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ABSTRACT

The focus of this paper is the numerical simulation of
the dynamics and acoustics of a cloud of cavitating bub-
bles. The prototypical problem solved considers a fi-
nite cloud of nuclei that is exposed to a decrease in
the ambient pressure which causes the cloud to cavi-
tate. A subsequent pressure recovery then causes the
cloud to collapse. This is typical of the perturbation
experienced by a bubble cloud as it passes a headform
or the blade of a ship propeller. The simulations em-
ploy the fully non-linear, non-barotropic, homogeneous
flow equations coupled with the Rayleigh-Plesset dy-
namics for individual bubbles. This set of equations is
solved numerically by an integral method. The compu-
tational results confirm the early speculation of Mgrch
and his co-workers (Mgrch 1980 & 1981, Hanson ef al.
1981) that an inwardly propagating shock wave may
be formed in the collapse of a cavitating cloud. The
structure of the shock is found to be similar to that of
the steady planar shocks analyzed by Noordij and van
Wijngaarden (1974). The shock wave grows rapidly not
only because of the geometric effect of an inwardly prop-
agating spherical shock but also because of the coupling
of the single bubble dynamics with the global dynamics
of the flow through the pressure and velocity fields (see
also Wang and Brennen 1994). The specific circum-
stances which lead to the formation of such a shock are
explored. Moreover, the calculations demonstrate that
the acoustic impulse produced by the cloud is signifi-
cantly enhanced by this shock-focusing process.

Major parameters which affect the dynamics and
acoustics of the cloud are found to be the cavitation
number, o, the initial void fraction, o, the minimum
pressure coefficient of the flow, C'pasrnv, the natural fre-
quencies of the cloud, and the ratio of the length scale
of low pressure perturbation to the initial radius of the
cloud, D/Aq, where D can be, for example, the radius
of the headform or chord length of the propeller blade.
We examine how some of these parameters affect the far
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field acoustic noise produced by the volumetric acceler-
ation of the cloud. The non-dimensional far-field acous-
tic inpulse produced by the cloud collapse is shown to
depend, primarily, on the maximum total volume of the
bubbles in the cloud normalized by the length scale of
the low pressure perturbation. Also, this maximum to-
tal voluine decreases quasi-linearly with the increase of
the cavitation number. However, the slope of the de-
pendence, in turn, changes with the initial void fraction
and other parameters. Non-dimensional power density
spectra for the far-field noise are presented and exhibit
the f~" behavior, where n is between 0.5 and 2. After
several collapse cycles, the cloud begins to oscillate at
its natural frequency and contributes harmonic peaks -
in its spectrum.

Nomenclature
A Dimensionless radius of the bubble cloud
Ao Dimensionless radius of the bubble cloud at the

undisturbed reference condition

Cp Pressure coefficient, (p — po)/ %pL U?
Cpoo  Pressure coefficient at infinity, (poo — po)/2pLU?
Cpmin Minimum pressure coefficient at infinity
D Length scale of the low pressure perturbation
R Dimensionless bubble radius
Ry Initial radius of bubble at undisturbed reference
condition
Re Reynolds number, pU Ro/pEg
S Surface tension of the liquid
u Reference velocity of the flow
Vem ax Maximum total volume of bubbles in the clou
We Weber number, pU%Ro/S '
k Effective polytropic index for the gas
inside the bubbles
P Fluid pressure
Po Fluid pressure at undisturbed reference condition
Pa Dimensioniess far-field acoustic pressure produced

by the cloud



Pu Vapor pressure inside the bubble

Pro Pressure at infinity

r Dimensionless Eulerian radial coordinate
measured from the center of cloud

g Dimensionless Lagrangian radial coordinate

measured from the center of cloud and equal
to r at the undisturbed reference condition
{ Dimensionless time

tq Dimensionless duration of the low pressure
perturbation

u Dimensionless radial velocity of the fluid

« Void fraction of the bubbly mixture

vy Void fraction of the bubble mixture at the
undisturbed reference condition

oL Density of the liquid

o Cavitation number, (pg — p,,)/%p[,(/2

7 Dimensionless bubble population per unit
liquid volume

UE Effective dynamic viscosity of the liquid

1 Introduction

Experimental studies of cloud cavitation have demon-
strated that severe noise and damage potential are asso-
ciated with the collapse of a cavitating cloud of bubbles
(see, for example, Bark and Berlekom 1978, Shen and
Peterson 1978, Bark 1985, Franc and Michel 1988, Kub-
ota et al. 1989, and Reisman ef al. 1994). The coherent
collapse of a cavitating cloud can be more violent than
that of individual bubbles and thus increase the noise
and damage potential (Bark and Berlekom 1978, Soy-
oma ef al. 1992, and Reisman et al. 1994). However,
the basic explanation of the enhanced noise and dam-
age potential is still not clear. Most previous theoret-
ical studies of the dynamics of cavitating clouds have
been linear or weakly non-linear analyses which have
identified the natural frequencies and modes of cloud
oscillation (see, for example, d’Agostino and Brennen
1983 & 1989, Kumar and Brennen 1991, 1992, 1993)
but have not, as yet, shown how a ¢cloud would behave
during the massively non-linear response in a cavitating
flow.

Several years ago, Mgrch and his co-workers (Mgrch
1980 & 1981, Hanson et al. 1981) speculated that the
collapse of a cloud of bubbles involves the formation
and inward propagation of a shock wave and that the
geometric focusing of this shock at the center of cloud
creates the enhancement of the noise and damage po-
tential associated with cloud collapse. Recently we have
employed a continuum mixture model to study the non-
linear growth and collapse of a spherical cloud of bub-
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bles and confirmed that the collapse is accompanied
by the formation of such a shock wave which rapidly
gains strength (Wang and Brennen 1994). The present
paper extends the previous investigation and examines
the formation, development and acoustic consequences
of the shock wave. Very complicated bubble-bubble in-
teractions are observed when the shock propagates to
the center of the cloud and then produces a rebound of
the cloud. The first collapse and rebound, which induce
a large volumnetric acceleration of the cloud, cause a very
large peak in the far-field acoustic noise. The magni-
tudes of the subsequent peaks in each collapse and re-
bound cycle may decay rapidly or slowly, depending on
the collapse mode of the cloud. After several cycles,
the cloud begins to oscillate at its natural frequency.
Power spectral density for the far-field noise exhibit the
average f~" behavior which is caused by the first few
shock-induced acoustic peaks. The index n is found to
be between 0.5 and 2 for the cases studied. Sowe of
the spectra have large peaks at the natural frequency
of the cloud (see d'Agostino and Brennen 1983 & 1989)
and its higher harmonics. These are contributed by the
later, regular oscillations of the cloud.

To investigate the strength of the cloud noise and its
relationship to the parameters of the flow, the acous-
tic impulse is calculated for each flow. The normal-
ized impulse is found to be linearly correlated with
the normalized maximum total volume of the bubbles,
Vemax /(0.5D)3, in the cloud, where the normalization
factor D is the length scale of low pressure perturba-
tion, for example, the diameter of the headform. Tt
is found that Vearax /(0.5D)3 decreases quasi-linearly
with increasing the cavitation number, which ranges
from 0.45 to 0.65 in the present study. However, the
slope of the dependence changes with the initial void
fraction and other parameters, such as DAy, the ratio
of the length scale of low pressure perturbation to the
initial cloud radius. This understanding has important
consequences and implications for the scaling of cloud
cavitation noise and damage.

2 Basic Equations

Consider a spherical cloud of bubbles surrounded by an
unbounded pure liquid at rest at infinity, as shown in
figure 1. The pure liquid is assumed incompressible,
with a density pr. The relative motion and the mass
transfer between the two phases are neglected. It is
assumed that the population of bubbles per unit lig-
uid volume, 5, within the cloud, is uniform initially
and that there is no coalescence or break-up of bub-
bles; since relative motion is neglected it follows that 7
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Figure 1: Schematic of a spherical cloud of bubbles

is both constant and uniform within the cloud. The ba-
sic equations used are those of d’Agostino et al. (1988,
1989) except that all the nonlinear convective terms are

retained since these are important in the context of the

highly non-linear growth and collapse of the cloud.

The dimensionless forms of the continuity and mo-
mentum equations for the one-dimensional spherical
bubbly mixture can be written as

1 d(r?u) _ 12mmR? DR
: < At
S or “azammpr - "SAY (1)
; <
Br = 6(3+4 R)a ; TSAQR) (2)
where 7% = g; + ug?; is the Lagrangian derivative,

u(r,t) is the mixture velocity, R(r,t) is the individual
bubble radius, Cp(r,t) = (p(r,1) — po)/(3pLU?) is the
pressure coefficient in the cloud, p(r,t) is the mixture
pressure and pg is the initial equilibrium pressure in the
mixture, A(t) is the radius of the cloud. The bubble
population per unit liquid volume, 7, is related to the
void fraction, a, by (%WR:’)n = a/(1—a). The variables
and equations are non-dimensionalized using the initial
bubble radius, Ry, a reference flow velocity, U, the time
scale, Ro/U, and the dynamic pressure, %pLUZ. To In-
corporate the bubble interactive effects, the dynamics
of the bubbles are modeled using the Rayleigh-Plesset
equation which connects the local mixture pressure co-
efficient, Cp, to the bubble radius, R:

D?R 1 3 DR

—3k —1y_ 2 Pt
Rpe = 2CP+W[R - k1= 3(5)
O _ak 4 1 DR
—_ —_ - < A K
+EIR - 1= — =2 S AW (3)
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where o, the cavitation number,
rameter in the problem.

The above three equations (1), (2), and (3) with ap-
propriate boundary conditions can, in theory, be solved
to find the unknown Cp(r,t), u(r,1) and R(r,t) for any
bubbly cavitating flow with spherical symmetry. How-
ever, the non-linearities in the Rayleigh-Plesset equa-
tion and in the Lagrangian derivative, D/Dt, present
considerable impediments.

The initial conditions and boundary conditions in the
present analysis are as follows. The incompressible lig-
uid flow outside the cloud, r > A(t), must have the
standard solution of the form:

1s an unportant pa-

wry= Sz A0 (4)
2(1 T2
Crirt) = Cpoatt4 22D o> ) (5)

where Cpoo(t) is the known and imposed driving pres-
sure at infinity and C'(} is to be determined. A simple
sinusoidal form is chosen for Cpe (t):

P AR
poo(t) :{CPMIN{COS( iot) 1};0<t <t (6)

0 1< 0 and t> tg

where Cpprn is the minimum pressure coefficient at .
infinity and ¢{¢ is the dimensionless duration of the low
pressure perturbation. Consequently, for a cloud flow-
ing with velocity U7 past a body of size D, the order of
magnitude of {g will be D/Rg, and Cppyyn will be the
minimum pressure coefficient of the flow. By combin-
ing equations (4) and (5) and substituting r = A(t), we
obtain the time-dependent boundary condition at the
surface of the cloud:

2 d[A2()u(A®), )
A dt
—-u2(A(t), t)

Cp(A(1),1) = Cpool(t)+

(7)
At the center of cloud, the symmetry of the problem
requires

u(0,t) =0 (8)

At time t < 0, it is assumed that the whole flow field is
in equilibrium. It is also assumed, for simplicity, that

all the bubbles have the same initial radius Rg. Thus
we have the following initial conditions:
DR
=1, == =0,
R(r,0) =1, Di (r,0)
u(r,0) =0, Cp(r,0)=0 (9)



3 Numerical Method

Equations (1) and (2) are rewritten in integral form in
terms of the Lagrangian coordinate, (rg,!). where »q
is the non-dimensional initial radial position at time
t = (. After substituting the boundary conditions, the
continuity equation becomes

To

1/3
62(3+47rnR3(E,1))dE] (10)
)

3
rro.t) = [3 +4my

07‘(1’0, )

u(ry,t) = i
12mn

B /’“6}?,(5.1.)
T (3+4myri(ro, 1)), gt

and the momentum equation leads to

R*(€,)€%dE (11)

Crlra.t)= 3+imw°f(£ t:C mﬂ(‘z(tf) DUW(EN) g
+2—f((7ﬁ"+t§’—u2(Ao,t)+cpm(t) (12)
where
#€tiCr) = pop [ e {We [R'=(¢,0) - 1)
—%‘%ﬁﬁ + ZRGORT*(C,H - 1
+gRe Ry — ol e )

A complete integration time step therefore proceeds
as follows.

1) R(ro,t+ At) and Q}L“a':ﬂﬂ are calculated using
Taylor's series expansion of the solution at the pre-

vious time step, R(rg.t), aRgt"") and 62%({,”").

2) With R(ro,t + At) and 2220488 equations (10)
and (11) can be integrated to obtain r(rg,t + At)

and u(rg,t + At).

3) With the results of steps 2 and 3, we can use
equation (12) to find Cp(re,t + At). Then the
Rayleigh-Plesset equation (3) can be used to find
92 R(rot+ AL

4_5_‘,___).

4) Proceed to next time step.

Under-relaxation must be used in the iteration step 3 to
achieve convergence. The rate of convergence is found
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to be dependent on the initial void fraction «g; the
larger g, the slower the convergence. The program
automatically adjusts the interval of each time step to
ensure that the fractional change in bubble radius be-
tween any two consecutive times does not exceed some
specific value (typically, 5%). This is essential for time
marching through a violent bubble collapse.

4 Results and Discussion

The flow condition in the present study is chosen as
follows. A cloud of nuclei, composed of air bubbles of
initial radius Rq=100 pm in water at 20°C’, flows with
velocity [/=10 m/sec. The computation is performed
at different combinations of the following parameters:
initial void fraction, «yg, of 0.03%., 0.3%, and 3%; cav-
itation number, o, of 0.45, 0.55, and 0.65; the mini-
mum pressure coefficient, C'ppryn. of -0.75; the non-
dimensional cloud radius, Aq, of 32, 100, and 312; the
non-dimensional duration of the low pressure pertur-
bation, tg, of 50, 100, 500, and 1000. These ranges of
values of Ap and tg correspond to the ratio of the length
scale of the low pressure perturbation to the initial ra-
dius of the cloud, D/Aq, of 0.5 — 31.25. The Reynolds
number, Re = U Rgpr./itg, based on the reference flow
velocity, initial bubble radius, and the liquid density, is
0.05 in all the cases presented. Here we have used the
the effective liquid viscosity, pg, in place of actual hig-
uid viscosity to incorporate the various bubble damping
mechanisms (see Chapman and Plesset, 1971).

The computational results show that the character-
istics of the growth of the cloud are similar to those of
a single bubble and that all bubbles in the cloud grow
almost in phase. However, the bubbles in the interior
are shielded to some extent by the bubbles on the sur-
face of the cloud and so grow more slowly and have a
smaller maximum size, as shown in figures 2, 3 and 4.

At large void fraction, due to the strong influence
of neighboring bubbles, bubble growth is severely re-
strained. Therefore, the distribution of bubble growth
rate inside the cloud is rather uniform and all bubbles
away from the near-surface region grow to about the
same maximum size, as shown in figures 2 and 3.

Figure 4 presents a case with small void fraction
(ag = 0.03%) and large duration of the low pressure
perturbation (¢g = 1000 or D/Ay = 10). In this case
the surface bubbles can grow more freely for a long
time. Although the shielding effect is weaker than in
the case of figure 2, the closer the bubbles are to the
center of the cloud, the more slowly they grow; there-
fore the smallest bubbles occur near the center of the
cloud. The maximum size of the bubbles on the surface
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Figure 2: The time history of the dimensionless bubble size at five different positions in the cloud; ro = 0 (dash-dot-dot
fine), 7o = 0.5A, (dashed line), ry = 0.7Aq (dash-dot line), 7o = 0.9A, (dotted line), and ro = Ag (solid line). Parameters
used are 0=0.45, Cppryn=-0.75, ag=3%, Ap=100. and the ratio of the low pressure perturbation length to initial cloud
radius, D/Ay = 5, which corresponds to the duration of the low pressure perturbation, ¢;= 500.
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Figure 3: The time history of the dimensionless bubble size at five different positions in the cloud; ro = 0 (dash-dot-dot
fine), 7o = 0.5A¢ (dashed line), ry = 0.7 Ay (dash-dot line), 7o = 0.9A (dotted line), and ry = Ag (solid line). Parameters
used are o = 0.3%, D/Ap = 10 or t; = 1000. Other parameters as in figure 2.
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Figure 4: The time history of the dimensionless bubble size at five different positions in the cloud; ry = 0 (dash-dot-dot
line), ro = 0.3 A (dotted line), ro = 0.5A¢ (dashed 'ine), 1o = 0.7Aq (dash-dot line), and rq = Ao (solid line). Parameters
used are ag = 0.03%, D/Ay = 10 or tg = 1000. Other parameters as in figure 2.
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Figure 5: The dimensionless bubble size distribution in the cloud as a function of the dimensionless cloud radius at the
dimensionless time, ¢t = 733.56. Parameters as in figure 2.
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can be up to an order of magnitude larger than those of
the bubbles near the center. These radial gradients in
ilie bubble growth rate and bubble maximum size result
in the following differences in the cloud collapse mech-
anisms. There appear to be three collapse scenarios,
depending on the initial void fraction. g, and the ratio
of the length scale of the low pressure perturbation to
initial cloud radius, D/Aj,.

If the void fraction is sufficiently large and the size
ratio, /Ay, is of order one, the recovery of the ambi-
ent pressure causes bubbles on the surface of the cloud
to collapse first. The accelerations induced by the col-
lapse of the surface bubbles promote the collapse of the
neighboring bubbles and then the collapse spreads in-
ward, as shown in figure 2. The shielding eflect causes
the bubbles in the core region (approximately 0.7 cloud
radius) to continue to grow even after the surface layer
bubbles have totally collapsed. As a result of the col-
lapse of the surface layer, a shock wave develops and
propagates inward through the bubbly mixture. Fig-
ure b shows the structure of the shock wave, which is
similar to to that of the steady planar shocks analyzed
by Noordij and van Wijngaarden {(1974). The shock
wave strengthens not only because of the geometric ef-
fect of an inwardly propagating spherical shock but also
because of the coupling of the single bubble dynamics
with the global dynamics of the flow through the pres-
sure and velocity fields. A very large pressure pulse
can be generated when the shock passes bubbles and
causes them collapse, as shown in figure 6. Very com-
plicated bubble-bubble interactions are observed in fig-
ures 2 when the focusing shock reaches the center of the
cloud, produces very high pressures, and then causes a
rebound of the cloud.

On the other hand, if the void fraction is small and
the duration of the low pressure perturbation is large
(D/Ap large), as in the case of figure 4, the bubbles
near the center of the cloud reach the smallest maxi-
mum size and tend to collapse first. As a result, the
collapse spreads outward from the center and no shock-
enhancing process develops. The resulting acoustic im-
pulse is much smaller than that of the previous mode
of collapse.

There is an intermediate type of collapse illustrated
in figure 3. The initial void fraction, ap = 0.3%, is an
intermediate value. The collapse starts at mid-radius
and spreads inward and outward at the same time. Ex-
amining the distribution of the bubble growth rate in
the cloud, it is found that, even for an initial void frac-
tion of 0.3%, the shielding effect is still strong in the
core region of the cloud. The growth of bubbles in this
core therefore continues after bubbles at larger radii

23

have begun to collapse. The outward moving coliapse
front tends to cancel the inward acceleration of the flow
caused by the collapse of the bubbles on the surface of
the cloud. The inward moving collapse front is simi-
lar to the shock wave described earlier. However, the
shock-focusing effect 1s weaker due to the reduced “ef-
fective collapse size” of the cloud.

A typical time history of the radius of the cloud is
shown in figure 7. Note that, unlike single bubbles, the
cloud radius, A(#), only decreases to a size marginally
smaller than its equilibrium size during the collapse pro-
cess. But each volumetric rebound will cause an acous-
tic peak in the far field, as shown in figure 8. The
normalized acoustic noise, pg, can be calculated from
the volumetric acceleration of the cloud and is given by

2Ry d?A(t) dA(t)
D dt? dit

where the length scale of normalization has been cho-
sen as the length of the low pressure region, D. The
non-dimensional power spectral density of the acoustic
noise in figure 8 is shown as a function of dimensionless
frequency in figure 9. This spectrum exhibits the f—2
behavior for the frequency range below 0.25 (25kH z)
which is typical of cavitation noise (see, for example,
Arakeri and Shangumanathan 1985, Blake et al. 1977).
It has been found that spectra of other cases also show
the average f~" behavior and the index n is in the
range of 0.5 — 2. If we let the computation progress
further in time, the magnitude of the cloud oscillation
will further decay and the cloud will begin to oscillate
in a regular way, as shown in figure 10. This regu-
lar oscillation contributes large peaks in the spectrum
at the natural frequency of the cloud (see d’Agostino
and Brennen 1983 & 1989) and at higher harmonics, as
shown in figure 11.

A good measure of the strength of the collapse noise
is the acoustic impulse, I, defined as the area under the

pulse or
t2
I:/ pa(t)dt
ty

where ¢; and {, are times before and after the pulse
at which p, is zero. The impulses from calculations
using a wide variety of parameter choices (45 permu-
tations) are found to be linearly correlated with the
maximum total volume of the bubbles in the cloud
normalized by the length of the low pressure per-
turbation, Vppax/(0.5D)3, as shown in figure 12.
To complete the picture, figure 13 demonstrates that
Vemax /(0.5D)3 decreases quasi-linearly with increas-
ing cavitation number and with increase in the initial

Palt) = A1) + 2A()( )2] (14)

(15)
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void fraction. ag. However, the slope of the dependence
changes with ap and D/Ag. The smaller «, the weaker
the shielding effect, the larger the slope.

5 Conclusions

This paper has presented numerical calculations of the
noun-linear growth and collapse of a spherical cloud
of cavitation bubbles. The continuum equations for
the flow are coupled with the Rayleigh-Plesset dy-
namics for the bubbles. The characteristics dynamics
are shown to be strongly dependent on the parameter
ao(l — ag)A3/RE where aq is the initial void fraction,
Ag is the initial cloud radius and Ry is the initial bub-
ble radius. Three modes of collapse have been iden-
tified. At large values of this parameter, the collapse
involves the formation of an inward propagating shock
wave which initially forms at the surface of the cloud.
This shock dominates this first mode of collapse and
strengtheus rapidly due to geometric focusing and the
coupling of the bubble dynamics with the flow. In this
mode, a large pulse in the far-field noise is produced by
the arrival of the shock at the cloud center. Moreover,
there are further but weaker shocks which arrive at the
center and thus produce a train of acoustic impulses
which, eventually, leads into a regular oscillation of the
cloud at the first cloud natural frequency.

A different mode of collapse occurs at low values of
ag(l — ) A3/R3. Then the shielding effects of the
outer bubbles causes the bubbles in the core of the

cloud to grow to a smaller maximum size and to col- "

lapse first. This creates an outward moving collapse
front and a very different mode of collapse than occurs
at high ag(l — ag)A2/R2. At intermediate values, we
observe cases where collapse first occurs at an interme-
diate radius and collapse fronts then propagate both
outward and inward from this location.

We have also correlated the far-field acoustic impulse
produced in all these cases with the parameters of the
problem. It was found that the impulse is strongly cor-
related with the maximum total volume of bubbles in
the cloud. Moreover, this total volume decreases with
increasing cavitation number and with increasing void
fraction. It also varies with D/Aqg where D is the typical
length of the low pressure perturbation.
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