981). They
speculated that the collapse of a cloud of bubbles involves
the formation and inward propagation of a shock wave and
that the geometric focusing of this shock at the center of
a cloud creates the enhancement of the noise and damage
potential associated with cloud collapse. However, they
assumed that the bubbles are completely annihilated after
the shock passing. Fully nonlinear solutions for spherical
cloud dynamics were first obtained by Wang and Brennen
(1994, 1995a, 1995b). Their computational results show
that the continuum models of the cloud indeed manifest
the shock wave phenomena and thus confirm the idea put
forward by Mgrch, Hanson et al. Recently, Reisman et
al. (1997) measured very large impulsive pressures on
the suction surface of an oscillating hydrofoil experiencing
cloud cavitation. They demonstrate that these pressure
pulses are associated with the propagation of bubbly shock
waves.

2. BASIC EQUATIONS

Consider a spherical bubble cloud surrounded by an un-
bounded pure liquid as shown in figure 1. The liquid is at
rest infinitely far from the cloud. Compared to the large
compressibility of the cloud, the pure liquid is assumed in-
compressible. It is assumed that the population of bubbles
per unit volume of liquid, 7, within the cloud, is piecewise

SPHERICAL CLOUD
BOUNDARY

(POPULATION =n PER
UNIT LIQUID VOLUME)

Figure 1: Schematic of a spherical cloud of bubbles.

uniform initially and that there is no coalescence or break-
up of bubbles. Since relative motion between the phases
is neglected and the mass of liquid vaporized or condensed
is also neglected, it follows that 7 remains both constant
and piecewise uniform within the cloud. The radius of
the cloud is represented by A(t), a function of time ¢.
The bubble radius in the cloud is R(r,t), a function of
radial coordinate r and time. The bubbles are assumed
to be spherical and to contain uniform liquid vapor and
residual permanent gas. The problem to be solved is as
follows. The cloud and the whole domain of liquid are ini-
tially in equilibrium. Starting at ¢ = 0, a pressure pertur-
bation, Cps(t), is imposed on the pure liquid at infinity
and the response of the cloud to this pressure perturbation
is sought.

The variables mentioned above and in all the following
figures and equations are non-dimensionalized using the
initial bubble radius, R, and a reference flow velocity, U*.
All quantities with superscript * represent dimensional
values; without this superscript the quantities are non-
dimensional. Thus, the non-dimensional bubble radius is
R = R*/R{, the non-dimensional bubble population per
unit liquid volume is n = n*R(’gs, the non-dimensional ra-
dial coordinate is r = r*/R}, and the non-dimensional
time is t = t*U*/R§.

The basic equations used are those of d’Agostino and
Brennen (1983, 1988, 1989) except that all the nonlinear
convective terms are retained since these are important in
the context of the highly nonlinear growth and collapse of
the cloud. The dimensionless forms of the continuity and
momentum equations for the spherical bubbly flow are:
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where D/Dt = 9/0t + ud/0r is the Lagrangian deriva-
tive, u(r,t) is the mixture velocity, Cp(r,t) = (p*(r,t) —
[29) /%p*L U** is the mixture pressure coefficient, p*(r,t) is
the mixture pressure, pg is the initial equilibrium pressure,
and pj is the liquid density. The bubble population per
unit liquid volume, 7, is related to the void fraction, «,
by 3mR*) = a/(1 — «). The interactions of the bubbles
with the flow are modeled by the Rayleigh-Plesset equa-
tion (Knapp et al., 1970; Plesset and Prosperetti, 1977)
which connects the local mixture pressure coefficient, Cp,
to the bubble radius, R:

DR 3 /(DR\? o 4 1 DR
2= ~Z (1-R3F) 4 — ==
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where ¢ = (p§ — py)/ %,{)"LU*2 is the cavitation number
and pj, is the partial pressure of vapor inside the bubble.
The partial pressure of non-condensable gas (it is assumed
the mass of gas is constant) does not appear explicitly in
(3) because the initial equilibrium condition has been em-
ployed to eliminate this quantity. It has been assumed
that the non-condensable gas inside the bubbles behaves
polytropically with an index k. From the definition of cav-
itation number, o, we know that small values of o imply
that the initial equilibrium pressure is close to the vapor
pressure and the bubbles therefore cavitate more readily.
We define a Reynolds number, Re = p; U* R/}, where
Wy is the effective viscosity of liquid which incorporates
the various bubble-damping mechanisms, namely acous-
tic, thermal, and viscous damping, described by Chap-
man and Plesset (1971), We also define a Weber number,
We = pt U*’ R;/S*, where S* is the surface tension of the
liquid.

The Rayleigh-Plesset equation (3) neglects the lo-
cal pressure perturbations experienced by the individual
bubble due to the growth or collapse of its neighbor.
d’Agostino and Brennen (1989), Nigmatulin (1991) and
Sangani (1991) have shown that, for a mixture with ran-
domly distributing bubbles, the correction factors for local
pressure perturbations are of order of the void fraction,
«, or higher. While a second-order correction could be
incorporated without much difficulty, the void fractions
considered in the present work are only few percent so
that these higher order effects are neglected.

The boundary condition on the surface of the cloud, r =
A(t), is obtained as follows. The spherically symmetric
incompressible liquid flow outside the cloud, r > A(t),

must have a solution of the form:

2dC(t) C*(t)

Cp(r,t) =Cpoo(t)+——-—
P(Ira ) P ( )+ r o dt ,7,4
where C(t) is an integration constant to be determined
and Cpo (t) is the imposed pressure perturbation coeffi-
cient at infinity which will be described later. By substi-
tuting the values of v and r at the boundary of the cloud

in (4), C(t) can be determined as

;> A(t) (5)

C(t) = A*(t)u(A(t), t) (6)

Substituting (6) and r = A(t) into (5), we obtain the
time-dependent boundary condition at the surface of the
cloud:

2 d[A*(t)u(A(t),t)]
A(t) dt
—u?(A(t), 1) (7)

Cp (A(t)a t) =Cps (t) +

At the center of cloud, the symmetry of the problem re-
quires
u(0,t) =0 (8)

In the context of cavitating flows it is appropriate to
assume that, at time t < 0, the whole flow field is in
equilibrium. It is also assumed, for simplicity, that all the
bubbles have the same initial size. Therefore, the following
initial conditions should be applied:

R(r,0) =1, 2,0 =0, u(r,0) = 0, Cp(r,0) =0 (9)

The mathematical model of equations (1), (2), and (3)
is complete and, after applying appropriate initial and
boundary conditions, can, in theory, be solved to find
the unknowns Cp(r,t), u(r, t), and R(r,t) for any bubbly
cavitating flow with spherical symmetry. However, the
nonlinearities in the Rayleigh-Plesset equation and in the
Lagrangian derivative, D/Dt, present considerable com-
putational impediments.

In (7), Cpoo(t) = (ph (t) —p5)/2p; U™ and pi (1) is the
far-field pressure perturbation experienced by the cloud in
a cavitating flow. For the purposes of the present calcula-
tions, a simple sinusoidal form is chosen for Cps(t) since
previous investigations have shown that the results are not
very sensitive to the precise functional form of Cpo(t):

%CPMIN [I—COS(Zﬂt/tg)] ; 0<t<tg

CPoo (t) = (10)

0 3t <0
and t > tg



where Cpyry is the minimum pressure coefficient im-
posed on the cloud and t¢ is the non-dimensional duration
of the pressure perturbation. Consequently, for a cloud
flowing with velocity U™ past a body of size D*, the order
of magnitude of t¢ will be D*/R, and Cparrny will be
the minimum pressure coefficient of the flow.

3. NUMERICAL METHOD

The natural framework for the present problem is a La-
grangian coordinate system based on the mixture veloc-
ity, in which all the nonlinear convective terms in the
mixture conservation equations, (1), (2), and Rayleigh-
Plesset equation, (3), are eliminated. A Lagrangian inte-
gral method based on the integral representation of the
continuity and momentum equations in the Lagrangian
coordinates, (7o, t), has been developed, in which r is the
radial distance from the center of the cloud at initial time
t = 0. The values of other quantities at ¢ = 0 are also de-
noted by a subscript 0. Therefore, the density of a mixture
material element, p(rg,t), is related to its initial density,
po(ro), by

p(TOat) _ l (11)

po(ro) J
where J is the Jacobian of the coordinate transformation
from Lagrangian to Eulerian coordinates: ro — r(ro,t),
and has the following expression in the spherically sym-
metric configuration:

r? or

J = (12)

2 Bro
This also represents the ratio of the current material vol-
ume to its initial volume.

The position of a mixture particle can be obtained by
integrating (11).

3
r(ro,t)= 3+4mn

ro 1/3
/0 e [3+4mR3<£,t>]d£} (13)

where £ is a dummy integration variable and we approxi-
mate p(ro, t)/po(ro) ~ [1 — a(ro, £)]/[1 — ao(ro)] since the
liquid density is very much larger than the vapor density.
Note that the boundary condition r(rg,t) = 0 at the cen-
ter of the cloud has been used to eliminate an integration
constant. The mixture velocity can be obtained by differ-
entiating (13):

or(ro, t)
ot

B 127 TOR(E,t)
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u(ro, t)=

RAEH)EHE  (14)

The mixture momentum equation, (2), and the bound-
ary condition at the surface of the cloud, (7), have the
following forms in the Lagrangian coordinate framework:

dCp(ro,t) 6 Ou(rg,t) Or(ro, t) (15)
Oro © 34+4mnR3(ro,t) Ot Oro
Cp(Ap, t)=C (t)+ii[ *(Ag, t)u(Ao, t)]
P(Ao,1)=CPx (Ao t) dt (Ao, t)u(Ao,
—u?(Ao, t) (16)

After substituting (13) and (14) in the right-hand side of
(15) and integrating from 79 to Ap using the boundary
condition (16), an integral equation for mixture pressure
coefficient, Cp(ro,t), is found:

Cp(rot)= 3+(j17r77 /:)9(5’ t;CPZ(zggaf)UQ(é,t) e
+% —u?(Ag,t) + Cpuo(t) (17)
where
9(&,t;Cp) = 3fzzn 05 {% [R'2*(¢, 1) — 1]
OO 4 ety [t 1]

1 aR(Cvt) 2 2
+5R<<,t>[( o )—cpac,t)]}c i (18)

Here the Rayleigh-Plesset equation, (3), has been used to
eliminate the bubble wall acceleration, 8% R(r,t)/0t.

These equations form the basis of the present method
for solving for these flows. More explicitly, a complete
integration time step proceeds as follows:

1. At each Lagrangian node, rg, R(ro,t + At) and
OR(rg, t+/At)/0t are calculated using an explicit time
marching scheme (a Runge-Kutta scheme) based on

the known solution at the previous time step, R(rg,t),
OR(ro,t)/0t and *R(ro,t)/0t>.

2. With R(rg,t+ At) and OR(rg, t + At)/0t, equations
(13) and (14) can be integrated to obtain r(rq, t+At)
and u(rg, t + At).

3. With the results of steps 1 and 2, we can iterate
upon equation (17) to find Cp(rg,t + At). Then
the Rayleigh-Plesset equation (3) can be used to find
0?R(rg,t + At)/0t?. Under-relaxation was neces-
sary to make this iterative process converge. This
and other numerical difficulties are discussed in Wang
(1996).



4. Proceed to next time step.

The interval of each time step is automatically ad-
justed during the computation to ensure that the max-
imum fractional change of bubble radius in the cloud be-
tween any two consecutive times does not exceed some
specific value (typically, 5%). This is essential for time
marching through a violent bubble collapse. The number
of Lagrangian nodes is 100 in all the computational results
presented here. Nodal numbers of 200 and 400 were used
to check the grid independence of the results.

4. RESULTS AND DISCUSSION

The following typical flow variables were chosen to il-
lustrate the calculated results. A cloud of nuclei, com-
posed of air bubbles of initial radius Ry = 100 pm in
water at 20°C (p; = 1000 kg/m?3, p% = 0.001 Ns/m?,
S* = 0.0728 N/m) flows with velocity U* = 10m/s
through a region of low pressure characterized by equation
(10). The computation is performed for different combina-
tions of the following parameters: the minimum pressure
coefficient, C'ppsrn, of —0.7 and —0.75; a non-dimensional
duration of the pressure perturbation, tg, ranging from 50
to 1000; an initial void fraction, g, ranging from 0.02%
to 5%; a cavitation number, o, ranging from 0.4 to 0.65;
a non-dimensional cloud radius, Ag, of 32, 100, and 312.
These ranges of values of Ay and tg correspond to the ra-
tio of the length-scale of the pressure perturbation to the
initial radius of the cloud, D/Ay, of 0.5 to 31.25, values
which cover the range of experimental observations. The
Reynolds number, based on the reference flow velocity,
initial bubble radius, the liquid density, and the effective
viscosity, is 28.6 in all the cases presented. Recall that
an effective liquid viscosity, p = 0.035 Ns/m?, is used
in place of actual liquid viscosity to incorporate the var-
ious bubble damping mechanisms (Chapman and Plesset
1971).

4.1. Cloud Interaction Parameter

One of the complexities of multiphase flows is the exis-
tence of different characteristic time or length scales and
the interactions between them. In cloud cavitation one
of the most important factors is the effect of the bubble
dynamics on the global flow fields. The parameter con-
trolling this effect is 8 = ag(l — ap)A%/R3, which will
be termed the “cloud interaction parameter.” Here, ag
is the initial void fraction of the cloud, Ag is the initial
cloud radius and Ry is the initial bubble radius. In the
present study, we will show that the nonlinear cloud dy-
namics were strongly dependent on this parameter. Ear-
lier linear and weakly nonlinear studies of cloud dynamics

(d’Agostino and Brennen, 1983, 1989; Kumar and Bren-
nen, 1991, 1992, 1993) showed that the cloud natural fre-
quency is strongly dependent on this parameter. If (3 is
small, the natural frequency of the cloud is close to that of
the individual bubbles in the cloud. In other words, the
bubbles in the cloud tend to behave as individual units
in an infinite fluid and the bubble/bubble interaction ef-
fects are minor. Then the dynamic effects of the cloud
are approximately the sum of the effects of the individual
bubbles in the cloud. On the other hand the bubble inter-
action effects in the cloud are dominant when the value
of B is greater than order one. Then the collective oscil-
lation of bubbles in the cloud results in a cloud natural
frequency which is lower than the natural frequency of
individual bubbles.

In the expression of 3, Ap is the macroscopic length-
scale in the flow, Ry characterizes the microscale, and
ap(1 — ag) & g represents the concentration of the dis-
persed phase. It is useful to mention one physical interpre-
tation of 8. The sonic speed in a bubbly mixture of void
fraction g without viscosity and surface tension effects is
approximately (see, for example, Brennen 1995)

kp* ]1/2
= 19
[aoa—ao)pz (19)

where p* is the mixture pressure and k is the polytropic
index of the gas inside the bubble. The natural frequency
of bubbles in the mixture is approximately

N 1/2
op= (50 (20)

PLRG

where Rf is the bubble radius. But the characteristic
global dimension of the flow is the radius of the cloud, A,
and, consequently, there are two dynamic time-scales in
the flow: the time-scale of bubble dynamics, T} = 1/w},
and the time-scale of wave propagation through the cloud,
T¢ = 1/wE = Af/c*. The ratio of these two characteristic
times is

1/2

=B (21)

*
s

(7)) (1 — Ozo) ASQ
Ty

2
RO

Therefore, § determines the ratio of the two characteris-
tic times in the flow. If 3 is small, the bubbles are little
affected by the global perturbations in the flow and the
global interactions are weak. On the other hand, if 3
is much larger than order one, the bubble dynamics can
effectively influence the large scale perturbations and con-
tribute to the global dynamics of the cloud.
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R(ro.t)
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Figure 2: The time history of the dimensionless bubble
size at six different Lagrangian positions in the cloud for
g = 0.4, CPMIN = —0.7, Qg — 5%, AO = 100, and a ra-
tio of the low pressure perturbation length-scale to initial
cloud radius, D/Ag = 10 (corresponds to t¢ = 1000). The
cloud interaction parameter, 3, is 475 in this case.

4.2. Nonlinear Growth and Collapse of the Cloud with
Various Cloud Interaction Parameters,

For the case of a large value of 3, figure 2 (8 = 475)
presents typical time histories of bubble radius for six dif-
ferent Lagrangian locations, rg, within the cloud, from
the surface, g = Ag, to the center, rg = 0. It is clear
that the bubble growth rate decreases greatly with in-
creasing distance from the cloud surface. This is due to
bubble/bubble interaction in the cloud. The bubbles in
the interior are shielded by the surface shell of bubbles and
grow to a smaller maximum size. This shielding effect is
typical of the bubble interaction phenomenon appearing
in the earlier investigations of cloud dynamics (see, for ex-
ample, d’Agostino and Brennen, 1983, 1989; Omta, 1987;
Smereka and Banerjee, 1988; Chahine and Duraiswami,
1992).

After the recovery of the ambient pressure, bubbles near
the surface (at 79 = 0.9Ap in the present case) of the
cloud start to collapse first and the collapse propagates
inward. Meanwhile, bubbles on the surface of the cloud
keep growing due to their large growth rate and collapse
later. If the duration of the pressure perturbation, tg, is
sufficiently short (say, t¢ = 500), the collapse is forced to
start from the surface of the cloud (see Wang and Brennen,
1995b). Note that the shielding effect causes the bubbles
in the interior region to continue to grow even after the
surface-layer bubbles have collapsed.

As a result of the inward propagating collapse, a bub-
bly shock wave develops. To illustrate a typical transient
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Figure 3: Bubble size, fluid velocity, and pressure distri-
butions in the inward propagating shock wave at a sample
moment in time, ¢t = 1412.68. Parameters as in figure 2.

structure of this shock wave, figure 3 shows spatial distri-
bution of bubble radius, fluid velocity, and fluid pressure
coefficient at one moment in time. The shock wave has
progressed inward to a Eulerian position, r ~ 76. The
wave front of the shock can be easily identified by the
bubble collapse front. Unlike gas dynamic shock waves,
the bubbly shock has an oscillatory structure behind the
shock front which involves a series of rebounds and sec-
ondary collapses. This structure is very similar to that
of the gas/liquid shocks investigated by Noordzij and van
Wijngaarden (1974) (see also Brennen, 1995, §6.9). The
locations with small bubble size represent regions of low
void fraction and higher pressure due to the local bubble
collapse. It is clear that the collapse of bubbles induces
inward flow acceleration which creates a local pressure gra-
dient and promotes more violent collapse of the neighbor-
ing bubbles. As the shock front passes bubbles and causes
them to collapse, a very large pressure pulse can be pro-
duced, as shown in figure 3. The dimensional magnitude
of the peak is about 46 atm in this case. Oscillations in
the pressure resulting from secondary collapses do occur
but are dwarfed by the primary pressure pulse and are not
therefore seen in figure 3.

The shock wave strengthens considerably as it prop-
agates into the cloud primarily because of the focusing
effect of the spherical configuration. The strengthening of
the shock can be seen in figure 2; the closer the bubbles
are to the cloud center, the smaller the size to which they
collapse. Very complicated bubble-bubble interactions are
observed when the focusing shock reaches the center of the
cloud (at ¢t &~ 1430 in the case shown). Very high pressures
are generated which cause a rebound of the cloud. Then a
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Figure 4: The time history of the dimensionless bubble
size at five different positions in the cloud for ag = 0.02%
and D/Ap = 10 (corresponds to t¢ = 1000). Other pa-
rameters as in figure 2. The cloud interaction parameter,
0= 2.

spreading expansion wave causes all bubbles to grow and
starts another cycle of cloud oscillation.

In the case of small 3, the cloud exhibits very differ-
ent dynamics, as shown in figure 4 (8 &~ 2). The bubbles
in the cloud now have weaker interactions and, therefore,
grow to a larger size. However, the inner bubbles still have
a smaller growth rate than that of the outer bubbles. As a
result, the inner bubbles grow to a size which is an order of
magnitude smaller than that of the surface bubbles. But,
more importantly, the inner bubbles collapse first. The
collapse then spreads outward and results in an outward
propagating shock, as shown in figure 5. Obviously, no
geometric focusing occurs and the pressure and noise gen-
erated by the collapse are much smaller than when § > 1.

When [ has an intermediate order of magnitude, as
illustrated in figure 6, the collapse starts at mid-radius
(0.6A4p in the case of figure 6) and spreads inward and
outward from this location. The outward moving collapse
tends to cancel the inward acceleration of the flow caused
by the collapse of the bubbles on the cloud surface. The in-
ward moving collapse has a structure similar to the shock
wave described in figure 3. However, the shock-enhancing
effect is weaker than in the case of large 3 due to the
reduced “effective collapse size” of the cloud.

We note that Mgrch, Hanson and Kedrinskii (Mgrch,
1980, 1981, 1982; Hanson et al., 1981) first suggested that
the collapse of a cloud of bubbles involves an inwardly
propagating shock wave. Results of the present analysis
confirm the formation of the shock waves which, however,
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Figure 5: Bubble size and pressure distributions in the
outward propagating shock wave at a sample moment in
time, t = 1337.03. Parameters as in figure 4.

can propagate in either direction, depending on the value
of 3 in the cloud.

4.3. Far-Field Noise Generated by the Cloud

In this section, we examine the far-field noise generated
by typical cloud dynamics. If V*(¢*) denotes the time-
varying volume of the cloud, then the far-field acoustic
pressure produced by the volumetric acceleration of the
cloud is given by (Dowling and Ffowcs, 1983; Blake, 1986)

. * d2v* t*
pa(t)_ PL ( )

= - - 7 22
drr* (22)

where p; is the dimensional radiated acoustic pressure
and 7* is the distance from the cloud center to the point
of measurement. We have neglected the acoustic contri-
butions from individual bubbles since they are minor in
the far field. For present purposes a normalized far-field
acoustic pressure is defined as

o part
pa(t) - %sz*QD*
:% A2y A0 C‘;f) +2A(1) (%ﬁ”) ] (23)

where the normalizing length-scale was chosen to be D*,
the typical length of the pressure perturbation experi-
enced by the cloud. In practice, D* will be comparable
to the size of the body, for example, the chord of a pro-
peller blade. A typical example of the time history of the
cloud radius and the far-field acoustic pressure is given
in figure 7. Here, the ratio of the pressure perturbation
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Figure 6: The time history of the dimensionless bubble
size at five different positions in the cloud for ag = 0.1%
and D/Ap = 10 (corresponds to t¢ = 1000). Other pa-
rameters as in figure 2. The cloud interaction parameter,
G =~ 10.

length-scale to initial size of the cloud, D/Ay, is chosen
as 2 (which corresponds to the duration of the pressure
perturbation, t¢ = 200), small enough to cause the col-
lapse to start from the cloud surface and, therefore, to
result in coherent oscillation of the cloud. It is interesting
that, unlike single bubbles, the cloud only collapses to a
size marginally smaller than its equilibrium size. How-
ever, the void fraction within the cloud undergoes large
changes. This is consistent with the recent experimental
observations of unsteady cloud collapse by Reisman et al.
(1997).

As illustrated in  §4.2, an inward propagating shock
wave develops during the collapse process. When the en-
hanced shock wave reaches to the center of the cloud,
large impulsive noise is generated, as shown in figure 7.
The first collapse is followed by successive rebounds and
collapses which also produce radiated pulses. The mag-
nitudes of the subsequent pulses decay with time due to
the attenuation from bubble damping mechanisms. After
several cycles, the cloud begins to oscillate at its natural
frequency.

Figure 8 presents the power spectral density of the far-
field noise in figure 7 as a function of dimensionless fre-
quency, f, which is non-dimensionalized by the time scale,
R /U*. This spectrum exhibits an average f~2 decay over
the frequency range used. This behavior is typical of the
cavitation noise associated with cavitating bodies or hy-
drofoils (see, for example, Blake et al., 1977; Arakeri and
Shangumanathan, 1985; Ceccio and Brennen, 1991; Reis-
man et al., 1997). Other computational cases exhibited
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Figure 7: The time history of the dimensionless cloud ra-
dius and the resulting far-field noise for ag = 0.8% and
D/Ay = 2 (corresponds to tg = 200). Other parameters
as in figure 2.

an average f~" behavior with n in the range of 0.5 to 2.

The first and highest peak in figure 8 corresponds to the
first natural frequency of the cloud, f = 0.015 (or 1.5 kHz
in dimensional terms), in the present case. Higher har-
monics of the first cloud natural frequency are also present
in the spectrum and reflect the high degree of nonlinear-
ity in the cloud dynamics. Another significant feature of
the spectrum is that most of the energy is in the lower
frequency range and is due to the coherent dynamics of
the cloud. Note that in their cavitation experiments both
Marboe et al. (1986) and Arakeri and Shangumanathan
(1985) observed a tendency for the noise spectrum to shift
towards lower frequencies at higher bubble densities. Bub-
ble interactions were speculated to be the cause and this
conjecture is strengthened by the present results.

To determine the magnitude of noise, the far-field acous-
tic impulse, I, is defined as the area under the largest pulse
of the pressure signal or

I= /t2 pa(t)dt, (24)

t1

where t; and ty are times before and after the pulse at
which the acoustic pressure, p,, is zero. Figure 9 presents
the acoustic impulse as a function of the cloud interaction
parameter, (3, for flows with different cavitation numbers,
o, and different ratios of the pressure perturbation length-
scale to initial cloud size, D/Ag. In all cases, the impulse
increases with increasing 8. Moreover, for larger D/A,
there is a larger difference in different cavitation numbers.
This is because the recovery of the ambient pressure of
the cloud is slower and, therefore, the bubbles have more
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Figure 8: The non-dimensional power spectral density of
the far-field noise in figure 7 as a function of dimensionless
frequency. The lowest cloud natural frequency is about
0.015. The natural frequency of single bubbles in the cloud
is 0.158.

time to cavitate. Under these circumstances the degree
of cavitation in the cloud and the resulting acoustic im-
pulse increases with decreasing cavitation number. On
the other hand, if D/Ap is small, the cloud will not have
cavitated much before the recovery of the ambient pres-
sure. Therefore, the influence of the cavitation number is
smaller.

To investigate the relationship of the acoustic impulse
to various parameters of the flow, calculations using a wide
variety of parameter choices (45 permutations) were per-
formed. It was found that the acoustic impulse is lin-
early correlated with the maximum total volume of the
bubbles in the cloud normalized by the pressure pertur-
bation length-scale, Vparax/(0.5D)3, as shown in figure
10. Moreover, as illustrated in figure 11, this total volume
decreases with increasing cavitation number and with in-
crease in initial void fraction. It also varies with D/Ag.

4.4. Shock speed

Figure 12 shows the inward propagation speed of the
spherical bubbly shock wave (normalized by U*) as a func-
tion of the location of the shock front for three different
initial void fractions, aq, of 0.03%, 0.3% and 3%. In each
case, the speed of the shock when it is initially formed in
the surface layer of the cloud is of the order of 10 m/s.
However, the speed increases as the strengthening shock
propagates into the cloud. The increase in the speed is
very pronounced over the last 20% of the collapse so that
the shock speed near the center of the cloud is an order
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of magnitude larger than that in the outer region. The
speed is O(102 m/s) for the larger void fractions used
here and can reach O(10* m/s) for the smallest void frac-
tion (a9 = 0.03%). If these shock pulses passed over a
pressure transducer in a cavitating flow, the typical dura-
tions of the output signals would range from 10~% sec to
1076 sec.

4.5. Comparison with Experimental Observations

Earlier measurements of the noise produced by cloud cav-
itation are characterized by pressure pulses of very short
duration and large magnitude (see, for example, Bark and
Berlekom, 1978; Shen and Peterson, 1978, 1980; Bark,
1985; Le et al., 1993; Reisman et al., 1994). However, the
basic mechanism for the production of these pulses was
not clear. The present theory suggests that the forma-
tion and concentration of the bubbly shock waves could
be responsible. Recently, experimental investigations of
the large unsteady and impulsive pressures which are ex-
perienced on the suction surface of an oscillating hydrofoil
as a result of cloud cavitation were conducted (Brennen
et al., 1996; Reisman et al., 1997). The experiments used
piezo-electric transducers to measure the unsteady pres-
sures at four locations along the chord of the foil and at
two locations along the walls of the tunnel test section.
The transducers on the foil surface registered very large
positive pressure pulses with amplitudes of O(10 bar) with
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Figure 10: The impulse of the normalized far-field noise
as a function of the normalized maximum total volume of
bubbles in the cloud at different values of D/Aq (31.25 =
solid A, 15.625 = +, 10 = ©, 5 = solid O , 3.125 = x,
1 = A, 0.5 = e). Three different cavitation numbers,
o, of 0.45, 0.55, and 0.65, and three different initial void
fractions, aq, of 0.03%, 0.3%, and 3% are used. Other
parameters are Cparry = —0.75 and three different initial
cloud radii, Ag/ Ry, of 31, 100, and 312.

durations of O(10~% sec). These orders of magnitudes are
in the same range as the present calculations. Moreover,
it was found that the pressure pulses moved with speeds of
O(10 — 100 m/sec) in agreement with the range predicted
by the present theory.

5. CONCLUDING REMARKS

The nonlinear growth and collapse of a spherical cloud of
cavitation bubbles has been computed using fully non-
linear continuum mixture equations coupled with the
Rayleigh-Plesset equation for the dynamics of the bubbles.
This system is solved numerically using a Lagrangian in-
tegral method. It is shown that a bubbly shock wave
develops as part of the nonlinear collapse of the bubble
cloud. The dynamics and acoustic consequences of the
shock wave are strongly dependent on the cloud interac-
tion parameter, 3 = ag(1 — ap)A%/R2, where, ag is the
initial void fraction of the cloud, Ag is the initial cloud
radius and Rg is the initial bubble radius. For a cloud
with large (§, the shock wave forms near the surface of
the cloud and propagates inward. The strength and the
speed of the shock increase considerably due to the geo-
metric focusing. Very high pressure pulses are produced
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Figure 11: The normalized maximum total volume of bub-
bles in the cloud as a function of cavitation number. Data
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as in figure 4.

when the shock wave passes the bubbles in the cloud and
causes them to collapse. Moreover, the enhanced shock
produces very high pressures at the center of the cloud
and then causes the rebound of the cloud. The volumet-
ric acceleration of the cloud induces a large pulse in the
far-field noise.

When g is small, shock enhancement does not occur.
Rather bubble collapse first occurs in the center of the
cloud and results in an outward propagating shock wave.
At intermediate 8 the collapse starts at mid-radius and
propagates inward and outward simultaneously. These
shock wave dynamics, however, also depend on the du-
ration of the pressure perturbation imposed on the cloud.
If the cloud experiences a short period of depressurization,
bubble collapse will start at the cloud surface.

Understanding such bubbly flow and shock wave pro-
cesses is important because these flow structures propa-
gate the noise and produce the impulsive loads on nearby
solid surfaces in a cavitating flow. The results of this
research suggest that large value of 8 promotes the for-
mation and focusing of a bubbly shock wave which is one
of the major mechanisms for the enhanced noise and dam-
age potential associated with cloud cavitation. Parenthet-
ically, this requires either the initial void fraction or the
ratio of cloud size to bubble size be sufficiently large and
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Figure 12: The speed of the inward propagating bubbly
shock wave as a function of shock front position in the
cloud for three different initial void fractions. Other pa-
rameters are Cppyrry = —0.75, 0 = 0.45, D/Ag = 5, and
Ao /Ry = 100.

this, in turn, is qualitatively in accord with the observa-
tion that cavitation must be quite extensive for the cloud
phenomenon to be manifest. Furthermore, this implies
that bubble/bubble interaction effects play a crucial role
in cloud cavitation noise and damage.

The theoretical results shed some light on previous ex-
perimental observations of cloud cavitation (Bark and
Berlekom, 1978; Shen and Peterson, 1978, 1980; Bark,
1985; Franc and Michel, 1988; Kubota et al., 1989; Le
et al., 1993; Reisman et al., 1994; Reisman and Brennen,
1996; Reisman et al., 1997). Experimental measurements
of the noise produced by cloud cavitation all exhibit pres-
sure pulses of very short duration and large amplitude.
These pulses have magnitudes on the order of tens of
atmospheres with typical durations of the order of tens
of milliseconds (see, for example, Reisman et al., 1997).
Moreover, these pulses appear to propagate through the
bubbly cloud with speeds ranging from O(10) m/s to
0(100) m/s (Brennen et al., 1996; Reisman et al., 1997).
These magnitudes are consistent with the present calcu-
lations.

It also appears that an understanding of the collapse
shock dynamics and acoustics has important consequences
and implications for the scaling of cloud cavitation noise
and damage. For example, the g values could be very
different for the model and the prototype; frequently, aq
and Rg will be similar but Ag will be quite different. This
could cause severe cloud cavitation in the prototype which
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might not show up in the model if the model values of 3
were small.

Finally we should note that, of course, most clouds are
not spherical. Nevertheless the collapse of all or part of
non-spherical clouds will produce points at which shock
waves focus to produce large local and radiated pulses.
Sturtevant and Kulkarny (1976) present a useful review of
the various gasdynamic shock wave focusing phenomena
including the effects of inhomogeneous media. However,
it is not currently clear what three-dimensional forms the
propagating bubbly shock waves might take in the highly
non-uniform bubbly environments which occur in real cav-
itating flows.
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