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ABSTRACT

The Rayleigh-Plesset equation and its extensions have been
used extensively to model spherical bubble dynamics, yet radial
diffusion equations must be solved to correctly capture damp-
ing effects due to mass and thermal diffusivn. The latter are too
computationally intensive to implement into a continuum mode]
for bubbly cavitating flows, since the diffusion equations must be
solved at each position in the flow. The goal of the present re-
search is to derive a reduced-order model that accounts for ther-
mal and mass diffusion. Motivated by resulis of applying the
Proper Orthoganal Decomposition to data from full radial com-
putations, we derive a model based upon estimates of the aver-
age heat and mass transfer coetficients. The model captures the
daniping effects of the diffusion processes in two ordinary differ-
ential equations, and gives better results than previous models.

INTRODUCTION

Detailed computations of forced and oscillating bubbles in-
cluding heat and mass diffusion show that the assumptions of
polytropic behavivr, constant vapor pressure, and an effective lig-
uid viscosity do not accurately account for diffusive damping and
thus do not accurately capture bubble dynamics (Prosperetti et
al. 1988, Watanabe & Prosperetti 1994, Matsumoto & Takemura
1994, Kameda & Matsumoto 1996). While the full bubble com-
putations are readily performed for single bubbles, they are too
expensive to implement into continuum models of complex bub-
bly flows where the radial diffusion equations would have to be
solved at each grid point. Therefore reduced-order models that
accurately capture diffusive effects arc needed.

Previous models that account for thermal diffusive effects
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include the models of Prosperetti (1991) valid near either the
isothermal or adiabatic limit¢, and the model of Storey & Sz-
eri (2001), which switches between isothermal and adiabatic be-
havior depending upon relative time scales. However, these ap-
proaches are unable to correctly capture the thermal damping
over a range of bubble responses (Preston et al. 20024). Toegel et
al. (2000) proposed a model that estimated the mass and thermal
energy fluxes out of the bubble by using an estimation of the dif-
fusive penetration length. This seems a reasonable approach for
large bubbles, but can give poor results when the thermal pene-

tration length approaches or exceeds the bubble radius.

We develop a reduced-order model based upon the homo-
barotropic formulation of Ichihara et al. (2000) (see also Nig-
matulin ot al. (1981) and Prosperetti et al. (1988)). We close
the cquations by using average heat and mass transfer coeffi-
cicnts which are estimated from linear analysis. The resulting
model captures the diffusive effects with only two additional or-
dinary differential equations having to be integratcd along with
the Rayleigh-Plesset equation. Application of the Proper Or-
thogonal Decomposition (POD) to numerous full computations
indicate the use of a single average transfer coefficient is reason-
able, since most of the energy is captured by the first POD mode.
In addition the POD results confirm that the estimation of the
transfer coefficients from linear analysis is appropriate. Compar-
isons of the reduced order model to the full computations over a
wide range of parameters indicate agreement that is superior to

existing models.

REDUCED-ORDER MODEL

The reduced-order model is based on the simplified set of
equations for a gas-vapor bubble with the internal presstire as-



sumed to be spatially uniform. This assumption has been vali-
dated in detail (Lin et al. 2002) and enables the derivation of the
following ordinary differential equation for the internal bubble
pressure (Ichihara et al. 2000),
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The mass flux per unit area of vapor into the bubble is determined
from reciprocal diffusion as,
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where C is the mass concentration of vapor. These equations are
coupled to the Rayleigh-Plesset equation ! for the motion of the
liquid,
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The variables in the above equations have been non-
dimensionalized as R = R'/R,, T = ¢),T'/R?«}, p =
PP R202, ! = i [p} R, ), while y = ¥//R'(£) is the ra-
dial coordinate chosen to fix the bubble wall at y = 1. The non-
dimensional perfect gas constant for the vapor is defined as R, =
R, /c;,L, while the Reynolds number, Weber number and Peclet
numbers for thermal and mass diffusivity, are given respectively
as Re = R, /v, We = piRZ W} /S, Peg = pl,c), R0, /K and
Pe,, = R?w/, /D', where @), is the bubble natural frequency.
The non-dimensional initial internal bubble pressure is computed
from equilibrium of equation (3) as, p, = pe., +2/We, where p..,
is the non-dimensional ambient pressure.

The equations (1) through (3) are typically closed by the ra-
dial diffusion equations for the temperature and concentration
distributions in the bubble. Rather than solve these computation-
ally intensive partial differential equations we approximate the
gradients at the bubble wall by employing average heat and mass
transfer coefficients, Br and B¢, such that,
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IThe present model can readily be used with other forms of the Rayleigh-
Plesset equation, for example to include effects of liquid compressibility.

Here the subscript w denotes the value at the bubble wall, and the
overbar denotes the volume average over the bubble. The choice
of the approximations (4) and (5) have been motivated directly by
results of the next section, where the Proper Orthoganal Decom-
position has been applied to data from full bubble computations.

For the present situation, where variation in the liquid tem-
perature is neglected, the temperature at the bubble wall is simply
the initial temperature,

T, = o (6)

while the wall concentration is determined by assuming the vapor
pressure at the bubble wall is in equilibrium,
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Note that the form of equation (7) ensures that C,, € [0,1]. The
average bubble temperature is estimated by applying the perfect
gas law in a volume averaged sense to the bubble contents,
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where m,, and m,, are the initial masses of non-condensible gas
and vapor in the bubble, and Ry = 1 has been written for clarity.
Results from full computations have shown this approximation
to be extremely accurate. The mass of vapor in the bubble, m,, is
determined by integrating,

dm,
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where rz, is given by equation (2). The average vapor concentra-
tion is approximated by,
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The set of model equations (1) through (12), are now closed as
long as we have a means of estimating the average transfer coef-
ficients.

We now appeal to some results from linear analysis to de-
velop a simple method for determining the transfer coefficients
for a given circumstance. From linear analysis of the diffusion
equations in the frequency domain, we can write,
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where primes denote small fluctuations, the overbar denotes a
quantity averaged over the bubble volume, and X(w) is the
Fourier transform of X (¢}, which represents either T or C. The
transfer function W{w; Pe) is,
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where Pe is cither Pe, or Pe,—,. Since the transfer function de-
pends upon o the transforming of equation (13) back into the
time domain would generally result in a convolution integral,
which would be of little use for obtaining estimates for the trans-
fer coefficients, and difficult to evaluate numerically. We circum-
vent the convolution integral by evaluating the transfer function
at the isothermal bubble natural frequency. Under the present
non-dimensionalization this simply corresponds to setting ® = 1
in equation (14), which results in the frequency independent
transfer function being defined as W(Pe) = ¥(1; Pe).

In general the transfer function W(Pe) is complex valued,
with the phase representing a time lag when equation (13) is
transformed back into the time domain. The approximations (4)
and (5) do not allow for a phase difference and we therefore ne-
glect the phase of the transfer function and define the average
transfer coefficients to be,

Br = R{¥(Peg)}, (15)
Be = R{¥(Pe,—y)}. (16)

We now examine the implications of choosing the bubble
natural frequency (@ = 1) at which to evaluate the transfer func-
tion. The real part, B, and phase, 0, of the transfer function is
plotted in figure 1 as a function of Pe. The points on the upper
plot are from POD computations described in the next section.
We see in the limit Pe < 1 that  — 5 and 6 — 0. So for this case
the transfer function is constant and real valued, and the transfor-
mations from frequency domain to time domain can be carried
out exactly. Hence, for linear pertubations the model equations
will become exact as Pe, and Pe,_, — 0. It can be shown that
this property will also hold in the more general non-linear case.

Away from the low Pe limit the transfer function is no longer
areal valued constant, and the evaluation of the transfer function
at a single frequency (and the neglect of the phase difference)
will have an impact on the accuracy of the model. Obviously dur-
ing a general bubble motion there are more than one frequency,
so the best that we can do is to pick the dominant one. Sim-
ple analysis and full computations demonstrate that the presently
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Figure 1. Real part and phase of transfer func-
tion from linear analysis and B from POD analysis:
— Linear analysis; @ POD results from temperature fields;
O POD results from concentration fields.

used bubble natural frequency is a good representation of the
dominant frequency, since the frequency of unforced bubble re-
bounds scales with the bubble natural frequency. The model can
therefore be expected to give the best results possible within the
current framework.

FULL COMPUTATIONS

The full computation solves the diffusion equations for the
bubble interior using a Chebychev spectral collocation method
with an adaptable number of modes (Kamath & Prosperetti 1989,
Hao & Prosperetti 1999). Although the full computation is capa-
ble of solving the heat and mass diffusion equations in the sur-
rounding liquid, we presently focus our modeling efforts on the
bubble interior. Hence all computations presented here neglect
the effect of diffusion in the liquid. Comparisons of computa-
tions with and without diffusion in the liquid demonstrate the
validity of this approximation in the case of air-vapor bubbles in
water at (or below) room temperature.

The full computations are a useful tool in the development
of reduced-order models. A well known methodology of ob-
taining such models from full data sets is the application of the
Proper Orthoganal Decomposition (POD). The goal of the POD
in this application is thus; given an ensemble of realizations of
a field, g(y), (in this application either the temperature or con-



centration field within the bubble) find the set of POD modes,
{6x(») }71> such that the mean projection of ¢ onto ¢ is maxi-
mized. The POD computation involves solving a m-dimensional
eigen-problem for the POD modes, ¢, and associated eigenval-
ues, Ax. Each eigenvalue represents the proportion of “energy”
captured by the associated POD mode. Once the POD modes are
determined they can be projected onto the governing partial dif-
ferential equations, which are then reduced to a set of ordinary
differential equations. The usefulness of the method hinges on
most of the energy being contained within a low number of POD
modes so that a low order system results. However, this does not
necessarily guarantee success of the method.

To compute the POD we use the method of snapshots de-
veloped by Sirovich (1987), where more details on the theory of
the POD can also be found. Figure 2 show the first three POD
modes for the temperature fields (results for concentration fields
look similar) for three typical computations with different values
of Pe,. For the lowest value of Pe, the POD modes show sig-
nificant variation over the entire range of y, indicating that the
diffusion penetration length is of the same order as the bubble
radius. In particular, the first POD mode is well approximated
by a quadratic in y, which corresponds to the solution of the dif-
fusion equations in the limit of Pe, — 0 (Prosperetti 1991). For
values of Pe, lower than this, the POD modes remain essentially
unchanged. As Pe, is increased the POD modes show less vari-
ation near the bubble center. Indeed, for Pe, = 3475 in (c), most
of the variation in the POD modes is restricted to near the bub-
ble wall, which indicates that the diffusion penetration length is
significantly smaller than the bubble radius.

Figure 3 plots the first five eigenvalues for different values of
Pe,. The eigenvalues have been normalized so that their sum is
unity. Since the plots indicate such a rapid decay of the eigenval-
ues with mode number, it is reasonable to use only the first POD
mode to obtain a reduced-order model. However, using only one
mode is equivalent to using a constant (average) transfer coeffi-
cent which may be computed from the first POD mode directly
as,

p= 00/ Dht an
o1 — 91,
This provides direct motivation for the forms of equations (4)
and (5) in the development of the model. The transfer coefficients
from POD analysis of many full computations over a wide range
of Peclet numbers and forcing widths and amplitudes were com-
puted. The values for each Peclet number were averaged, and
are superposed on figure 1 for both temperature and concentra-
tion distributions. The agreement of these points with the curve
from linear theory indicates that the linear theory is an appro-
priate method to determine the transfer coefficients, which now
precludes the need for full computation data and POD analysis.
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Figure 2. First 3 mode shapes from POD analysis of temperature field
data from three full computations with different values of Pe.



Figure 3. First five normalised eigenvalues from POD analysis for differ-
ent values of Pe,.

RESULTS
Gaussian Forcing

The present model is now compared to the full computation
and other reduced-order models for single bubbles subjected to
the following Gaussian decrease in far field pressure,

pelt) = poy (1-Aexp [~ (1) 10)]),  (18)

which has been chosen to approximately represent the pressure
that would be experienced by a bubble that is convected through
the nozzle of Preston et al. (20025b).

Figure 4 compares the different models with a full computa-
tion for a typical bubble response. The present model slightly
overestimates the initial growth and overdamps the rebounds.
However, the present model is superior to the other reduced order
models which show greater differences to the full computation.
In particular the polytropic model significantly underpredicts
the initial bubble growth, due to the effective polytropic index
ko = 1.21 being determined from linear analysis (Prosperetti et
al. 1988). Inreality the time scale for bubble growth is far slower
than the time scale that is associated with the bubble natural fre-
quency that was used to compute k., so the true behavior is far
closer to isothermal, or k. = 1. Interestingly, though the present
model also uses the bubble natural frequency to compute transfer
coefficients, it is clearly not as sensitive to its value.

The isothermal model makes a better prediction of the slow
initial growth than the polytropic model, but in this case the
growth is significantly overpredicted. This is likely due to the
infinitely fast diffusion of vapor, as explained at the end of this
section. There are also problems with the isothermal model
that are associated with the use of an effective liquid viscosity,
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Figure 4. Bubble radius computed with full computation and a variety
of models for a gas-vapor bubble with Pe; = 36.4 and Pe,—, = 28.8;
Present model (Br = 6.62, B¢ = 6.21), model of Toegel et al. (2000),
isothermal model (v = 20), polytropic model (k.7 = 1.21, v = 20).

V = Vi /vy, to account for damping due to the otherwise ne-
glected diffusive effects. The value v = 20 is chosen to match
linear analysis (Prosperetti et al. 1988), and works reasonably
well for the first bubble rebound in figure 4(b). However, it in-
creasingly overdamps the subsequent rebounds. Furthermore, in
other circumstances the same value of effective viscosity results
in grossly under attenuated bubble rebounds. This might be cor-
rected by using a higher effective viscosity, but the fact that the
appropriate value to use is not known a priori is a major limita-
tion of this approach.



The model of Toegel et al. (2000) (and the similar model
used by Matula et al. (2002)) uses estimates for the fluxes based
upon estimates of the diffusive penetration lengths. The time
scale used in their estimates is fg «< R/|R|, which results in the
non-realistic situation of low heat and mass transfer during the
final stage of collapse and initial rebound when R =~ 0. While
the duration of this non-realistic behavior is so short as to not
adversely impact the bubble dynamics, the model has limitations
due to the equations not matching the full equations in the limit of
low Pe (slow time scales) where the diffusion penetration length
approaches the size of the bubble. This limitation is evident in
figure 4 where the model of Toegel et al. significantly underesti-
mates the initial growth. In addition the model has an error in the
treatment of the mass transfer, which results in the incorrect sce-
nario of the mass transfer still being limited by diffusion in the
event of the vapor concentration approaching unity. While this
error is not substantial for the present plot where bubble growth
is moderate and the vapor concentration is not near unity, for
large bubble growths (such as those due to the lithotripsy pulses
in Matula et al. (2002)) the error becomes significant.

The present model has also been tested for bubbles over
a wide range of Peclet number, and forcing widths and ampli-
tudes. In practically all cases the errors in bubble dynamics of the
present model are considerably smaller than those of the other
reduced-order models.- In addition, the estimates of peak bub-
ble pressures and temperatures obtained with the present model,
while sometimes only being within an order of magnitude, were
consistently better than the other models. The model may there-
fore be of use in sono-chemistry applications.

Impact of Mass Diffusion

‘We now examine the importance of modeling mass diffusion
by comparing the present model with a model that employs in-
finitely fast mass diffusion. The model with infinitely fast mass
diffusion is derived from the present model by redefining the
pressure, p, in equations (1) and (3) to be the partial pressure
of non-condensible gas, p,. The iz term is removed from equa-
tion (1), and the constant vapor pressure py,, is added to equa-
tion (3) to yield,
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Equations (2) and (11) are then replaced by,
m, = 2% @1
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where 0 is given by equation (8). The above equation is derived
by noting for infinitely fast mass diffusion, C = C,,, which en-
ables equation (7) and approximation (12) (which is now exact
due to the uniform concentration distribution) to be combined.

The bubble radius computed by the full computation and the
present model with both finite and infinitely fast mass diffusion
is plotted in figure 5(a). It is apparent that infinitely fast mass
diffusion results in significant overprediction of the initial bub-
ble growth and subsequent rebounds. The attenuation rate of the
rebounds and the bubble minimum radii are also underpredicted.
Plots of the average and wall vapor concentrations in figure 5(b)
show a higher average vapor concentration for the model with
fast mass diffusion, which indicates that the overprediction of the
bubble growths is due to too much evaporation into the bubble.
The present model with finite diffusion is able to predict the av-
erage and wall vapor concentrations remarkably well. It appears
that for relatively moderate growth, mass diffusion in the bubble
interior is a limiting factor in the bubble growth. The same may
not hold true for larger bubble growths where the bubble inte-
rior may eventually consist almost entirely of vapor and hence
the transport of vapor would not be limited by mass diffusion.
In this case the denomenators in equations (2) and (21) would
approach zero and the model equations may become singular. In
this limit the bubble practically consists of pure vapor with the
pressure, p, simply being given by p,,.

Another feature of the solution that is obtained by assuming
infinitely fast mass diffusion is the absence of significant vapor
content during the fast bubble collapse. Although it is not clear
on the scale of figure 5(b) the average vapor concentration dur-
ing collapse obtained from the model with fast mass diffusion is
an order of magnitude lower than it is for the full computation
and the present model with finite rate diffusion. It is obvious that
the vapor trapping effect identified by Storey & Szeri (2000) is
important in this particular circumstance, and the mass diffusion
modeling in the present model is able to capture this behavior.
This may have important consequences in sonochemistry appli-
cations where the amount of vapor trapped in the bubble during
collapse would impact on the chemical reactions. In the present
application of modeling bubble dynamics the modeling of mass
diffusion is important during the collapse stage to avoid the far
smaller minimum radii observed in figure 5(a) for the model with
fast mass diffusion.

Harmonic Forcing

The present model is intended for application to bubbles ex-
posed to arbitrary pressure excursions that may arise in contin-
vum bubbly model flows. While the previously used Gaussian
pressure pulses provide a quick means of testing reduced-order
models, it is also useful to test them with harmonic forcings over
a wide range of frequencies and amplitudes. We now compare
the present model and the often used polytropic model to the full
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Figure 5. Bubble radius and concentrations computed with full compu-
tation and the present model with and without mass diffusion, for a gas-
vapor bubble with Pe, = 36.4 and Pe,.., = 28.8.

computation for a harmonically forced pure gas bubble. The har-
monic forcing field is given by,

Poo(t) = Poo, (1 +Asinoyt), (22)

where A is the non-dimensional amplitude and w;y is the forc-
ing frequency non-dimensionalized by the linear natural bubble
frequency.

Figure 6 shows a bifurcation diagram of the computed bub-
ble radius sampled at every period of the forcing, for a bubble
with Peg = 9.26 driven at a forcing frequency @y = 0.8 with an
incrementally increasing driving pressure amplitude. The curve
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Figure 6. Bifurcation diagram of the bubble radius sampled at every pe-
riod of the forcing pressure for a gas bubble (Peg = 9.26) driven with
forcing frequency 0y = 0.8 and a slowly increasing pressure ampli-
tude, A. The curves show comparisons to the full computation of the
present model and the polytropic model with and without effective damp-
ing (v = 6.35 and 1 respectively). The effective polytropic index for
the polytropic model is k7 = 1.079 and heat transfer coefficient for the
present model B = 5.18.

for the thermal model is almost identical to the full computa-
tion through the first and second subharmonic bifurcations at
A=1.61and 1.90. AtA ~ 1.96 the full computation and thermal
model both predict chaotic behavior for which the exact form was
found to be very sensitive to tolerances in the numerical integra-
tion as well as the rate at which the driving pressure amplitude
was increased.

We also compare the thermal model with the polytropic
model (using the effective values of polytropic index, k.7, and
effective damping, v = v, /v;, obtained to match linear theory
(Prosperetti et al. 1988)). The curve for the polytropic model
with effective damping (v = 6.35), while maintaining the same
general form as the full computation, is shifted significantly to
the right and slightly below the full computation. The polytropic
model without effective damping (v = 1) yields results that agree
much more closely with the full computation. It appears that the
addition of effective damping to the polytropic model substan-
tially delays the onset of the bifurcations as well slightly over-
damps the bubble response.

Figure 7 shows the response of the same bubble forced with
non-dimensional pressure amplitude A = 0.6 over a range of fre-
quencies. This graph plots (for a given forcing frequency, wy)
the maximum value of bubble radius attained during a steady
oscillation. The thermal model shows excellent agreement to the
full computation over all frequencies, even though the model was
tuned for forcing at the bubble natural frequency. By contrast, the
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Figure 7. Frequency-response curves for the forced oscillations of a gas
bubble (Pe, = 9.26) for a dimensionless pressure amplitude A = 0.6.
The curves show comparisons to the full computation of the present
modsl and the polytropic model with and without effective damping (v =
6.35 and 1 respectively). The effective polytropic index for the polytropic
model is kg = 1.079 and heat transfer coefficient for the present model
is pr = 5.18.

polytropic model is unable to correctly predict the location and
magnitude of the harmonic peaks, and the behavior of the model
depends strongly on the (atbitrary) value of cffective damping
that is used.

We also constructed bifurcation diagrams and frequency re-
sponse cutves for a larger bubble (Pe, = 42.9, By = 6.96), which
showed similar trends as the plots presented here . For both bub-
ble sizes the present model gives results that agree with the full
computation much more closely than the polytropic model with
or without effective damping.

CONCLUSION

A gimple and cfficient model that accounts for diffusive
damping effects in gas-vapor bubbles has been presented. The
model is motivated by results of POD being applied to data from
full computations, which indicated that the use of average heat
and mass transfer coefficients would be appropriate. The trans-
fer coefficients are determined from linear analysis, which are
shown to agree with those that are obtained from POD. The
model has been shown to have better agreement With full bub-
ble computations than other reduced-order models, over a wide
range of forcings.
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