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The relationship among four flow instabilities of turbomachines, namely, surge, rotating stall, cavitation surge,
and rotating cavitation, is elucidated, using a unified or common model for their analysis. The simplest unifying
model was employed in the analysis to focus on the characteristic features of each instability. Moreover, the
concentration is on the stability criteria, and hence, the amplitudes are assumed small. Of course, the instabilities
often grow to amplitudes comparable with the average value of the flow variable. Flows upstream and downstream
of the impeller were assumed to be one dimensional for surge and cavitation surge and to be two dimensional
for rotating stall and rotating cavitation, respectively. Viscous effects were taken into consideration in the form of
cascade loss. Impeller blade geometry was incorporated in the assumption that the flow is perfectly guided. The
peripheral wavelength of the disturbance was assumed to be much larger than the blade pitch.

Nomenclature

= cross-sectional area of tank
nondimensional cavity volume
Greitzer’s B factor

compliance

cavitation characteristics in Eq. (10')
blade spacing

imaginary unit

cavitation compliance

reduced frequency, sn/U = kg + jk;
reduced frequency, 2mnL /U

inlet conduit length
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mass flow gain factor

complex frequency
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= pressure
Pn = inlet total pressure
Dy = vapor pressure
5 = wavelength of disturbances
t = time
U,V = mean velocities in x and y directions
Ur = translating velocity of cascade
u,v = velocities in x and y directions
4,v = fluctuating velocity in x and y directions
V. = cavity volume
w = relative velocity
o = incidence angle
B = inlet blade angle
B = average inlet flow angle
B* = average blade angle, (8} + 8;)/2
: = inlet blade angle
M = outlet blade angle
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AV = incident velocity
é = disturbance
{o = through flow loss coefficient
Ls = incident flow loss coefficient
o = cavitation number, (p; — p,)/(pW2)/2)
¢ = velocity potential or flow coefficient
Vis = head rise coefficient
Subscripts
1 = upstream of impeller
= downstream of impeller
3 = downstream of tank

Introduction

N this paper, we examine the relations between the four flow in-

stabilities of turbomachines using a unified or common model for
the flow. The instabilities that are addressed are those of surge, ro-
tating stall, cavitation surge, and rotating cavitation.! Each of these
are well known individually and have been subject to extensive
analysis.2~7 Qur purpose is to present a unified treatment of these
instabilities. One beneficial consequence of doing so is to shed light
on the circumstances in which one or the other may predominate.
Another benefit is the information that can be extracted from ob-
servations of one instability and used in analysis of another. For
example, previous studies of surge, rotating stall, and cavitation
surge were recently used by Tsujimoto et al.? to elucidate rotating
cavitation instabilities in high-speed pumps.

Note that cavitation surge is used here to denote the phenomenon
often called autooscillation in the literature. It is the opinion of the
authors that cavitation surge is a more appropriate name.

The simplest model was employed in the present analysis to focus
on the characteristic features of each instability. Moreover, the con-
centration is on the stability criteria, and hence, the amplitudes are
assumed small. Of course, the instabilities often grow to large am-
plitudes. Although high accuracy is not expected with this method,
it was very useful in both understanding and clarifying the flow in-
stabilities of turbomachines. The following assumptions were also
made: Flows upstream and downstream are one dimensional for
surge and cavitation surge and are two dimensional for rotating stall
and rotating cavitation, respectively. Viscous effects were taken into
consideration in the form of cascade loss. Impeller blade geometry
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was incorporated in the assumption that the flow is perfectly guided.
The peripheral wavelength of the flow disturbance is much larger
than the blade pitch.

Characteristics of Components
Flow Model

In this analysis we use the simplified fluid system shown in Fig. 1,
composed of a suction conduit and a turbomachine with only a
hub and rotating blades. In this section, numerical expressions are
derived for each component, which are then used throughout the
analysis. These components are the flow upstream of the impeller,
cavitation in the pump inlet, head rise of the impeller, and the flow
downstream of the impeller.

Flow Upstream of the Impeller
Rotating Stall Case and Rotating Cavitation Case (Two-Dimensional
Instabilities)

We assume a two-dimensional flow upstream of the impeller, as
shown in Fig. 2. The length of the suction conduit, L, is assumed
to be much larger than the wavelength s. We consider an axial flow
with a uniform velocity U in the x direction and rotating blades with
a constant velocity of Ur in the y direction as shown in Fig. 2. A sta-
tionary frame is used for this analysis. If the flowfield upstream of the
impeller is assumed to be irrotational, the disturbances produced by
flow instabilities are expressed by the following velocity potential:

¢ = (s/2m)u, exp2njnt — (y/s)]expl2n/s)x] ¢))

where s, n, and j are the wavelength in the y direction, the fre-
quency, and the imaginary unit, respectively. Real parts are consid-
ered to have physical meanings throughout the present paper. The
velocities u and v in the x and y directions are written as

3 ~ 2
uzu+_£=U+u1exp27tj(nt—l)exp( ”X)
dy s S

) ~ 2
v= i = —julexp27rj(nt— X) exp (—nx) 2)
ay s s

where the amplitude of fluctuating velocity #; is assumed to be
much smaller than the uniform velocity U. The linearized momen-
tum equation is written as

du du 10dp

— —_— 3
8t+ ax p 0x &

(N anam -

(1v)

Fig. 1 Components of the turbomachine system: I, flow upstream of
the impeller; II, cavitation at pump inlet; ITI, flow in the impeller; and
IV, flow downstream of the impeller.

U

— y U

s Fig. 2 Flows upstream and
downstream of impeller.

-

pP= 0 +— <furbomachinc
/0 I

Substituting Eq. (2) into the preceding expression, we obtain the
following fluctuating pressure field:

Fig. 3 One dimensional
flow in suction conduit.

8p1 = —pU(1 + jkyui exp2mjlnt — y/s]exp[(2n/s)x] (4)

where k =sn/U is the nondimensional reduced freqgency. In gen-
eral, k is complex and expressed by k = kg + jk,, and the following
relations are used:

exp2nj{nt — y/s) = exp[—2n(U/s)k,t]
xexp2nj(U/s)ke(t — y/Ukg)

V, = Ukg = Ur(kg/tan By), tan By = Ur /U = 1/¢

The quantities kg/ tan §; and k, present the dimensionless propa-
gating velocity in the y direction, Vp/U7, and the damping rate,
respectively. Then, in summary, if the amplitude of fluctuating ve-
locity &, is given in the flowfield upstream of the turbomachine, the
whole fluctuating flowfield is completely determined by Egs. (2)
and (4).

Surge Case and Cavitation Surge Case (One-Dimensional Instability)

We consider that the fluid flows from a space with constant pres-
sure (p = 0) to a turbomachine through a conduit with a length of
L, as shown in Fig. 3. The fluid velocities are denoted by

u=U+u exp2nnt, v=0 5)

Applying Bernoulli’s equation between positions 0 and 1 inFig. 3,
the pressure fluctuation at position 0, that is 8pq, is written as

8po = —pUuy exp2mjnt

Integrating the momentum equation (3) from point 0 to 1 using
Eq. (5), we obtain the following relation:

2njnLu; exp2njnt = —(1/p)(8p1 — po)

From the two expressions just described, the suction pressure 8p,
of the impeller will then be given by

8p1 = —pU (1 + jky )ity exp2mjnt 6)

where k; =2nnL/U is the reduced frequency. If the fluctuating
amplitude i is given at the inlet of the impeller, the flowfield there
can be completely prescribed by Egs. (5) and (6). Equations (4) and
(6) are very similar to each other, being expressions for the pres-
sure at the inlet to the turbomachines obtained from the momentum
equation.

Cavitation

Figure 4 shows the velocity triangle at the impeller inlet, cavita-
tion, and the flow within the blades. The cavity volume V, per blade
and per unit span is normalized using the blade spacing A,

a(oy, 1) = V./(h* x 1) D

Under quasi-steady conditions, the nondimensional cavity vol-
ume a is considered to be a function of the incident angle «;, and
the cavitation number o, is defined as follows:
_ P1— Dy

oW /2
where p,, p,, and W, are the inlet pressure, the vapor pressure, and
the relative velocity, respectively.

®)

0
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Fig. 4 Velocity triangle and cavitation at impeller inlet and flows in
suction conduit.

Then, as originally suggested by Brennen and Acosta,’ the change
of cavity volume, 8V, is related to the deviations W, éa, and §o, by

da [ do 00, da
8V, = h*| — | — W, + —38 — ]s 9
[301 (aw1 P p‘) * (Bal) “l O

From the velocity triangle shown in Fig. 4, the deviations §W, and
da, can be expressed in terms of the deviations of §u, and v, from
the uniform axial velocity. Then Eq. (9) may be written as

8V = B*[F1(6u/U) + F2(8v1/U) + F3(8p1 /pU?)]  (10)

where
Fy = 20 cos® B, K — sin B; cos /M
F, = =20 sin B cos 1K — cos? 1M, F3 = —2cos’ 1K
(10)
da da
M=—, K=—-—— 11
3(11 301 ( )

M and K are the mass flow gain factor and cavitation compliance,
respectively.!:%-10
The continuity relation across the impeller is

*

h(duy — 8uy) = 8V, (12)

ar*

where 3*/9¢* indicates the time differential in a frame fixed to the
impeller and is expressed by the following form using Eqs. (2) and
(5), for two-dimensional fluctuations:

o a a 2r U -
= —+Ur— =2njn— —j= i —(k —
Fy iy +Ur 3y wjn—Ur 5 j=2nj P (k —tan By)

and for one-dimensional fluctuations:

¥ _3 vl Cmin=i(Y Nk
e —_— =T = —_
am a1 Tay N EINT)M

From Egs. (10) and (12), we obtained the following equations
that express the influence of the change of cavity volume for two-
dimensional fluctuations:

8uz — 8uy = 2mj(h/s)(k —tan B)U [ Fy(3uy /U)

+F(8v1/U) + F3(8p1 [ pU?)] (13)

and for one-dimensional fluctuations:

Suz — Suy = j(h/LYk U[Fi(ur/U) + F3(8p1 [pU?)]  (14)

Fig. 5 Characteristics of
impeller and assumptions
of losses.

Pressure Rise in the Impeller

It is assumed that all of the cavitation can be lumped into the
volume V., upstream of the blade passage, and that the subsequent
impeller flow can be modeled as single-phase incompressible liquid
flow (the more complex blade passage model of Brennen!! sug-
gests that this is a good first approximation). Then the unsteady
Bernoulli’s equation applied to the flow in the impeller (see Figs. 1
and 4) yields

Pz—Pl_l 2 _ 2_3‘
B w2

(62 — 1) (15)

If B* is the average blade angle, as shown in Fig. 4, the difference
of the velocity potential can be approximated by

uzl

2
¢2—¢1=/ Wsds =
1

cos B*

where subscripts 1 and 2 indicate the inlet and outlet of impeller and
B* is the mean blade angle. The total pressure loss in the impeller
is represented by two coefficients, {p and {5, where

Api/p = LW + 8w)* + L5(AV)? (16)

and AV is the incident velocity as shown in Fig. 4. Thus, ¢g is the
hydraulic loss in the blade passage, and ¢s is the incidence loss at
inlet as shown graphically in Fig. 5. Note that

AV = (U + 8u;)(1an f; — tan )

The differences between pressure fluctuations upstream and
downstream of the impeller are obtained by combining Egs. (15)
and (16) after linearization to yield

8p2 - (Spl 6“1 - 81}1 1 8“2
—_——=(1=-L)— —(ta L)—— ——————
g ==L - @b+ L)~ o
1 16
—_ L——i‘l (for one-dimensional fluctuations)
_ JcospB* LU
2 . - £ 8142 . . .
Jj(k—tan B;)~—- (for two-dimensional fluctuations)
cos B* s U
amn
where L, and L, are given by
JAp, -
y = ———— = 2Lp + 2{ tan B} (tan B — tan
3(pUuy) o g, ﬂl( B ﬂl)
dAp, N
L, = ———— = 2{(tan ] —tan 18
TN, 5 (1an B} B1) (18)

In general, flow instabilities in pumps appear at larger cavitation
numbers than those which bring about significant deterioration in the
pump performance. Therefore, for simplicity, the effect of cavitation
on the pressure rise across the impeller has been omitted from the
present analysis and is not included in Eq. (17).
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Flowfield Downstream of the Impeller

In unsteady flow, the circulation of the impeller fluctuates with
time, and free vorticity is shed from the impeller. Thus, the flow
downstream of the impeller is rotational and can be represented by
the combination of a potential disturbance, Eq. (1), and a disturbance
due to the free vorticity. Here, however, we employ simpler flow
models downstream of the impeller appropriate for each instability.

One-Dimensional Instabilities
(Surge and Cavitation Surge)

Surge
When the outlet of the impeller is directly connected to a tank and
the flow from the tank is discharged to a space of constant pressure
through a valve as shown in Fig. 6, the continuity requires that
A d5p2 _ U

Su; — duy = —— =Cj—k;8 19
uy; — dus el I kP (19)

where f and A are the cross-sectional areas of the conduit and the
tank and C (= A/pgf) is the compliance of the tank. For compres-
sors, C is given by V/(pa’f), where V is the volume of the tank
and a is the speed of sound. The valve downstream of the tank is
assumed to have the following characteristic:

8p2/pU?* = R(bus/U) (20)

where R is the resistance of valve. From Egs. (19) and (20), we
obtain the following relations for the system consisting of the tank
and the valve:

Suz/U = (1/R + B*¢’ jk.)(8p2/ pU?) @1

= /(pC/L)Ur (22)

where B is Greitzer’s B factor,® which affects the occurrence of
surge and the shape of the surge Lissajous.

We now proceed to put together the model for the one-
dimensional instabilities, namely, surge and cavitation surge (for-
merly called auto-oscillation). The characteristics of the suction
conduit are expressed by Egs. (5) and (6). The characteristic of the
cavitation is given by Eq. (14). If cavitation does not occur, F; =0
and F3 =0 and Eq. (14) reduces to §u; = du;. The charactaristics of
the impeller are expressed by Eq. (17). The characteristic of a tank
and valve discharge system is expressed by Eq. (21). Substituting
Egs. (5), (6), (14), and (21) into Eq. (17) and eliminating unknowns
other than du;, we obtain

|:———(1/R)+B202jkL +(1+jk) — (1= L,)

1 1 !
—_— e —— —jk Su; =0 23
cos? B + cos B+ Lj L] X o (23)

Su;
e

0

s

VYolume V

a) Compressor

s

b) Pump
Fig. 6 Tank-valve systems downstream of the impeller.

The portion inside the brackets in Eq. (23) must be zero for Eq. (23)
to have a nontrivial solution. This yields the characteristic equation

52 1 el]., L (€)1
e oz - [l =7 (0)7
+B¢2(L+ ! )jljkL——[1+l(L+ ! )}:0
s? B3 R cos? B3

24)

which is a quadratic equation for jk; with real coefficents. Two
solutions of Eq. (24) are represented by

ky = tkg + jki 25)

where kg and &, are the frequency and damping, respectively. Thus,
the two solutions have the same frequency. Because &, is zero and
k, is real in the case of neutral stability, the real part of Eq. (24)
gives the following frequency:

v
T 27l

kg (26)

+ (1/R)(L, + 1/ cos? g3)

27
1+ €/(L cos B*)

T J,T\/

If the physical circumstances are such that (L, + 1/ cos® 8*)/
R «1and £/L « 1, then the frequency is given by

n= (1/2n)(1/,/pCL) (28)

This is the natural frequency of a system that consists of the inlet
conduit and the tank shown in Fig. 7.

The condition of neutral stability is obtained from the imaginary
part of Eq. (24), namely,

1 __1+£/(Lcos,8')

= 29
cos? 5 B2¢2R 29)

u

downstream of the impeller. We employ the following impeller head
rise coefficient using the total inlet pressure p,; and the delivery
static pressure p;:

D2 — Pn

= 30
]//N‘ pU% ( )
Then the left-hand side of Eq. (29) may be written as
1 1 3
L,+———= 29
Tt Con? B, ¢ 3¢ 29)
Then the onset condition of surge (k; <0) is given by
Y5 > 1+ 4€/(LcosB™) 31

¢ — B2$R

b) Pump case

Fig. 7 Basic conduit system for surge.
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Cavitation Surge

Some components with compliance must exist downstream of
the impeller, or upstream of the impeller, or both for the usual surge
to occur. However, cavitation surge does not require such compo-
nents because the cavitation itself provides the compliance. Here
we consider cavitation surge in which flow fluctuations do not oc-
cur downstream of the impeller. This would be the case if a very
long conduit or a large resistance existed downstream of the im-
peller. Cavitation surge is analyzed as follows: The characteristics
of the suction conduit are expressed by Egs. (5) and (6). The charac-
teristics of cavitation are expressed by Eq. (14). When it is assumed
that u; =0 and Egs. (5) and (6) are substituted into Eq. (14), the
following equation is obtained:

(14 jke(h/LYFy — (1 + jk)F3@u /U) =0 (32)

This characteristic quadratic equation for jk; has real coefficients.
At neutral stability, the real part of Eq. (32) gives

v, U L U 1 1 )
n—=—— = e —_——— e ——_———_—_—_.——
2rL " T 2nL hFs 27 sinB, V2K Lh

Thus the frequency of cavitation surge is proportional to the ro-
tational speed of the impeller, whereas the frequency of surge given
by Eg. (26) depends only on the characteristics of the conduit.

The dimensional compliance C, defined in Eq. (11), is expressed
as follows for the system shown in Fig. 7:

dé
su=Cc=P (34)
dt

The cavitation compliance K is related to the dimensional compli-
ance C by Eqgs. (10') and (14) so that

F3h _ 2sin® Bih

C = _— =
pU? pU7

-K (35)

and using Eqgs. (28) and (35), the frequency n becomes

11 Ur 1
T 2n J/pCL 27 sinBi4/2KLh

This frequency is identical to that of Eq. (33). That the frequency
of cavitation surge is proportional to the rotational speed of the
impeller is because the compliance given by Eq. (35) is inversely
proportional to U2.

The onset condition for cavitation surge is obtained from the
imaginary part of Eq. (32): F; = F3, which further reduces to

M22(1 +0)pK (36)

The sign of inequality in Eq. (36) is deduced from that k;, must have
a small negative imaginary part for the instability to grow. Mass
flow gain factor M and cavitation compliance K are, therefore, key
quantities in determining the stability boundary. Because the cavity
volume a usually increases with the increase of the attack angle a;,
the mass flow gain factor usually has a positive sign, and this tends
to promote instability.

The destabilizing effect of the positive mass flow gain factor can
be physically explained as follows: When the flow rate increases
at the inlet, the incidence angle a decreases. If the mass flow gain
factor is positive, the cavity volume decreases and the flow rate
further increases at the inlet to fill up the decreased cavity volume.

The cavitation compliance is also positive because the cavity vol-
ume decreases with the increase of pressure, and this promotes sys-
tem stability. Thus, the onset criterion represented by Eq. (36) in-
dicates that cavitation surge appears when the destabilizing effect
of the mass flow gain factor is stronger than the stabilizing effect
of the cavitation compliance. Note that cavitation surge can occur
independently of the form of the head rise/flow rate performance
characteristic and, in this regard, is very different from regular surge.

Two-Dimensional Instabilities (Rotating Stall
and Rotating Cavitation)
Rotating stall

For the sake of simplicity, it is assumed that the flow is delivered
from the impeller to a reservoir in which the pressure is constant.
The characteristics of the flow upstream of the impeller are given
by the following relations using Egs. (2) and (4):

Su, = uyexp2mj(nt — y/s), Su; = —ju, exp2nj(nt — y/s)
2)
8p1 = —pU(1 + jkyu, exp2mj(nt — y/s) @)

The continuity equation that neglects the effect of cavitation com-
pliance so that 8V, = 0 follows from Eq. (12):

Suy = duy 12

The pressure rise across the impeller is given by Eq. (17):

5p2—8p1 duy = duy

P20 (- L)— — (ta L,)—

,DUZ ( u) U ( nﬂ1+ )U

é 2 _ L8
1M 2T g anfyz a2 a7

cos?B; U cos B* s U

Because the flow is delivered to the constant pressure reservoir,
dp; =0 37

Substituting Egs. (27, (4'), (12), and (37) into Eq. (17’) produces
[{1 - Lu = (1/ cos® B;) — @nj/ cos B*)(I/5)(k —tan 1) }

— (14 jk) + j Gan By + L,)](6u1/U) = 0 (38)

Thus, the characteristic equation is linear in k. Substituting k =
kg + jk;, we obtain the following relations for the real and imagi-

nary parts:

L, + 1/ cos? g* Y5/ 09 1
k; = =- - (39)
1+427¢€/(s - cos B*) 142n€/(s-cosB*) ¢

Vo _ ka_ ___ 2s(1-9/8") @)
Ur tanf 14 2m€/(s - cos *)

Because &; is the damping rate of disturbance, the onset condition
of rotating stall is given by

s

41
29 >0 41)

Equation (41) states that rotating stall occurs if the curve of the
pressure rise of impeller (calculated using the outlet static pressure
and inlet total pressure) has a positive slope. This result is pre-
cisely the conventional one described by Greitzer.? By comparison
of Egs. (41) and (31), it is clear that rotating stall occurs more eas-
ily than surge. Because the flow coefficient ¢ (= cot f; =U /Ur)
satisfying Eq. (41) is generally less than the incidence free-flow co-
efficient ¢*( = cot 87), Eq. (40) yields Vp /Ur < 1, which indicates
that the stalled region propagates with an angular speed lower than
that of the rotating impeller.

Note that Eq. (41) was obtained under the assumption that the
impeller discharged to a constant pressure reservoir. Altenatively, if
the flow downstream were semi-infinite and two dimensional, the
term 1+ (27 / cos B*)(£/s) in Egs. (39) and (40) would be replaced
by [2 + (25r/ cos B*)(£/5)].
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Rotating Cavitation

As with cavitation surge, we consider the circumstance in which
there are no velocity fluctuations downstream of the impeller. This
would occur when the chord length of the impeller is large or the
outlet blade angle is near 90 deg. These conditions would imply a
large fluid inertia in the impeller and a large negative slope of the
pressure performance of the impeller. These in turn would suppress
the flow fluctuations downstream of the impeller.

When Eqgs. (2) and (4) are used, the characteristics of the flow
upstream of the impeller are given by

Su, = u ezp2mj(nt — u/s), v, = -—jﬁ] exp2mj(nt — y/s)

2)
8py = —pU (1 + jk)iay exp2mj(nt — y/s) 4"
The cavitation characteristics are expressed by Eq. (13):
duy — duy = 2mj(h/s)(k — tan B)U
x[F1(8u1/U) + F2(80,/U) + F3(8p1 / pU?)] (13)

When du; = 0 is assumed and Eqgs. (2') and (4') are substituted into
Eq. (13'), the following equation is obtained:

[1+27j (h/s)(k ~ tan B){F1 — jFo — (14 jK)F3}](8u1/U) =0
(42)

and this results in a quadratic characteristic equation for k. The onset
condition for rotating cavitation is then

M 22(1 +0)¢K (43)

Equation (43) is identical to Eq. (36) for the onset condition of
cavitation surge.

The occurrence of rotating cavitation can be explained by almost
the same argument as cavitation surge. For rotating cavitation, we
simply need to consider the increase of flow rate at a specific circum-
ferential location. Therefore, rotating cavitation can be considered
to be a two-dimensional instability that is caused by the destabi-
lizing effect of the mass flow gain factor. As with cavitation surge,
rotating cavitation can occur even at a design point, independently
of the flow rate and the characteristics of the impeller. This feature
of rotating cavitation is quite different from that of rotating stall.
From the real part of Eq. (42), we obtain the following relation:

(k —tan B)(k + F2/F3) = ~s/QmhF3) (44)

When V,/Vr =k/1an 51 and the expressions (10") of F, and F; are
used, Eq. (44) may then be written in the following form:

(Vo/Ur — ){V,/Ur + (0 + M$/(2K)} = (s/ h)(4n K sin” B;)
5)

The two solutions of Eq. (45) have the following characteristics:

Vpo/Ur > 1 (46)

Vo/Ur < —lo + M¢/(2K)] 47

Thus, rotating cavitation has two modes. One of them propagates
faster than the impeller and the other propagates in the opposite
direction. We term these forward and backward rotating cavita-
tion, respectively. Earlier experimental results (for example, Kamijo
et al.'213) had noted the forward-rotating cavitation phenomenon.
More recently, Hashimoto et al.'* have also observed the backward
form of rotating cavitation. It has not been clarified why forward-
rotating cavitation is more often observed than backward-rotating

cavitation, although the onset condition of both modes are theoret-
ically the same.

Mutual Relation of Flow Instabilities
Rotating Stall and Rotating Cavitation

In the preceding section, rotating stall and rotating cavitation
were independently investigated. In this section, we consider the
case in which they may coexist. In the preceding section, we used
the condition §u; = du, for rotating stall. The effect of cavitation
can be easily included by replacing this relation with Eq. (13). Then,

the characteristic equation becomes
1
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TTTTF7

SRy AR

AL
o

0 002 004 006 008 0t 012 014 016 018 02

wls

a) . @,
10 10
5 5
< 0 £ o0
5 -5
10 -10
0.08 0.1 0.12 0.14 0.08 0.1 0.12 0.14
4 ®
5 S
/ L1
- L~ _
x 0 - x 0
-5 -5
0.08 01 032 0.4 0.08 0.1 012 0.14
¢ ®
b) Equation (48) Equation (24)
100 100
[
50 | 50 ‘\_
< 0 £ 0
R i
50 -50  jpmm—
—
100 -100
008 01 012 0.14 008 01 012 0.4
® @
20 20
10 10
x 0 x 0
10 = 10
——
//
-20 -20
0.08 01 032 0.14 0.08 01 012 024
@ ¢
) Equation (50) Eguation (32)

Fig. 8 Comparisons of the root of Eq. (50) (surge + cavitation surge)
with those of Egs. (23) (surge) and (32) (cavitation surge), where B =
1.0, &L = 1.0, 3; = B = 76 deg, (g = 2.0, and (; = 0.6; R is determined
from the parabolic resistance curve for /p;/pU% ~ ¢3 = u3/Ur shown in
a) performance curve, b) conventional surge, and c) cavitation surge.
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{1/ cos? B; + (2m/ cos B7)(€/s)(k — tan Bl)j}[l +2mj(h/s)(k
—anB){F — jF, — (1 + jOF)]

+jk —tanB) —jL,+L, =0 (48)

As before, this is based on the assumption that the the impeller
discharges to a constant pressure reservoir. When it is assumed that
a two-dimensional flow continues downstream of the impeller, the
term (2m/cos B*)(£/s) is replaced by [1+ (27 /cos B*)(£/s)] in
Eq. (48). Then if g5 — 90 deg or £/s — oo, Eq. (48) becomes

1+2mj(h/s)(k —tan B){Fy — jF, — (1 + jk)F3} =0  (49)

This is identical to Eq. (42), the result for rotating cavitation. This
can be explained as follows. The negative slope of the head-capacity
curve becomes infinite in the limit of 85 —> 90 deg, and the inertia
of the fluid within the impeller also becomes infinite in the limit of
£/s — 00, and this results in du; — 0. Rotating stall is suppressed
due to the condition du; = 0. When the influence of cavitation is
extremely small, F,, F,, and F3 approach zero. In this case, Eq. (48)
agrees with Eq. (37), the result for rotating stall.

When rotating stall and rotating cavitation coexist, Eq. (48) must
be solved, and it is cubic in k. When the equation is solved with the
assumption of two-dimensional flow downstream of the impeller,
the following three solutions of k are obtained:

(V,/Up)) = Real(k/tan ;) > 1
(V,/U,)2 = Real(ky/ tan B;) < 0
(V,/U,)s = Real(ks/tan f;) < 1

Furthermore, the following interesting features of &;, k», and k3
emerge:

Table 1 Flow instabilities of turbomachines

Two-dimensional
and local flow

Cause and flow regions One-dimensional

1) The values of k; and k;, are close to those obtained by Eq. (45),
that is, k, and &, represent rotating cavitation. On the other hand, the
value of k3 is close to that from Eq. (38), showing that k3 represents
rotating stall.

2) The value of k3 depends on the flow coefficient ¢ and loss
coefficients, {o and {;, whereas the influence of these coefficients
on k; and k; is small.

3) The mass flow gain factor M and the cavitation compliance K
have a substantial influence on &, and k;, but not on 3.

The roots, k1, k2, and k3, can coexist, amplify, and damp indepen-
dently of each other, which indicates that rotating cavitation and ro-
tating stall are independent phenomena. Most interestingly, Murai'®
observed rotating stall with cavitation (the k3 root) in experiments
on an axial-flow pump.

Surge and Cavitation Surge

As in the preceding section, we can investigate the case of co-
existence of surge and cavitation surge by replacing the relation of
du; = 6u, with Eq. (14) in the surge analysis. Then, the character-
istic equation becomes

1 1 1 h
Zjk {1+ 2 jkAF
(1/R+Bz¢2jkL+coszﬁ2'+cosﬁ*L1 L)[ +pikdh

-1+ jkL)Fg}] +jk+L,=0 (50)

When B; approaches 90 deg or £/L becomes infinite, Eq. (50) yields
Eq. (32) for cavitation surge. When the influence of cavitation is
extremely small, F; and F; are negligible, and Eq. (50) reduces to
Eq. (23) for surge. Because Eq. (50) is a biquadratic equation with
real coefficients for jk,, there are two sets of complex conjugate
solutions for jk, , that is, a; , £+ by 5 j. Therfore, &, is expressed by
k; = +b; ; — ja, . Figure 8 shows the comparisons of the four roots
of Eq. (50) with those of Eq. (23) for conventional surge (Fig. 8b) and
with Eq. (32) for cavitation surge (Fig. 8c), for the performance curve
shown in Fig. 8a.This clearly shows that Eq. (50) has two types of
roots corresponding to conventional surge and cavitation surge and
that the simplifications made for the derivations of Egs. (23) and (32)
do not largely affect the results. We observe that the surge (Fig. 8b)

of occurrence flow instabilities instabilities becomes stabilizing (k; > 0) as we increase the flow coefficient ¢
P whereas the cavitation surge (Fig. 8c) keeps amplifying (k; < 0).
° Design Similar plots against M show that the stability &, of cavitation surge
2 point largely depends on the value of M, whereas the surge is almost
g ) independent on the value of M.
4 Surge Rotating stall Tables 1 and 2 show the onset conditions and frequencies of the
[ four flow instabilities in turbomachines that were obtained by the
i > present linear analysis.
Q Conclusions
v «—m» 1) Surge and rotating stall are one- or two-dimensional flow in-
N stabilities caused by a positive slope of the head-capacity curve.
-.E‘ g Design o ) o 2) Cavitation surge and rotating cavitation are also one- or two-
3% point Cavitation surge  Rotating cavitation dimensional flow instabilities caused by a positive mass flow gain
t > factor M.
Qorl/e 3) The frequency of surge depends substantially on the character-
istics of the system. The rotating frequency of rotating stall depends
Table 2 Onset conditions and frequencies of flow instabilities of turbomachines
Instability Onset condition Frequency
Sume i 1+ cospYL) 1] 1+ (/R)[ Ly + (1/ cos? 5) ]
8 Y BZ6R = 2% JoCL [1+ (1/ cos B /s]
174 - *
Rotating stall Vs -0 Yo - 24:(1 - (¢/¢)]
3¢ Ur 1+ 27/ cos B1)l/s]
Cavitation surge M>2(1+0)pK U ! !

Rotating cavitation M >2(1+o0)¢pK

n=-— —
27 sinfBy 2KLh
Vp/Ur > 1, V,/Ur <0
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on the performance and geometry of the impeller. It is proportional
to and smaller than the rotational speed of the impeller.

4) The frequency of cavitation surge and the rotating frequency
of rotating cavitation are proportional to the rotational speed of
the impeller. The frequency of cavitation surge is the frequency
of a system with the compliance provided by the cavitation. The
rotating frequency of rotating cavitation depends on the geometry
and cavitation characteristics of the impeller. Rotating cavitation has
two modes: One propagates faster than the impeller and the other
propagates in the opposite direction to the impeller.
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