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ABSTRACT

A numerical simulation of the collapse of a cloud of
bubbles has been used to demonstrate the develop-
ment of an inwardly propagatling shock wave which
grows rapidly in magnitude. The fully non-linear non-
barotropic homogeneous flow equations are coupled
with single bubble dynamics and solved by a stable
numetrical scheme. The computational results demon-
strate the structure of the shock wave as well as its
strengthening effect due to the coupling of the single
bubble dynamics with the global dynamics of the flow
through the pressure and velocity fields. This appears
to confirm the speculation of Mgrch and his co-workers
that such shock formation is an important part of cloud
collapse.

Nomenclature
A Dimensionless radius of the bubble cloud
Ag Dimensionless radius of the bubble cloud at the

undisturbed reference condition
Cp  Pressure coefficient, (p — po)/ 5pU>
Cpoo Pressure coefficient at infinity, (poo — pa)/5pU2
Cpyy sy Minimum pressure coefficient at infinity
Reference body size

R Dimensionless bubble radius

Ry Initial radius of bubble at undisturbed reference
condition

Re Reynolds number, U Ro/v

b Surface tension of the liquid

U Reference velocity of the flow
We  Weber number, pU2Ry/S

k Polytropic index of behavior of the gas inside
the bubbles
p Fluid pressure
Po Fluid pressure at undisturbed reference condition
Py Vapor pressure inside the bubble
Poc Pressure at infinity
r Dimensionless Eulerian radial coordinate
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measured from the center of cloud

ro Dimensionless Lagrangian radial coordinate
measured from the center of cloud and equal
to r at undisturbed reference condition
Dimensionless time

tg Dimensionless duration of the low pressure
perturbation

u Dimensionless radial velocity of fluid

Y Void fraction of the bubbly mixture

oo Void fraction of the bubble mixture at the

undisturbed reference condition

p Density of liquid

o Cavitation number, (pg — py)/ pU>

7 Dimensionless bubble population per unit
liquid volume

v Kinematic viscosity of the liquid

1 Imtroduction

Much recent interest has focused on the dynamics and
acoustics of finite clouds of cavitation bubbles because
of the very destructive effects which are observed to oc-
cur when such clouds form and collapse in a flow (see,
for example, Bark and Berlekom 1978, Soyama et al.
1992). This paper addresses the issue of the modelling
of the dynamics of cavitation clouds, a subject whose
origins can be iraced to the work of van Wijngaarden
(1964) who first attempted to model the behavior of
a collapsing layer of bubbly fluid next to a solid wall.
Later investigators explored numerical methods which
incorporate the individual bubbles (Chahine 1982) and
continuum models which, for example, analyze the be-
havior of shock waves in bubbly liquid (Noordzij and
van Wijngaarden 1974) and identify the natural fre-
quencies of spherical cloud of bubbles (d’Agostino and
Brennen 1983). Indeed the literature on the linearized
dynamics of clouds of bubbles is growing rapidly (see,
for example, Omta 1987, d’Agostino et al. 1988 & 1989,
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Figure 1: Schematic of a spherical cloud of bubbles

Prosperetti 1988). However, apart from some weakly
non-linear analyses (Kumar and Brennen 1991, 1992,
1993) only a few papers have addressed the highly non-
linear processes involved during the collapse of a cloud
of bubbles. Chahine and Duraiswami (1992) have re-
cently conducted numerical simulations using a number
of discrete bubbles and demonstrated how the bubbles
on the periphery of the cloud develop inwardly directed
re-entrant jets. However, most clouds contain many
thousands of bubbles and it therefore is advantageous
to examine the non-linear behavior of continuum mod-
els, which is the subject of this paper.

Another perspective on the subject of collapsing
clouds was that introduced by Mgrch and his co-workers
(Mgrch 1980 & 1981, Hanson et al. 1981). They spec-
ulated that the collapse of a cloud of bubbles involves
the formation and inward propagation of a shock wave
and that the geometric focusing of this shock at the
center of cloud creates the enhancement of the noise
and damage potential associated with cloud collapse.
One of the purposes of the present work is to examine
whether or not continuum models of the cloud manifest
such phenomena.

2 Basic Equations

The paper addresses the problem of the dynamics of a
spherical cloud of bubbles in an unbounded liquid at
rest at infinity, as shown in figure 1. To incorporate
the interactive effects that the cavitating bubbles have
on themselves and on the pressure and velocity of the
liquid flow, the bubble dynamics must be included in
the non-barotropic, homogeneous flow model. The ba-
sic equations used are same as those of d’Agostino and
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Brennen (d’Agostino & Brennen 1983; d’Agostino et
al. 1988, 1989) except that all the nonlinear convective
terms are retained since these are important in the con-
text of the highly non-linear growth and collapse of the
cloud.

The dimensionless forms of continuity and momen-
tur equations for the one-dimensional spherical bubbly
mixture can be written as

1 8(r?u) 12mpR? DR
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Du

e = — - . i
B 6(3+47rnR ) o ,r < A(t) (2)

where D/ Dt indicates the Lagrangian derivative, R(r,t)
is the individual bubble radius, Cp(r,t) is the pressure
coefficient in the mixture, and the bubble population
per unit liquid volume, 7, is related to the void fraction,
a, by (47R%n = a/(1 — a). The variables and equa-
Ylons are non-dimensionalized using the vl ‘vubvie
radius, Ry, a reference flow velocity, U, and the time
scale, Ro/U. The pressure coefficient, Cp, and the bub-
ble radius, R, are related by the Rayleigh-Plesset equa-
tion: -

D?R 1 2 s ... 3,DR,
Rom = _ECP+We[R - R - 3(Hp)
P 4 1DR _,
7 ) el 1) (3
+3lR -z SA0G)

where o is the cavitation number, We = pU%Ro/S is
the Weber number, S is the surface tension of liquid,
Re = U Ry/v is the Reynolds number, v is the kinematic
viscosity of liquid, and & is the polytropic index of the
gas inside the bubble.

The above three equations (1), (2) and (3) with
the appropriate boundary conditions can, in theory, be
solved to find the unknown Cp(r,t), u(r,t) and R(r,t)
for any spherical bubbly cavitating flow. However the
non-linearities in the Rayleigh-Plesset equation as well
as those in the Lagrangian derivative, D/ Dt = a%+uaa—r,
mean that only linearized and weakly non-linear solu-
tions have been obtained previously.

The boundary conditions for the present analysis are
as follows. The incompressible liquid flow outside the
cloud, r > A(t), has the standard solution of the form:

Cp(A(t),f) = Cpooll) +A?t)d[Az(lz)f:'i(tA(t),t)]

—u?(A(),1) (4)

where Cpeo(t) corresponds to the known driving pres-
sure at infinity. At the center of cloud the symmetry of
the problem requires

u(0,t) = 0. (5)
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Figure 2: The dimensionless bubble size distribution in the
cloud as a function of the dimensionless cloud radius at
various times for 0=0.4, Cp,,,,=-0.5, 2p=0.08%, Ap=
1 em, Ry=100 pm and the dimensionless time, iz= 500.

At time ¢=0, it is assumed that the whole flow field
is in equilibrium. It is also assumed, for simplicity,
that all the bubbles have the same initial radius R,.
Thus we have the following simple initial conditions:
R(r,0) = Ry, %?(r, 0) = 0, u(r,0) = 0, Cp(r,0) = 0.
In the present solutions we have used a simple sinusoidal
driving pressure as follows:

CpM‘N{cos(tzgt) -1} t<ig

CPoo(t) = { 0 t>1g (6)

where Cp,,,,, is the minimum pressure coefficient at in-
finity and {g is the dimensionless duration of the low
pressure perturbation. Comnsequently, for a cloud flow-
ing with velocity U past a body of size D, g will be
of the order of magnitude of D/U, Cp,,,, will be the
minimum pressure coefficient of the flow and & is the
conventional cavitation number.

3 Numerical Method

A stable nurnerical scheme was derived which is second
order accurate in time and third order accurate in space.
The scheme involves iteration of the governing cqua-
tions at each time step. The program automatically
adjusts the interval of each time step to ensure that
the fractional change in bubble radius between any two
consecutive times does not exceed some specific value,
say 0.1. This is essential for time marching through a
violent. bubble collapse. Let a tilde represent the quan-
tities which change during an iteration. Superscripts i
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Figure 3: The pressure coefficient distribution in the cloud
as a function of the dimensionless cloud radius at various
times. Parameters as in figure 2.

and 7 4+ 1 represent the quantities at time t; and #;4,
respectively. At the beginning of this iterative proce-
dure, the solution of the last time step is used for the
initial tilde quantities. A complete time step proceeds
as follows:

) — i+l
1) R+ and (5f)  are calculated using a Taylor’s
series and the solution of the previous time step,
0 . D') -
R, (%)’ and (—l—ﬁ?)’.
adtt
2) Equation (3_-)‘-lis used to calculate (%TT) using
) =i ~itl
R+ (%—'E) and Cp .

3) Intcgrated versions of equations (1) and (2) are

) o i+l g ;
used with R+, (%%) , Cp  and @#'*! to ob-
. ~it1 il
tain new values of Cp and @**!.

. 41
4) Steps 2 and 3 are repeated until #*+! and Cp'+

converge. Under-relaxation must be used in iterat-

. -~ t+1
ing Cp to get convergence.

——

+
DR
5) The new values of ('ﬁ_i; i1
BRY, (B8Y, and (5

are calculated using
and the iteration is

— il
repeated by going back to step 2 until ([l’)—’f
converges.

The rate of convergence in the loop 2) - 4) depends
strongly on the initial void fraction ag; the larger oy,
the slower the convergence.
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Figure 4: The time history of dimensionless bubble size
at three different positions in the cloud, 7g=0, r0=0.9 Aq
and 7o= Ap. Parameters as in figure 2.

4 Results and Discussion

For the purpose of illustrative calculations, parameters
were chosen as follows. A cloud, composed of air bub-
bles (k=1.4) of initial radius Rp=100 pm and water
at 20°C (p=1000 kg/m3, p=0.001 Nsec/m?, S=0.0728
N/m), flows with velocity U=10 m/sec and has a void
fraction a=0.08 %. The cavitation number of the flow
is =0.4. The pressure perturbation experienced by the
cloud has a duration of =5 x 107 3sec with Cp,,,;,=
-0.5. Under these conditions the lowest resonant fre-
quency of the cloud (d’Agostino and Brennen 1983) is
about one-third of the single bubble natural frequency
and therefore the calculations should exhibit the effects
of non-hnear cloud dynamics.

The calculations clearly demonstrated the formation
of an inwardly propagating shock wave as can been seen
in figures 2 and 3. The location of shock waves can
be identified by the minimum bubble radius as well as
the peak of the pressure coefficient in the cloud. The
shielding of the interior bubbles by the outer shell of
bubbles is readily apparent in these results. This shield-
ing is a common feature of the linearized dynamics of
clouds (see, for example, Omta 1987, d’Agostino and
Brennen 1989, Chahine and Duraiswami 1992). Note
also that the structure of the shock wave in figure 2 is
qualitatively similar to that of the steady state shock
propagation analysis of Noordij and van Wijngaarden
(1974). However, quantitative comparison is difficult
to make because of the rapid strengthening (figure 3)
of the spherical shock wave which leads to its rapid
inward acceleration. The present calculation had to be
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Figure 5: Typical dimensionless velocity distribution in the
cloud as a function of the dimensionless cloud radius. The
shock is passing the position of r=85.183 at this moment.
Parameters as in figure 2.

terminated when the strength of the shock became very
large for then the adjusted time step became so small
that the progress in time had essentially ceased.

Figure 4 shows the time history of the growth and
collapse of bubbles at several different positions in the
cloud. All the bubbles grow initially in the same way,
but are later affected by the cloud dynamics.

A typical velocity distribution in the cloud is shown
in figure 5. As anticipated, the magnitude of u as well
as the values of du/dr mean that the global convective
effects are important in the non-linear dynamics of the
cloud.

5 Conclusions

This paper presents some preliminary results of the
non-linear growth and collapse of a cloud of cavitat-
ing bubbles. We have developed an algorithm which
allows simultaneous solution of the equations govern-
ing the cloud and have utilized this to investigate the
bubble dynamics within a collapsing cloud. The ob-
jective is to investigate the significant enhancement of
the cavitation noise (and damage potential) associated
with the collective effects in cloud cavitation. Several
years ago, Mgrch and his co-workers speculated that
one of the reasons for this enhancement was that an
inward propagating shock wave forms during cloud col-
lapse. The present calculations confirm the formation
of such a shock wave and indicate that it rapidly gains
strength. The investigations into the resulting cloud
dynamics and noise are continuing,.
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