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1 Introduction

Along with the developments of high-speed and high-
performance turbomachines, there has been increasing occur-
rence of rotational speeds higher than the first critical speed.
Under these circumstances, turbomachines may suffer from
severe vibration and rotor whirl caused by fluid-dynamic
forces. As possible causes of whirling instabilities, fluid forces
on journal bearings and seals are well known and extensive
studies have been made of thesc effects. Recently, experiments
have shown that the fluid forces on the impeller itself can be a
cause of the whirl instabilities. Ohashi and Shoji (1984)
measured unsteady fluid forces on two-dimensional cen-
trifugal impellers whirling in a vaneless diffuser, for various
whirl ratios and flow coefficients. Their purpose was to obtain
fundamental data for rotor whirl and to compare the results
with their theoretical estimates of the effect. They found that,
in most cases, the fluid forces have a damping effect on the
whirling motion but they observed destabilizing fluid forces
for forward whirling motion at lower flow coefficients near
shut off and in a range of small whirl speed ratio. At nearly
the same time, experiments on three-dimensional impellers
with a volute were made at Caltch for direct use in design.
Fluid forces were measured quasistatically (Chamieh et al.,
1982) and dynamically (Jery et al., 1984). In the first of these it
was shown that the quasisteady fluid forces have a destabiliz-
ing effect for forward whirl and in the second that the region
of instability is similar to that observed by Ohashi and Shoji
(1984). The major differences from Ohashi and Shoji’s results
were that: (7)) measured forces are much larger, and (i)
destabilizing forces are also observed near the design flow
coefficient. More recently, experimental results on a strictly
two-dimensional radial impeller in the same volute have
become available (Arndt and Franz, 1986). The magnitudes of
the impeller forces are significantly reduced but the contrast
with Ohashi and Shoji’s results without volutes still remain. It
has been shown (Adkins, 1986) that the large difference be-
tween the forces on the 3-D and 2-D impellers in the volute is
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with the assumption of a two-dimensional rotational, inviscid flow. For simplicity,
the flow is assumed to be perfectly guided by the impeller vanes. The theory predicts
the tangential and the radial force on the whirling impeller as functions of impeller
geometry, volute spacing, and whirl ratio. A good qualitative agreement with experi-

due to the distribution of pressure on the external surface of
the shroud of the 3-D impeller.

All of the above measurements were carried out by using
circular whirling orbits. Bolleter et al. (1987) used a ‘‘rocking
arm’’ test apparatus to measure force matrices of boiler feed
pump impellers with outlet guide vanes. Much larger
destabilizing whirling forces than those found at Caltech were
measured near the best efficiency point and in a range of
positive whirl speed ratio, possibly because of the small radial
clearance between the impeller and the vaned diffuser or small
front shroud/housing clearance.

Most of the early theoretical models (Thompson, 1978,
Colding-Jorgensen, 1980, Chamieh and Acosta, 1981) were
based on the assumption of quasi-steady flow which restricts
their application to the case of very small whirl speed. Recent-
ly Adkins (1986) and Adkins and Brennen (1988) presented a
dynamic analysis which includes the unsteadiness in both the
impeller and the volute flows. Flows in both components were
treated one-dimensionally and both lorces and hydrodynamic
force matrices were compared with experimental results for
whirl speed/shaft speed ratios up to 0.2. The one-dimensional
theory yielded forces in good agreement with the experiments
and hydrodynamic matrices which exhibited the correct
qualitative characteristics.

The present paper is similar to those of Shoji and Ohashi in
that it examines the two or three-dimensional character of the
unsteady flow in order to establish the complex relationship
between the vorticity shed by the impeller blades and the
forces on the impeller. Shoji and Ohashi (1980, 1984) per-
formed unsteady flow analyses by singularity methods. Their
model is complete in the sense that the effects of shed vorticity
are fully taken into account and impellers with a finite number
of vanes are treated under the assumption of two-dimensional,
inviscid, incompressible and nonseparated flow. The com-
putations are compared with experiment in Ohashi and Shoii
(1984). Near the design flow rate their model can predict fluid
forces quite accurately. But the destabilizing fluid force at
lower flow coefficient observed in their experiments cannot be
simulated by the potential flow calculations. They also made
calculations (Shoji and Ohashi, 1984) with diffuser vanes in
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Fig. 1 Impeller and volute configuration. The volute is represented by
the solid spiral; the impeller is indicated by the dotted lines with a few
representative vanes sketched in. The center of the impeller is at 0’ and
it is displaced a distance ¢ from the volute center 0.

which only the effects of a steady vortex distribution on the
vanes were taken into account.

The present study analyzes the fluid forces on a two-
dimensional centrifugal impeller rotating and whirling in a
volute, with special emphasis on unsteady interaction effects.
~ As an extension of Chamieh and Acosta (1981), it is assumed
that the number of the impeller vanes is so large that the flow
in the impeller is perfectly guided by the vanes, so that the im-
peller is replaced by an ‘‘actuator disk.”’ Because of this
assumption only qualitative agreements are expected when ap-
plied to realistic impellers. But the present analysis has the
following advantages. For impellers with a finite number of
vanes, superposition of the unsteadiness due to the passage of
each vane on the unsteadiness due to the whirling motion

becomes very complicated. The actuator assumption removes
the former unsteadiness and the flow model becomes greatly
simplified. In addition, this approach makes it possible to
have an empirical total pressure loss in the impeller.

In principle, the present problem can be treated in the same
way as Shoji and Ohashi (1984) in their impeller/guide vane
interaction problem. We simplify the problem by applying the
actuator disk assumption but also take into account the effects
of the unsteady vortex distributions on the volute.

Thus the following assumptions are made in the present
study:

(1) The flow is
incompressible.

(2) The flow in the impeller flow passage is perfectly guided
by the vanes.

(3) The impeller executes a whirling motion with a small
and constant eccentricity ¢ and with a constant whirling
angular velocity ». Hence, quantities of order €2 are neglected.

(4) Vorticity is transported on a prescribed mean flow.

(5) The volute can be simulated by a curved plate.

two dimsensional, inviscid and

2 Basic Equations

We consider an impeller with large number of vanes ex-
ecuting a whirling motion in a volute casing as shown in Fig. 1.
It is convenient here to work in a rotating and translating
frame fixed to the rotor. Euler’s equation in this frame can be
expressed (for the derivation of equations (1) and (2), see the
Appendix);

a
a—;+VH’—wX(VXv)=f )
where
H = W (U+axx )+
2 2

and 9/8t* =a/3t+Q9/00 is the time derivative in the rotating
frame. U=iwee and @xx’=irQe? are the translational
velocity due to whirling and the rotational velocity of the im-
peller. We now integrate the component of equation (1)
parallel to the vane surface from inlet to outlet along a vane
surface to obtain the following expression for the total
pressure increase in the impeller

Nomenclature
[4;] = hydrodynamic force matrix
f = external force exerted by impeller vanes
F;, F; = normalized lateral force in x and y
direction
F,, F, = time average of normal and tangential
components of normalized unsteady force
i = imaginary unit
p, p, = pressure, total pressure, p,=p+ (p/2)v?
r, r» = inner and outer radius of impeller

Q = flow rate

R = radius of a circle, vorticity within which
is considered
t = time
v=u—iv = u'—iv' —iwee ™; absolute velocity

vi=u'—iv’ = (v, —ivy")e ?; velocity relative to z’

frame

w = velocity relative to impeller
z=x+Iy = stationary frame with its origin 0 fixed to
the center of the whirling motion
Z'=x"+iy’ = re®=z—ee",; translating frame with its

origin 0’ fixed to the center of impeller
and its axes parallel to those of z
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B = vane angle
I'; = circulation of prerotation
T, Ty, Iy, T'Y = vortex distribution on volute, its steady
component; unsteady components with
sine and cosine time dependence

e(< <r,) = eccentricity
€., €, = dislocations in x and y direction
¢ = vorticity
p = density
¢=0/27r;Q = flow coefficient
: w = angular velocity of whirling motion
Q = angular velocity of impeller
w/Q = whirl speed ratio
Subseripts
1, 2 = quantities at the inner and outer radius of
impeller
n, t = components normal to and tangential to

the whirling orbit (positive outwards and
counterclockwise)
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We have assumed that the external force f exerted by impeller
vanes is normal to the vane surface.
Outside of the impeller, where f=0, the f-component of
equation (1) can be represented by
N oH’ ) 3)
rof

_dv du 1 ( v,
¢ ax dy v, \ ar*

The vorticity at the outlet of the impeller can be obtained by
applying equation (3) at r=r,. In this equation H, is deter-
mined as follows. H; — H] is obtained through the integration
of the component of equation (1) parallel to the vane surface.
We assume that the flow is irrotational upstream of the im-
peller. Hence, we can use equation (3) with {=0 at r=r,. This
gives a relation for H{, which is used in equation (3) at r=r,
along with the H; — H{ obtained above. By this procedure we
arrive at the following expression

where
ryds
rsin 8

, F(0)1f =f(x2)—f(x,)

1 Fi ] aZv/
$(ry,0)=— P I:F (erﬂz—rIUOI)_MW(;QB
2
—ew(ﬂ—w)gl cos(0+B——wt)ds]. (€)]

The first term represents the effect of the change in Euler
head; the second and the third terms represent the effects of
the changes in the inertia due to acceleration in relative flow
and to whirling motion, respectively.

3 Elementary Flow Components

Since we linearize the problem, the flow in the volute can be
represented by a sum of elementary flow components. In this
section we prepare flow components satisfying the boundary
condition at the impeller outlet to be used for the construction
of the entire flow field.

The flow tangency condition at the impeller outlet is;

Vg =12 —v), cot B;. (&)]

The first term on the right-hand side of the above equation is
cancelled by the steady flow component

L, 1 . Q
=i =W(Q—21rlrz (rZQ— T cotBZ)) ®)

and other disturbance components should satisfy the follow-
ing equation

— v),cotf,. ™

In the region outside the impeller, we consider the following
three types of elementary flow components satisfying equation

a:

3.1 Velocity Induced by the Vortex Distribution on the
Volute. In order to represent the effect of volute, we con-
sider the following velocity field.

iT'(s)ds 1 . 1 1
T )

27 2’ =2 4 z'—ri/%g
The first term represents a vortex of strength TI'(s)ds at
z’' =z4(s). The second term represents a flow due to a source-

’ —
Vg =

u’ —iv’
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vortex at the mirror image of z; with respect to the circle
r=r,, and one at the origin. This term is added so that the
total flow satisfies the boundary condition (7). This expression
shows that the flow component has no circulation around the
impeller and no flow rate from the impeller. The effect of the
volute is represented by a super-position of this flow compo-
nent, i.e., by the integral of equation (8) along the volute. We
consider steady (I';(s)) and unsteady ((e/r,)[%(s),
(e/r)I' (s) ) vortex components and put

T'(s) =T (5) + (e/ry)I; (s)sinwt + (e/ry)['5 (s)coswt
in equation (8).
3.2 Velocity Induced by Shed Vorticity. As shown in the
last section, the vorticity is shed from the impeller due to the

unsteadiness of the flow relative to the impeller. We assume
that the velocity is transported on the log-spiral flow

o, il
u' ~iv ===, 9
27z’ ©
Then we have the following elementary vorticity field
& = CenCOSP+ §,8in &
T r r
<I>=:|:w{t—— (r2—r2)}+n{0——§—log<—)}. (10)
o 2 Q; r
The velocity induced by this vorticity field is
V8, — Vs, = (EuZpp + EnZpy ) cOS(O £ 5t )
+ ($nrn— $cnlyy,) Sin(nd £ wt) an

where
Zpn=Rpy—10rn:Z1 =Ry — 0y,
Rp,=Real[i{F(r)+ G(r)}1, R, =Imagli{ F(r) + G(r)}]
Orn =Reallit F(r) =G ()], 0}, =Imagli{ F(r) -G (r)}]

1 ¢

F(ry=— S e (ry/ry"*1dr,
2 ra
1 R

G(r) = S e® (r/ro)"~dr,

T
22 (rg =3 —n —E- log(ro/1).

O o

b=

(11

Expression (11) is obtained by integrating the velocity induced
by ¢, of equation (10) in r, <r<R. We add a potential flow
component

Uen —iv%n =—e ¥ (g.cn + i?sn)

eiﬁ?imt
X [(Orn — 01, )5i0B, + (Rp, — iRy, )cosﬁ2],=,2 Tl
(12)
so that the total flow
v =105 = (V] —ivh,) + (05, ~ ivh,) (13)

satisfies the boundary condition of equation (7) and represents
the effect of shed vorticity.

3.3 Conditions at Infinity. There we require the absolute
velocity to vanish at z’ = o. In order to cancel the velocty due
to whirl at inifinity, put

) ra\2 .
U’ —iv’ =jwele ™ + (—f ) gl (wi=262)],
z

The first term cancels the whirl velocity and the potential flow
of the second term is added so that the boundary condition (7)
remains satisfied.

‘We may now note that the flow downstream of the impeller

a4
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can be represented by a sum of the elementary flow com-
ponents represented by equations (6), (8), (13), and (14). The
total flow satisfies the conditions at infinity and at the exit of
the impeller.

3.4 Flow in the Upstream Region. In the region upstream
of the impeller (r<r;), the flow can be assumed to be irrota-
tional. We put a source Q and a vortex I'; at the center of whirl
to represent the effects of flow rate and prerotation. Then the
flow can be represented by

QO+, 1
T 21z tee™

u' —iv’

+ E {A, +e(AS, sin wt+AS cos wt)}z'"! (15)

n=1
where 4, AS and A$, are unknown complex constants.

4 Method of Solution

In the preceding section we have given all of the elementary
flow components required for the construction of the entire
flow field. These components satisfy the conditions upstream
and downstream of the impeller and the flow tangency condi-
tion at the outlet of the impeller. But they contain several
unknowns to be determined by using the following conditions:

4.1 Continuity Equation. Since the flow in the impeller is
perfectly guided by the vanes, the continuity equation can be
represented as follows.

rvi(r,0) =rv5r,,0,) (16)

where 0, =0, + ¢, and 6, are angular positions of a vane sur-
face at r=r, and at r=r,, respectively. This equation deter-

. mines the unknown constants representing the flow upstream
of the impeller.

4.2 Strength of Shed Veorticity. The strength of shed vor-
ticity at the outlet of the impeller is determined by equation
(4). Since the fundamental vorticity distribution in equation
(10) is represented in a form of a Fourier component with
respect to 0, it is convenient to represent the velocities at the
inlet and outlet of the impeller in Fourier Series. Then equa-
tion (4), and equation (16) give relations governing these
Fourier coefficients.

4.3 Boundary Condition on the Volute Surface., The con-
dition that the normal component of the absolute velocity
should vanish on the volute, i.e., the flow tangency condition,
is

ew cos(wf —a) + v/ sin(f —a) + v5 cos(@—a) =0

an

where « is the angle between the volute and x-axis. The
velocities (v/, v;) on the volute surface z =z, are obtained by
putting 7’ =z, —e™” in equations (6), (8), (13), and (14) and
linearizing them on the assumption that e< <r,. Then equa-
tion (17) gives an integral equation with respect to the vortex
distribution I' (s) on the volute. This equation can be reduced
to N-1 linear simultaneous equations if we specify the strength
of the vortex distribution at N discrete position (vortex points})
on the volute as unknowns and apply equation (17) at N-1
points between the vortex points. Further, we should use an
unsteady Kutta condition (Tsujimoto et al., 1986)

—‘i S:I T'(s)ds=—-T(s;)w(s;) (18)

dt
where w(s;) is the average of the velocities on the upper and
lower surface of the volute trailing edge. This equation states
that the amount of the change of the circulation on the volute
is shed from the trailing edge as a free vortex distribution with
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strength I'(s;). If we strictly adhere to the present two-
dimensional model, we should take account of the effect of
the shed free vortex distribution. Considering that we are
modelling a three-dimensional volute which is connected to an
outlet pipe, it is unrealistic to expect that the free vortex
distribution would play an important role in the determination
of the fluid forces on the impeller. For this reason and for
simplicity, we neglect the effects of free vortex distribution
shed from the volute, while using equation (18) as a sup-
plementary condition to equation (17). Now we have N linear
equations to determine the strength of the vortex distribution
on N vortex points.

The conditions stated in this section, i.e., equations (4),
(16), (17), and (18) give a complete set of linear simultaneous
equations to determine the unknown constants included in the
expressions of elementary flow components. The flow com-
ponents and the above relations can be divided into steady
parts of order ¢ and unsteady parts of ¢! after linearization
with respect to e< <r,. The steady parts can be solved in-
dependently of the unsteady parts and the latter parts are
solved by using the results for steady parts.

5 Fluid Forces on the Impeller

By considering the balance of the momentum of the fluid in
the impeller, we can express the forces on the impeller as
follows.

o(§, -8, -
+ipwe(€§cz _(§c1 )(u’—iv’)cos(ﬁ—wt)rd@ (19)

oo S Ss v (ry0, =0— ()

"2 =it0-x2+8)rdr df
rsin 8

+pwlem(ri —rie—ist

where ¢, and c, represent counterclockwise integrals on r=r,
and r,, respectively, and S means an integral over a region sur-
rounded by the circles with r=r; and r,. The azimuthal angle
0,=0—a¢(r) gives the angular position at r=r, of the vane
which passes through the point (r, ¢}.

For the integration of the total pressure on »=r;, we should
make use of equation (3) with {=0, and equation (2) is used
for the integration on r=r,. Then each term in the right-hand
side of equation (19) is represented as integrals of the velocities
on r=r; and r,, that can be easily evaluated if we use the
Fourier representation of the velocities. Equation (19) is used
after linearization and separation into steady and unsteady
components.

6 Results and Discussion

In order to assess the present model, calculations were made
on an impeller and a volute simulating those used in the ex-
periments by Chamieh et al. (1982) and Jery et al. (1984) car-
ried out at Caltech. The ‘‘Impeller X’ used in the experiments
is modelled by a two-dimensional logarithmic spiral with
=25 deg and r,/r, =0.4. The ““Volute A” is modelled by a
logarithmic vane represented by

r=1.1230x1n6:538° 0 deg < 6 < 396 deg.
The volute angle is determined so that the volute surface coin-
cides with a streamline of a flow due to flow rate Q and im-

Transactions of the ASME



1-005 (ExEy)ry=

A:(0.0.0.0)
B:(0.03,0.0)
C:(0.0,0.03)
\/ 1-01 D:(-0.03, 0.0)
E E:(0.0,-0.03)

$=0.1196

7\

Fig.2 Calculated lateral forces F}, F;,' for the Impeller X/Volute A com-
bination for various displacements ¢,, ey of the impeller center.

peller circulation at design flow coefficient (¢ = 0.092) of the
experiments. The radial position of the tongue (r,/r, = 1.123)
is set to be the same as ‘“‘Volute A.”’

Calculations of the steady component are carried out first
and the steady vortex distribution ', (s) thus obtained is used
in the calculation of the unsteady components. Since the in-
tegrals in equation (11) involving the velocities induced by
shed vorticity do not converge in the limit R — oo for the cases
of w=0 and n<2, it was assumed that the vorticity in the
volute decayed like 1/72. Thus we used R/r, = 5.0 for all of the
vorticity components. This might be justified if we argue that
the vorticity outside the volute should have little effect on the
forces on the impeller and that the shed vorticity will decay
due to mixing in the volute.

Furthermore, since the flow in the volute is nearly perfectly
guided we use a value of T'; in equation (9) such that the
velocity with Q, = Q is tangential to the volute surface. For the
calculations without a volute, the flow rate Q was used with
the corresponding impeller circulation for Q; and T'.. Only
cases with zero prerotation were evaluated (T'; =0).

The vortex distribution is discretized to N vortex points
given by

0,=198degx [l —cos{n(n—1)I (N=1}],n=1... N

and finite Fourier representations with M terms are used for
the velocities at r=r; and r,. To conserve computational time,
values of M=5 and N=30 were employed, since the
calculated values of lateral forces did not change by more than
3 percent when the values of M or N were doubled.

Figure 2 shows lateral forces on the impeller in which the
center of the impeller is moved to (x, y)={(e,, ¢,). Lateral
forces (F,, F)) per unit impeller outlet width are normalized as
follows

(F5.F3) = (FoFy) /om ()%,
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Fig. 3 The hydrodynamic force matrix components for Impeller
XIVolute A. Measured values are from Jery et al. (1984). Note the
qualitative similarity between the present calculations and the
experiments.

Solid arrows in the figure indicate the results obtained by ac-
tually moving the impeller in the computer program for the
analysis of steady component and the dotted ones are obtained
by putting w=0 in the unsteady program. The small
discrepancies are believed to be due to the linearization used in
the analysis of unsteady component. This figure shows the
validity of the linearization for eccentricities of this order.

We see that the force vector due to the displacement (dotted
arrows) are rotated counterclockwise by about 20 deg from the
direction of the dispalcement. This shows that the quasisteady
fluid forces have a destabilizing character for whirl in the
direction of the rotation of the rotor. This is in accord with the
quasisteady measurements of Chamieh et al., 1982.

Unsteady force components (F,, F,) on the impeller per
unit impeller outlet width are represented by

F.\ _ 2 [A A, (e cos
(ﬁ'y) —p7r(r29) [Ayx, ij € sin wt,

where [A4;]is called the hydrodynamic force matrix. Figure 3
includes the experimental results of Jery et al., 1984 and
calculated values of A ; for Impeller X/Volute A as function
of the whirl speed ratio w/Q from the present theory.
Although the present model like that of Adkins and Brennen
(1988) underestimates the force matrix elements we do observe
a qualitative agreement. In cases without a volute, we find that
A=A, and A,,=—A,, because of the symmetry of the
flow. Deviations from this symmetry are caused by the effect
of the volute. The unsteady force may be decomposed into
components normal to and tangential to the whirling orbit.
These components are constant around the orbit if there is no
volute. But if there is a volute there are variations around the
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Fig. 4 The tangential and normal force F;= 12(A,x — Ayy),
F,=12(Ay, + Ay} for impeller X/Volute A. Calculated values are com-
pared with two and three-dimensional impeller measurements (2-D, 3-D)
of Amndt and Franz (1986) and Jery et al. (1984).

orbit but the average value of the tangential component over
an orbit has a special meaning in rotordynamics; if the average
tangential force is in the direction of the whirling motion, this
force promotes the whirling motion. In other words, the fluid
forces are rotordynamically destabilizing. The time averages
or average around the orbit of the normal and tangential com-
ponents (F,, F,) normalized by p7 (r,2)%¢ are given by

ijl) =L Axx+Ayy)
t 2

yx Xy

Figure 4 shows experimental (Jery et al., 1984) and
calculated values of the normal and tangential forces on Im-
peller X/Volute A. We note that experimental values of F, is
positive in the region 0< »/Q < 0.4, which shows that the fluid
forces are destabilizing in that interval. This destabilizing ef-
fect emerges from the present theory. The effects of flow coef-
ficient and whirl speed ratio are also well simulated.

More recently, experimental results on a strictly two-
dimensional, radial impeller with flat radial shrouds have been
made available by Arndt and Franz (1986). The hydraulic per-
formance of this impeller is very similar to that of Impeller X.
The tangential and normal forces of this impeller measured in
Volute A are shown in Fig. 4. The agreement with the present
theory is, we believe, quite satisfactory. The large difference
between these experimental results and those of Jery et al.
(1984) have been shown by Adkins (1986) and Adkins and
Brennen (1988) to be due to the distribution of pressure on the
external surface of the shroud of Impeller X.

Figure 5 shows the calculated results for Impeller X without
a volute. The forces are much smaller than those in Fig. 4. No
destabilizing region is now observed and the values of F, and
F, at w/Q=0 are very small. In the experiments on two-
dimensional impeller/vaneless diffusers, Ohashi and Shoji
(1984) measured much smaller fluid forces than those in Fig. 4
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the effects of unsteady vortex distributions on the volute are neglected.
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Fig. 7 Eifects of the radial position ry/r, of the tongue on the tangen-
tial force F;.

and did not find any destabilizing forces near design flow rate.
They also measured very small forces at w/Q=0. Our results in
Fig. 5 exhibit similar features and imply that the unsteady in-
teraction effects of the whirling impeller with the volute can be
a cause of the difference between the experimental results
shown in Fig. 4 and those by Ohashi and Shoji (1984).

1t has been shown by Chamieh and Acosta (1979) and also
independently by Ohashi and Shoji (1984) that the normal
force F, is approximated by a sum of the centrifugal force on
the apparent mass of the impeller and the Joukowsky force on
the impeller circulation. The normal force in Fig. 5 can be ap-
proximated by the centrifugal force and the Joukowsky force
by using the apparent mass given by Chamieh and Acosta
(1979).

In the calculations of the interaction effects between adja-
cent blade rows in axial flow machines, it is often assumed
that the unsteady vortex distribution on the opposite blade
row can be neglected. Figure 6 shows the results for Impeller
X/Volute A obtained by putting I' =T', =0. We see that this
result fails to reproduce the important effects of unsteady in-
teraction as observed in Fig. 4. It shows that we cannot neglect
the effects of unsteady vortex distributions on the volute in
treating the whirl/volute interaction problem in which the in-
fluence on the flow by the volute is very large.

Figure 7 shows the effect of radial position r,/r, of the
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tongue on F,. The volute angle is kept constant. The region of
destabilization does diminish as r,/r, is increased but it re-
quires the use of a vaneless diffuser with inner to outer radius
ratio larger than 1.6 to substantially remove the region. This
implies that the destabilization is not caused by a local interac-
tion with tongue but by an interaction with the volute as a
whole.

7 Conclusion

An inviscid linearized, rotational flow model of the interac-
tion between a whirling, eccentric two-dimensional impeller
and surrounding value is presented. Force matrices due to the
displacement of the eccentric impeller are calculated as a func-
tion of whirl-impeller speed ratio for a range of flow rates and
impeller-volute geometry. The force matrix is shown to be
nearly skew-symmetric and, depending on the volute
clearance, to have a region of destabilizing tangential force.
The results of these computations are shown to agree well with
experimental measurements on a two-dimensional test
impeller. :
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APPENDIX

Derivation of Basic Equations
Derivation of Equation (1)

Let us start from equation (3), page 80 of Milne-Thomson
(1968):

ﬁ'——vx(V XV)+ V <L+L v2) =f
ot P 2

where a body force f is added. Consider a frame whose origin
is translating with a velocity U and rotating with an angular
velocity €. We represent the absolute velocity by v, the veloci-
ty relative to the moving frame w, and the velocity of a point
fixed to the moving frame V=v—w=U+Qxx’ where x’ is
the position vector in the moving frame. /07" means the time
derivative at a point fixed to the moving frame. Unit vectors in
the stationary and moving frame are represented by e; and e],
respectively, and the components of v in these directions v;
and v/. Now we have

av d dv; av
= )= @ =—t (Vo V
at’ ot (vie) ar O ot ( v
and
av d ad , vy
o (U= ()=
ade; av
+ U ———=——+ X
Y T e v
where we have defined
v _ 9/ o/
arr ot T

From the above two equations we obtain

Yo axv-w
o ar V- (Vev)y.
Using this equation and identities
1 1 1
Vil w2 W2.w.
> v 2 w 3 V4+veV,

V(veV)= —OXV+VX(V XV)+ (Ve V)V

we obtain equation (1) in the main text.

Derivation of Equation (2)

Since dv/dr* in equation (1) is represented by the com-
ponents in the moving frame we can easily take out the com-
ponent of equation (1) in the direction of the vane surface. In
an actuator impeller, w is parallel to the vane surface and
hence the third term is normnal to it. In case of inviscid flow,
the body force f, which represents the force exerted by the
vanes of the actuator impeller, is normal to the vane surface.
Hence the component of equation (1) parallel to the vane sur-
face can be written as
v, ] { -, 1 na, P }_

o % L2 w > (U+Qxx)*+ p 0
where s represents a coordinate along a vane surface or a com-
ponent in its direction. By integrating this equation we can
easily obtain the pressure difference between the inlet and
outlet of a flow passage. Using this pressure difference and
representing the velocity in terms of those relative to the z’
frame we obtain the difference of the total pressure
p,=p+ (p/2)?, where v is the absolute velocity, given by
equation (2).
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