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Destabilizing fluid forces on a whirling centrifugal impeller rotating in a
volute have been observed (Ref.l). A quasisteady analysis neglecting shed vorticity
(Ref.2) or an unsteady analysis without a volute (Ref.3) does mnot predict the
existence of such destabilizing fluid forces on a whirling impeller.

The present report is intended to take into account the effects of a volute and
the shed vorticity. We treat cases when an impeller with an infinite number of
vanes rotates with a constant velocity { and its center whirls with a constant
eccentric radius ¢ and a constant whirling velocity w.

Major assumptions are as follows:

(1) The number of the vanes is so large that the impeller can be treated as
an actuator impeller in which the flow is perfectly guided.

(2) Flow is inviscid, incompressible and two-dimensional.

(3) The eccentricity e is so small that uasteady components can be linear—
iz edo

(4) Vorticity is transported on a prescribed mean flow, i.e., the operating
point is near design flow rate.

(5) The volute can be represented by a curved plate (see Fig.1).

% Partial support by the Yamada Science Foundation, Japan and the National
Aeronautics and Space Administration under Contract NAS8-33108.

+ Visiting Associate, California Institute of Technology (1983-84).

161



SYMBUOLS

2 *-‘-.2‘+A'y : stationary frame with its origin 0 fixed to the conter of the whir-
ling motion

Z'=x'+lY’ : trauslating frame with its origin 0' fixed to the center of the
= p-se«t impeller and its axes parallel to those of Z.

i , N : inner and outer radius of the impeller
Berd : vane angle measured from circumferential direction
£ : eccentricity
w + angular velocity of whixling motion
02 : angular velocity of the impsller
Ie : prerotation, Q: flow rate

¥V = u+iU : absolute velocity

(U") Ui)
Y s+’ : velocity relative to x'y' frame
(W, Vé)
w : velocity relative to the impeller
(Wr; l‘ro)
t : time, t=0 when 00’ is in the direction of =x
n : ¢ircumferential mode number
Subscripts
1,2 : gquantities at the inner and outer radius respeoctively
Supcrscripts

: steady componeant -~ ; unsteady component

BASIC EQUATIONS

Fuler’s equation in the rotating and translating frame fixcd to the rotor is,

U W (yrQxx)t, P , -

:9?**?(2 T +/J)'H"(P"H)*i €t)
where alatzeis the time derivative iam the rotating frame and g=iwaomt and
g X x'=irQe are the translational veloecity due to whirling and the rotational

velocity of the impeller. In an actuator impeller with an infinite number of vanes,
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the effects of the vorticity distribution on the vanes and the forces exerted by the
vanes are represented by the vorticity V Xy and the external foree £
respectively in the above cquation, For inviscid flow through actuator impellexs,
f and w X (VX y) are normal to the vanc surface and the component of Equation (1)
parallel to the vane surface is

% - J(E r )

at* =0 (2)

where
Vs =W — rRecosp - w& cof (§+f8-wt)

Wer, 8> = Wrch, 8-Frnd 1 /(Vis:ainfier>)
Vel = ri? + 830+ 2rwg Ren (8-wt)
Hot¥ =3/t +122/38

Integrating Equation (2) along the vane surface we get the following total pressure
inoreaso,

Bt = [row ] - MU w080 Ui - 50 (@0 [ aincor-wrt dds

+ 8w (12 Vs cos(6-wt) + Uy sin (9wt ) (3

where

S (N S
H .S,rm'-npcr)dr

Downstream of the impeller, wherc f{=0, Equation (1) can be exprossed as
.({ / [ — o et
Wwx(Vxy)= mTJ’VH , 'f*-’- 2 4)

By multiplying Qardlf,%’dj = V,’_(Ey@s&-gz:inﬁ)d@ on both sides of the above equa-—

tion we pget the following wvorticity distribution at the outer radius of the

impeller;
5(r,e)= -'r;—'zu_m:‘%i{‘ (3 T 05 ) v
= [ ma-‘-*’ t @E { Vrn (8wt ) - %i5in (6 ~wt)
1-339'505(3,-(05)1* Aw(g, ~tt) - ;{24 (8,~wt) }
(e fgj-&-)a—éﬂ'u + g (R-8) j, DS (O1R-wb )dS
- G (GE Q) Uit t 3 S0(R-w)ain(8-wt) (6
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ELEMENTARY FLOW OOMPONENTS

The flow tangency condition at the impeller outlet is,

1]

Ui = Q2 - Utrestg, 3

The first term on the right hand side of the above equation is cancelled by the flow
component

V- AW = g | @ - 2Rin( R~ g8 et f)] )

and other disturbance components should satisfy the following equation

Véz = - Un Cﬁtﬁa . 8

For the region outside the impeller we consider two types of elementary velocity
disturbances satisfying Equation (8):

First, consider the following velocity field:

VIR [ W ~2B2, | l } A
U-ev 2n { B/ -2 € ( B0 ) (7
This velocity field has a vortex T at z'=z’0 and satisfies Equation (8) with no

circulation/net flow around/from the impeller. Consider a vortex distribution
I'(s) = I's(s) + er:(s)sin ot + srg(s)cos wt on the volute surface zo(s)=z'o+eei“t.
Assuming & << T,, we get the following steady and unstcady velocity components

gx:___n?
—LU/ZI zn-j IS(S‘)[E 20{5) - 7 {212(‘)__&2> st (/0)

AT - gt 5282 nfffiut
Wi e =57 f Eol a g3 z(g))?- *e (2’5(5)-!&‘)2 ] s

n? erzqsz

iot

where z' is fixed to x'y’-plane. At z=zs=z'+se » which is fixed to the volute,

we get the following expressions:

[ Sz / ’12 e’*zi.,&
YL T — 77 -— 3
Wl U 2 = th.J; o)l Z -20s)  B(RZ6) -1 Jas €12)
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etk -2iR. e.'-wt 2 s)@ivt, g gLt

o -~

W-ille = Jmf ) 502 s it B (258>~ 1) T 2o Fo(s)> + y; )ds‘
+£§fsf/’ (syeosat+ T :‘»th)[ e - Jas
21, (a6 A1gs ¢ - 2ots) zs(a_;z«rn) (132
In the same¢ way the velocity component (7) has the following stecady and unsteady
ies iwt

components at the volute surface L =z'+ee V",

- — { _ ' -

1 é(z: Ws{ 1 2 r ( BQ 2;[.’.\ @5[32)} i)

~ ~ / o __@ £ i(wt-85)

U¥ -2 Ué[: m{ Q-2 (n2 zﬁﬁaﬁ,@z,)} r. e >

Next consider the veloecity field due to shed vorticity. If we assume that the
vorticity is transported on a streocamlins

U =Ll = C@-AT)/(2Er)

we have the following elementary vorticity field
T;-
Lo = Lomecos { Tw(E ~Frons) + m (8- g hpr/ B}

- ,
H;'s,,,gw{_tw(t—{'-(r’an‘))-rm(e—-,ﬁ-l-’qcmm)} ()
and the corresponding velocity field

Vrm = & Veh = (LomZom + Gom Zem ) cos (MOLwb )+ (Lyp Zom=LemEom ) sun(métwe )  (17)

where
Zen = Rem ~ £ @ron Zin = Rrm = £ @rm
RP”’+<}RI"’=_4"[FU‘)+6'CF)J ) Oen+ J@Im=“F(r)rG(r)

Fer)

!

r
l-j up-[}‘ (let-m*-rzz)-mgﬂgcn/&))}(mr‘)”*'ar
Gy = 2f eap NeT2: cr;’-yf)—mgla;(fo/ﬁ»}(r/ra)'”"atra

Equation (17) imcludes the effeots of the vorticity in r,{r<R. Simoe G(r) is
sonvergent only for n23 as R-)%, w¢ should artific1a11y prescribe some
appropriate finite valwe for R. Equation (17) does not satisfy Equation (8) and we
should add a potential compomnent

OF AWl

vrf') LV = - e P2 (Eent4 Bsm) [C&)R &)Wﬂz"'CRR-&RI)Q%;]ﬁ,\egmn 8
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snéh that

Ui = Vsn = C Urk ~2Us5) + ( Urh =4 Vol ) a®

satisfies the boundary condition of Equation (8). We may now note that therc are
steady and unsteady components as follows:

(i)  Steady compoment; in Equations (16)-(19) we put w=0 and ropresent the
related quantities with superscript and suffix n (n=1,2...) for each
mode, Lem StC.

(ii) Unsteady component; correspondingly to the sign on o and the mode n, we
represent the related quantities such that 72 eto.

int

On the volute z=zs=z'+se » the steady and unsteady velocity fields are expressed

as follows:

TSP INED Y [ (( AR STCAAS VTN P
~ 6Bt Eond (B B Ysinfoat ( Rem Romdeosps)pr /28] 20)
8- 5kl =2 1 [(GonTom o Fon - msins = cosms)
t (LonZem-LonZon )(McoSMBs 2 Sen n6e) ] -,f; Sincb;-wt) e =%
~ [Bom Zpm + EsmZzm YcosmBs +( GsmZem fEm B0 )5in mBs Jeos (Bs-wt) €75

(Y EBEyr Eomd riBmy i+ (BeniFon)co5] . et

*25 é‘i [ (520 2o+ T, Zom) cos (st it )+ (i B £ 5 B2 Ysim(mbs rase)] €5

~ e B3 2. L2, ) [(BtniBm)sinpat (B c Bom eose] o gfft I 21

In the region upstream of the impeller (r{r. ), we consider a source Q and
prerotation of strength Pi at the center of tﬁe volute, Then the velocity can be
expressed in the series

o
’ ’ Qt;;i‘« , Y - S C 4)7*"[ ‘:
W iU =[5 g 72 {18 (Ahsinw spfeaswt)} 27 Jelo

- = - § ,5 s C_,© ¢ -
where AhuARn+iAIn, An ARnfiAIn’An ARn+iAIn are complex constants,

Now we have given all of the elementary flow components necessary for the
construction of the entire flow field., Each of them contains several unknowns that
are determined in the following sectioas,
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BOUNDARY CONDITIONS ON THE VOLUTE

The flow tangency comdition on the volute surface is,

EWw oS (of-wt) + Vewd — UWamd = Up =0 (23)
where a is the angle between volute and x-axis. If we put

W= W+ (Leoswl + Ui sinwl

>

we get the following conditions,

U+ Weoswb + U sinwb

1]

Veend — Wsend = O, 24)
D2cosol ~ E Ainat = — W e (2§
D cosol - Ut aind| = = S1) aind, (26D

The steady velocity u’ V' is given as a sum of the velocity components in Equations

(12), (14) and (20). The unsteady components ’ﬁ'c, V’c and ';'s’ ?i"s are the cosine

and sine componments of the velocity of Equatioms (13), (15) and (21). Equations

(24)-(26) constitute integral equations for I's(s),l";(s) and I':;(s).
CONTINUITY EQUATION

The continnity equation across the impeller is

Y2

ZfrCn, 6,=0+r%) "—'"'F" V¥ (1, 8) 62D,

where @ is the angle between corresponding leading and trailing edges of 2a wvane.
At the outer radius the total of the steady velocity components given by Equations
( 7), (10) and (19) can be expressed as a Fourier series; namely,

@ & - —
srn T 2 ( Uiy sinm8 + Uiy cosmB )
n=i

Ur(n, 8)

1

(28
Ug(h,8) = rsQ-m cotB 2 r_>_ ( UsnSinm@ + Ugsy cosm®)
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In the same way, the unsteady components of Equations (11),
expressed as

and (19) can be
~ '2'? et NES el ~g$ .
W, 8l =& ”% E ( UimcoS 1O +IrmaennB) caswt +( Desern m8 + psssimB s mwl] -

E L ] 1 . 1
Ko =85> }I ( TS + DS sinmb)edwt + ( Gstcssme+ U sinmp) sinwrt)
rel

At the inner radius r=r, we expand Equation (22) im 9@91-5’0 rather than in  9,;
then,
UF(1,0,=0t%) = @ v { Ura sinm + T cosmo }
o , —
Vel ,01=618,) =~ _m,, +Z{U’W5mmﬂ + @%mm’}

Wn,0,=61%)= sz.II( S s + D528l t {Fesaamb + Oy simntIocnit] }

(1)
Vi Lh, 0=618) = zn%a,lhzf,., cosmO + ﬁ;’,ﬁs'énma)coswt*-(?%ﬁfcos«nwﬁ;’dnw)ﬂ%wﬂl

From Equation (27) we get the following relations
Tm = CR/N) Uiy ¢32) TS = (RIN) U )
T = (niny G 36 FS=cn/iny 5% G
P = cnrny O3S 365  DEecniny Gn @7

Equations (32) and (33) g1ve the rela%ions to determ:ne Ekn and Kin’ and Equa-—
tions (34)~-(37) determine ARn ARn and AI

STRENGTH OF SHED VORTICITY

If we use the ecxpressions (28-31) in Equation (5), the

steady vorticity
components can bo expressed as

_— 2?”}. = —_ Y o
Eem =~20m (705 + T - £ U5n) (38)
Lem=—"7 Q ~Qm ( UPn = Upm T Ven ) €3%)

wheére we have used ua-zﬁi. because of the assumption om the

transport of the
vorticity. In the same way, if we express the vorticity by

Py ® ' ' “ ‘
Ln,e)y= .;_gpﬂ g ”2:, [ (E3cas b +L5SsinmB) sinwt+( l;f,‘casWB-rgggypna)mmtﬂ @)
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Ay
and use the expressions (28-31) in Equation (5), we can express 5 in terms of the

Fourier coefficients in Equations (28)-(31)., Comparing Equation (40) and Equation
(16), we get the following relations, :

B <R (75 £ @ Lo TBE- 55 ca>
Doy = TR ( B~ ) (8> Gon=TE(%+ TS %

METHOD OF SOLUTION

¥e have used the following unknowns for the expression of the flow field

Steady component unsteady component
¢ s
r> 1 ffes) laes> , Jaess
—
So— — - e /u_ N’
EG” ) E‘m ;ﬂ";) > ;;:ﬂ ) ;Gm > ;‘M
A ry s S < c
reb Arn , Arn Agm , Arn , Atﬂ, Arm

These unknowns are determined by the following relations:

Steady Compoment Upsteady Component
B.C. on the volute: Eq.(24) Egs.(25),(26)
Continuity: Eqs.(32),(33) Eqs.(34),(35),(36),(37)
Vorticity: Eqs. (38),(39) Egs.(41),(42),(43),(44)

These equations include integrals related to the vortex distribution on the volute
surface, which should be evaluated by some appropriate method. Equations (24)-(26)
are integral equations for the vortex distributions on the volute surface and could
be reduced to simultaneous linear equnations by a singularity method. In the solu-
tion of the vortex distributions the "Kutta condition” at the trailing edge should
be applied. Strictly speaking the circulation around the volute fluctuates and a
free vortex sheet is shed from the trailing edge of the volute. Since we are mainly
interested in the forces on the impeller, we will neglect the effect of the free
vortex sheet but apply the following conditions at the trailing edge.

Steady part:

F(sey =0 @s>
Unsteady parts:
SE c xd —
wjo [; ($)ds = /dS(S‘z) W (Se) (ds)>
"SR —, —
- wf, [25¢s>ds = Taese) Wise) a7

Now we can express all the relations as a set of simultaneous linear equations which
can be solved numerically. The steady component may be solved independently of
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unsteady component, and the result used in the analysis of the unsteady components.

UNSTEADY FORCES ON THE IMPELLER

By considering the balance of the momentum of the fluid in the impeller, we ecan
express the forces on the impeller as follows;

Steady component
X-iY =28, Peaw - §, Feaz]
{ hwad -— Iy Frol L ya
+48 0§, - siyaz - §, @iz ] “3)
and unsteady component
(Xe- 4T )eoswl t (Ke- LT )senel
=i 0§, PooF - §. Praz ] v pEm R @
tPL$, ca-coNP-57)ag’ - §, (&=L )i 57)az” ]
tofwe [ §Q (&~cU7)cos (8-t ) il -fc, (F-L 07 ) cos (9-wt) 11 d6]
’ £ -
- 2 S wn,o-9m) Tane €O T8 rarap (a2)

The total pressure is given by Equation (3) and the integrals can be evaluated
analytically by using the expressions(28-31)

OONCLUDING REMARKS

The vnsteady forces can eventually be expressed in the form of stiffness
matrix,

(?) ()’(‘c/s L Xels \[ %=gcoswl

= ~ (5$0)
ele , ls J\ y=gsinwt

N

Y

The tiqg{average of the force component in the direction of whirling motion is given
by % (Yc—f;) and the sign of this quantity determines whether or mot the fluid
forces have destabilizing effects on the whirling motion. The sum %;(§;+Y ) gives
the time average of the force component in the radial direction and thus the
hydrodynamic stiffness. The ultimate goal of the present study is to examine these
factors for realistic impeller-volute combinations.
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Figure 1. - Impeller and volute configuration.
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