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A numerical investigation of unsteady bubbly cavitating nozzle flows
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The effects of unsteady bubble dynamics on cavitating flow through a converging-diverging nozzle
are investigated numerically. A continuum model that couples the Rayleigh—Plesset equation with
the continuity and momentum equations is used to formulate unsteady, quasi-one-dimensional
partial differential equations. Flow regimes studied include those where steady-state solutions exist,
and those where steady-state solutions diverge at the so-flaBihg instability These latter flows
consist of unsteady bubbly shock waves traveling downstream in the diverging section of the nozzle.
An approximate analytical expression is developed to predict the critical backpressure for choked
flow. The results agree with previous barotropic models for those flows where bubble dynamics are
not important, but show that in many instances the neglect of bubble dynamics cannot be justified.
Finally the computations show reasonable agreement with an experiment that measures the spatial
variation of pressure, velocity and void fraction for steady shockfree flows, and good agreement
with an experiment that measures the throat pressure and shock position for flows with bubbly
shocks. In the model, damping of the bubble radial motion is restricted to a simple “effective”
viscosity, but many features of the flow are shown to be independent of the specific damping
mechanism. ©2002 American Institute of Physic§DOI: 10.1063/1.1416497

I. INTRODUCTION cation by varying the inlet void fraction; here we vary the
cavitation numberg, and achieve a similar result. Figure 1
The first model of two phase flow through a converging-presents the computed steady-state solutions for the pressure
diverging nozzle was proposed by Tangesral! They em-  and bubble radius for cavitation numbers either side of the
ployed a barotropic relation, which assumes that the fluictritical bifurcation value. The solid and dashed lines corre-
pressure is a function of fluid density only. This implies thatspond, respectively, to the quasi-steady and quasi-unsteady
the only effect of the disperse gas phase is to allow fluidsplutions.
compressibility which results in the bubbly mixture being It is apparent in Fig. 1 that the flashing solution has
treated as a single-phase compressible fluid. Brénpem  unbounded bubble growth which results in a physically un-
vides a general discussion of the barotropic model, as well agalistic downstream pressure. Physically realizable steady-
a summary of the work of Tangrest al. state solutions do not exist in this flow regime, and hence an
Bubble dynamics are neglected by the barotropic modelynsteadycode is required to examine these flows. Istial®
but are thought to significantly alter the flow in cavitating proposed an unsteady bubbly flow model for the study of
nozzles, even in the mean. Wang and Breringpplied a  flows through a convergent-divergent nozzle. However, by
nonlinear continuum bubbly mixture mode?to the compu-  assuming that the pressure inside the bubbles is equal to the
tation of the steady flow through a converging-divergingambient fluid pressure, they neglected the bubble dynamics
nozzle. This model incorporates the Rayleigh—Plesset equaghich are important in the cavitating nozzle flow. Chen and
tion to predict bubble size and growth as a function of posi-Hgjstef incorporated bubble dynamics into the computation
tion and time. Wang and Brennen found two different steadyys bubbly flow through a nozzle by using a form of
state flow regimes to exist, and termed themesi-steady Rayleigh—Plesset equation that was modified to allow for
and quasi-unsteadyThe former is characterized by bubble high void fractionst® However, the nozzle flow was not the
growth that is induced by the low pressure region in thefocys of their work and was only studied in noncavitating
nozzle contraction, followed by a series of bubble coIIap:~:e$(:‘.gi,m:)s for the purpose of demonstrating grid convergence.
and rebounds_downstream of the _contraction. _The quasi-  The motivation of the present work is to investigate the
unsteady solutions correspond ftashingflow. Varying the  cayitating regimes where steady-state computations predict a
upstream conditions causes the flow to bifurcate from ongysically unrealizable flashing solution. An unsteady quasi-
regime to the other. _The bifurcation of the steady state equgsne_dimensional code, based on the bubbly flow model used
tions has been studied by D_ela§9al.7 by Wang and Brennen, is employed to demonstrate that
To illustrate the two regimes, the method of Wang andyp,ysically realizable solutions in the flashing regime involve
Brennen is applied to a nozzle with a gentle contractionnsieadybubbly shock waves propagating downstream from
depicted in Fig. 1. Wang and Brennen investigated the bifuryhe nozzle contraction. An important restriction of the
present results is that aad hoc¢ but computationally fast,
dElectronic mail: colonius@caltech.edu model is used for damping the bubble radial motion. In Sec.
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UA_-O.S- \ where a is the initial volume void fraction. Equation@)
-1f Y and(4) dynamically relate the mixture density to the mixture
15 L Qussisteady : pressure. These two equations effectively replace the usual
Py L Quachunsteady (etinad | ) barotropic relation used for single phase flows, and allow the
0 100 x200 300 set of equations to be closed.
In Egs.(1)—(4) p is the mixture density made dimension-
5 ; less by the constant liquid density, . The length and ve-
4 oy locity scales used for nondimensionalization are the equilib-
3t rium bubble radiusR;, and the nozzle inlet velocityy .
& > The pressure coefficient is defined a€p=(p’
1 r— | AN —po)/ 3plub?, wherepy is the upstream pressure. The cavi-
0 , , , tation number is defined as=(p,—p.)/ 3p, uj?, wherep,
0 100 200 300 is the vapor pressure of the liquid. The Weber number is

* given by We=p/Rju,?%/S', whereS' is the (constant sur-

FIG. 1. The pressure coefficient and bubble radius for two steady computdface tension. The use of the polytropic indé,which is

tions. Solid line isquasi-steadyo=o/;), dashed line isjuasi-unsteadpr  eijther unity for isothermal flow or the ratio of the specific

flashing (0=o¢;). The cavitation number is defined asr=(Po  heats of the gas phase for adiabatic flow, assumes that the

—p.)/3pLui?, wherep] is the vapor pressure of the liquidy andug are  hubble contents are fully mixed. This assumption combined

the upstream pressure and velocity, arjds the liquid density. with the use of areffective dampingdp , to account for both
viscous and diffusive contributions to damping of bubble ra-

D we demonstrate that the basic flow features are indedial motions, circumvents the need for solving unsteady dif-

pendent of the damping mechanisms. fusion equations at the scale of the bubble at every point in
the flow. The impact of this simplified model is discussed in
II. THE MODEL AND NUMERICAL METHOD Sec. llID. The nozzle ared, is nondimensionalized by the

inlet area,A;. Since viscous terms are neglectéq, does

We consider a homogeneous continuum b“%%w MIXIUr& ot appear as a parameter of the computation; only the axial
model that was first proposed by van WijngaarterAp- 5104 variation of the nozzle is relevent. Parenthetically, for
plying an order of magnitude analySisdicates that, for the comparisons to real experimental nozzles it is required that

present nozzle flows, relative motion of the two phases canv s o . C
be neglected.The model starts with the conventional quasi- \/A_?;JIZ%XJS r(tr)e_(cllc))ntlgrugl mirz?tp;%rrce)égatlggirtlg h(zd' one-
one-dimensional cgntmmt.y and momentum equations fordimensional Lagrangian finite volume scheme. This formu-
flow of a compressible fluid through a nozzle lation allows the substantial derivatives to be treated as ordi-
J J nary derivatives, and hence the Rayleigh—Plesset equation
o1 (PA)+ — (puA) =0, (1) can be integrated as an ordinary differential equat@DE).
Consider a quasi-one-dimensional nozzle divided longitudi-
nally into N—1 control volumes. Denoting the position of
the control volume faces ag (j=1,2,...N), we can define

. . the nozzle areas and their derivatives at these positions:
Note that the viscous terms and gravity have been neglecteg P

in the momentum equation. The two-phase bubbly mixture is A, =A(x)), (5)
now assumed to be made up of an incompressible liquid

phase with a dilute gas phase consisting of many spherical dA; dA

bubbles. By assuming that the flow properties vary on length "4y = gx X)), (6)
scales that are large compared to the bubble radius and not-

ing that the gas phase is restricted to being dilute we can, athere A(x) anddA(x)/dx are known functions. Each con-
any point in the flow, relate the local bubble radius to thetrol volume face moves at the local fluid velocity and, there-

Du+1acp_0 X
Portaox — 9 (2)

local pressure by the Rayleigh—Plesset equation fore,
D?R 3(DR|? ~1DR 2 d
- o5 = o S rp1_p-3k X
RDt2+2(Dt> %R bt TwelR TR FTanisr ™
+ f[l_ R3]+ & —=0. (3) whereu; is shorthand fou(x;(t),t). Intggra.ting Eqgs(l) and
2 2 (2) over the control volumes we obtain, fpr1,2,..N—1

The bubble population per unit liquid volume is fixéudkei-
.. . . . d (%+1
ther fission nor fusion occyrso that the following relation — Adx=0 (8)
i i i dt p '
between the mixture density and bubble radius holds X

Downloaded 20 Apr 2004 to 131.215.101.185. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



302 Phys. Fluids, Vol. 14, No. 1, January 2002 Preston, Colonius, and Brennen

ated at the upstream boundary a control volume is removed

Xj+1
29 X_J puAdx=A;Cp —A;41Cp, | from the downstream boundary. Hence the downstream
! boundary is only approximately fixed in position, with fluc-
x+1 _ dA tuations caused by the truncations as well as net expansions
JX_ Padx- 9 or compressions of the fluid over the entire domain. In prac-

‘ tice the downstream boundary is positioned far enough from

Equations (8) and (9), respectively, describe the rate of the nozzle contraction that, after initial transients, there are
change of the total mass and momentum in jitfecontrol  no appreciable gradients in the solution near the boundary, so
volume. Also, Eq.(3) can be split into two first order equa- that the exact location of the boundary is not important.

tions at each facej1,2,...N) The discretized equations have similar properties to
ARV, Co those arising in earlier wotk'?that examined the generation
i B G S _J'ZO' (10) of bubbly shocks by an oscillating plane boundary. That is,
dt 2 they are stiff, and do not conserve mass precisely when an
dR explicit time marching scheme is used. Hence an implicit
—’—Vj =0, (1)  Euler method is used for the basic time advancement. This is
dt combined with a Richardson extrapolation metfdtf The
where basic premise of the method is to compute a series of pre-
2 dictions for the solution at the new time level based on dif-
GJ:?JJr 5D%ji+ W_e[ijl_ R;Sk]_'_ %[1_ Rj—sk]_ ferent numbers of subdivisions of the time interval. The se-

ries of predictions is then used to extrapolate to the limit of
(12 zero time step, and to provide an error estimate for the inte-
Finally, the density and bubble radius at the faces are relate@ration. The overall time step is adjusted based on the num-
by ber of subdivisions and the error estimate.

The basic time advancement of the extrapolation method

(13) is the implicit Euler method. Using the integration scheme

on Egs.(7)—(11) and going through the algebra, we can re-
duce the number of independent variables kdr2sulting in
equations of the form,

pPi=

To integrate this system dfs yet exagtequations, it
remains to approximate the integrals in E(®. and (9). A

second-order approximation is used Fj(XE“):O, i=1,..N, k=1,. N, (15
Xj+1 AX; 3 where X=[uq,R;,X,,R5,X3,R3,... Xy ,Ry]. In each equa-
L fdx= T(fjJ“le)o(A ), (14) tion Fj, various parameters of the problem also appear as

: ) well as the fields from previous time levels. Newton's
where Axj=xj,;—Xj, and f is any of pA, puA, or  method is used to solve the nonlinear equations. The system

Cp(dA/dx). of Egs.(15) results in a six-banded Jacobian matrix, enabling
Equations(5)—(13) are 8\—2 ODEs for 8\ unknowns relatively efficient solution.
(pj» Rj» Vj, Cpu uj, A, dA/dY;, andx; at the edges of Grid convergence studies were conducted for flows in

the control volumesj=1,2,...N). Specifying both of the the regime where a steady bubbly shock wave stands in the
boundary pressure€p andCp  closes the system. Alter- diverging portion of the nozzle. For each of the three differ-
native boundary conditions, such as the nonreflective boundent grid resolutions the back pressure was lowered to initiate
ary condition developed by Coloniwet al'**?and the im- the flow, and the computation was performed until steady
pedance boundary condition used later in this paper, havetate was reached. Figure 2 presents the computed bubble
also been successfully implemented. radius for the different grid resolutions. The medium and fine
The equations are solved in the Lagrangian coordinatgrids are indistinguable indicating that the solution is mesh-
system, whereas the nozzle boundary conditions should bedependent. The coarse grid is slightly different because it is
implemented in an Eulerian coordinate system. To circum#ot quite fine enough to fully resolve the series of bubble
vent this situation a special control volume with a fixed up-rebounds and collapses following the bubbly shock. In the
stream face and a moving downstream face is used at themainder of the paper all results presented have enough grid
upstream boundary. Hence we replace &g.for thej=1  points to fully resolve the bubbly shock structure.
case withx, = constant. Additional flux terms are also added
to Egs.(8)—(11). It is clear that the control volume will be- Il RESULTS
come very large as the downstream face is convected away’
from the stationary upstream face. Remeshing is required to The nondimensional parameters that are chosen to be
ensure that the accuracy of E@.4) is maintained. This is studied areay=10 2, We=117, 6p,=0.43, k=1.4 (adia-
achieved by simply splitting the control volume into two as batic) and o ranging from about 0.93 to 1.20. These corre-
necessary as the computation proceeds. Maintaining consispond to atmospheric pressure at the nozzle infef (
tency with the order of approximation of E¢L4), variable ~=101.3kPa) with water at 20°Gp,=1000kg/mi, S’
values at the new face are obtained by linearly interpolating=0.073\/m, p,=3.5kPa and air bubbles of equilibrium
from values at either side. As a new control volume is cresadius, Ry=10"*m, with inlet velocity, uj, ranging from
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FIG. 2. The bubble radius for three different grid resolutions. 1 brrrrrrrreerreer /“’{n _;,:::._g.:_:.:_';(fi-)-
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12.7 to 14.5 m/s. The value @, is chosen to achieve real-
istic solutions with only a few bubble rebounds. It is shown % 00 200 300
later that for an effective damping less than about 0.5 the x

macroscopic flow properties are independent of the effective

damping. The nozzle has a Gaussian area variation given ByG. 3. The pressure coefficient, bubble radius and flow velocity for four

different back pressurggnd cavitation numbeys(i) Steady-state solution

A(X)=1—(1—Ape [0 w1° (16)

and for the present study we focus on the valdes,
=0.75,%9=150.0,w=30.0.

A. Flow regimes

A series of computations are performed where the back
pressure is varied over a wide range. As the back pressure is

with no shocks ¢=1.20). (i) Shock standing in diverging section of nozzle
(0=0.940). (i) Unsteady shock traveling down nozzle < 0.932). (iv)
Steady-state solution with expansion near nozzle exit 0.937).(All com-
putations haver,=10"2, We=117, §5=0.43)

for by the effective dampingdp, in the Rayleigh—
Plesset equation. Provided that the effective damping

changed we obtain different mass flow rates through the
nozzle, and hence the cavitation number is also varying.

The computed pressure, bubble radius and flow velocity

for a typical set of computations are presented in Fig. 3. The

solid lines represent final steady-state soluti@igtained by

computing until steady state is reachedhile the dashed

wave travels downstream through the nozzle.

It is seen that much like the quasi-one-dimensional

nozzle flows for a perfect gas, different regimes exist de-
pending upon the value of the back press(oe cavitation
numbej. These regimes are:

(i)

Steady solution with no shocks $0Cpp>Cpeiir,)

Recall that for anyinviscid flow in a nozzle with
equal inlet and outlet areasuch as the one being
examined that no steady state, shockfree solutions
exist for a nonzero pressure drop. If a pressure drop is
applied the flow will accelerate until it becomes
choked at the throat. A shock will then form in the
diverging section of the nozzle, with its position de-
pending upon the value of the pressure drop. The en-
tire total enthalpy drop is achieved over the shock,

with all other parts of the flow remaining isentropic. (iii)

In the present bubbly model there is no macro-
scopic viscosity of the fluid, but there are losses asso-

ciated with the bubble dynamics. These are accounted

(it)

lines represent instantaneous flowfields as an unsteady shock

is not zero, then for a small pressure drop a steady
state, shockfree solution is obtained. One such solu-
tion is plotted as curvé) in Fig. 3. It is apparent that
there is only small growth of the bubble radius, and
no collapses and rebounds.

Stationary shock in diverging section of nozzle
(CPcrit1> CPb> CPcritz)

The pressure drop is now large enough to cause
choking at the throat and the formation of a steady
bubbly shock wave in the diverging section of the
nozzle. Curve(ii) represents one such solution. The
bubbly shock structure is most apparent in the graph
of the bubble radius, which shows the characteristic
bubble growth followed by a succession of collapses
and rebounds. The pressure in this case also exhibits a
relatively sharp recovery associated with the bubbly
shock wave.

It would be expected that the shock position would
be a function of the back pressure in a manner analo-
gous to the gas dynamics case. This is shown to be the
case in Sec. VB, where the computed shock position
is compared with experimentally observed shock po-
sitions.

Unsteady shock traveling down nozzl@;(cmz> Cpp
=-0)

The pressure drop is now large enough to cause the
bubbly shock wave to move out of the diverging sec-
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tion and propagate downstream. The dashed curves of 8

Fig. 3 show the solution at four different times. The ; _- -=- ls’;'esa':;tfsv;uf;::::n
time interval between each curve is constant, so it is

evident that the propagation speed of the bubbly 6

shock is approximately constant.

TTET T

It is also interesting to note that while the structure 5
of the shock in terms of the bubble radius and flow & 4
velocity remains essentially the same at each time in- s
stant, the structure in terms of the pressure does not. 3F .
This is apparent in the last of the instantaneous curves 5 E
which shows a larger pressure peak at the position of -
first collapse. In actuality similar pressure peaks 1
manifest themselves at other earlier instances in the P S N [ R
computation, but by coincidence the time instances 0 100 200 300 400
shown on the plot do not exhibit these. Studying simi- X

lar plots with a far higher temporal resolution indi-

cates that the magnitude of the pressure peak at firdt!G. 4. The bubble radius for a set of calculations with lower void fraction
= -3 = = =

collapse in fact oscillates in time, probably due to (@o=10", ¢=0.688 to 1.000\e=159, 65 =0.37).

acoustic waves reflecting between the shock and the

boundary. The pressure is far more sensitive to these

waves than either the bubble radius or flow velocity. behavior is qualitatively similar to that of the higher void
Given the upstream and downstream radius, as wellraction computations. As expected, the lower void fraction

as the upstream pressure, E6.69 of Brenne can  results in higher maximum bubble radius and hence more

be used to compute the speed of the one-dimensionafiolent collapses.

shock. This was done for the case illustrated with fa-

vorable comparisons. However, the computed shockB. Choking

speed is very Sel’lS.It!VE o thg yalue Of. upstream pres- As the cavitation number is decreased, the back pressure
sure that is used; indeed it is possible compute a

. will also decrease naturally until, eventually, the flow be-
shock speed of zero with only the smallest of changes o
comes choked. The decrease of the cavitation number can be

to the upstream pressure. : T .

Itis likelv that within this ranae of back pressures it considered as a combination of two physical changes to the
. Kely . gec P flow; decreasing the inlet pressu®, and/or increasing the
is physically possible to have a finsleady-stateso- . : ) : M. :

. . 2T inlet velocity, ug. If we consider situations where the inlet
lution where the flow in the nozzle is “overex-

panded,” and the increase to the back pressure tak ressure is fixed then only the inlet velocity is changing, and

. . from the definition of the cavitation number
place across a system of compressions and expansions

outside the nozzle.
(iv) Steady, underexpanded flow€g,< — o) up=
Now the back pressure is low enough to allow the
shock to pass through the downstream boundary and
out of the computational domain. The flow in the The dimensional mass flow rate is given by
nozzle is “underexpanded” and expands near the end
of the nozzle to match the back pressure. This is ap- M =paUoAg=pL(1—ag)UpAq. (18)
parent in curve(iv) of the pressure plot in Fig. 3, o ) ) ) o
which shows the expansion taking place near the doSubstituting Eq(17) into Eq. (18), nond|m_enS|onaI|2|ng by
main boundary. The flashing solution of Fig. 1 is onethe choked mass flow rate, and cancelling all the constant

of these solutions, albeit with an unrealistically low inlet conditions yields the following simple equation for the
back pressure. nondimensional mass flow rate

If we choose the back pressure to match the pres-

!

r_ 1/2
pO pv . (17)

1 7
2PLO

sure upstream of the shock wavee., Cpp~—0), = m’ _ | Ocrit vz (19
then there would be no such expansion. This corre- Mgy o

sponds to the “perfectly expanded” solution of the

flow of a perfect gas. where o is the cavitation number at choking.

Many calculations of the steady flow solution were car-
Calculations with a lower void fraction ofiy=10"° ried out with varying cavitation numbers. Figure 5 plots the
were performed to evaluate the effect of void fraction on thenondimensional mass flow rafeomputed by Eq(19)] ver-
various regimes discussed above. Figure 4 presents thsis the back pressure which is obtained as a result of each
bubble radius for this series of computations. Once again thealculation. Results with effective dampings ranging from
solid lines correspond to steady solutions while the dashe@.22 to 0.85 are shown. It is interesting to note that the varia-
lines represent a time series of the unsteady solution. Thigon of effective damping does not affect the critical choking

Downloaded 20 Apr 2004 to 131.215.101.185. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 1, January 2002 Unsteady bubbly cavitating nozzle flows 305

i chokes and shocks fornC(;critl), as well as the back pres-
! - sure at which the shock becomes unsteady and begins trav-
3 eling downstream through the constant area portion of the
e %%F nozzle Cpeit,). The first transition is difficult to analyze
£ - since it is not clear when a series of bubble collapses and
E 08 rebounds become a bubbly shock, and the finite thickness of
@ i a bubbly shock wave means that the nozzle area change that
@ 07F occurs over the shock thickness cannot be neglected. How-
= i ever, the second transition occurs in the constant area part of
06 L the nozzle and enables the one-dimensional jump conditions
; JE— to be used to predi@Pcritz-
0.5 Lk ot e T T Consider the typical steady bubbly shock wave shown in
10° 10° 10" 10° 10?7 10" 1¢° Fig. 1. Integrating the steady forms of Eq%) and(2) from

-Cp, the position of critical radius upstream of the shogk)( to

, _ _ a position well downstream of the shock,f yields
FIG. 5. Nondimensional mass flow rate as a function of back pressure

coefficient for dh;ferent values of effective dampingy, , in the range 0.22 puA|X=Xb_ 0, (20)
to 3.78(ap=10 ¢, We=117).

_ xp  dA
A(2pu2+Cp) = | "Cp——dx=0. 21)
.. . . X=X d

back pressure. This is discussed further in Sec. llIC. As ex- ¢ Jxe X

pected, for a given back pressure, cases with a smaller effegqgq note that at positions, and x, the derivatives with

tive damping have a larger mass flowrate. _ respect tox vanish, so that for the steady flow the Rayleigh—
Figure 6 presents the bubble radius for four differentp|ogget equation reduces to

back pressures indicated liy—(iv) in Fig. 5. Curve(i) in
Fig. 6 illustrates that for small pressure drops there are no
bubble collapses or rebounds. This accounts for the straight

sections of the curves in Fig. 5. For larger pressure dropg bstituting Ea(22) i 21) and . hat the i |
bubble collapses and rebounds become appqoemve (i) ubstituting Eq.(22) into (21) and noting that the integral

in Fig. 6]. This increases the losses in the system and hence'™ " Eq.(2d1) vamsﬁes bec?use there IS no Iarga change
causes the curved sections in Fig. 5. This smooth transitio etweerx; an ;(b’ fy|e hs a nonlinear equation rei\tuﬁq, tc,>
to choked flow continues as the pressure drops become IargBF‘ Noticing that for the current computatiof,=1+R;

and the bubble dynamics become more pronouricedve whereR; <1, it is useful to linearize this equation with re-
(iii) in Fig. 6], until eventually the flow chokes and a bubbly SPECt 1Ry . Neglecting terms higher than second order, al-
shock wave formgcurve (iv) in Fig. 6]. lows Ry, to be determined as an explicit function Rf

, h(Re)—po

_ 4 _
Chp( Rc,b): - 0'[1_ Rc,gk]_ W_e[Rc,é_ Rc,gk . (22

C. Critical back pressures 5= 3argh(Ry) — w2 (23
For a particular set of flow parameters it would be useful h
to be able to predict the back pressure at which the flow'"ere
_ Co(Ro) . Co(R) 1
and wy, is the bubble natural frequency which is computed

—-= (i) -Cpy = 107

—- ({i}-Cpy = 10" by
e (§{i) -Cpy = 107

(iv) -Cp, = 107

) o 2
WN= T+(3k—1) W_e

OnceRY, is computed, the following variables can also be
computed to first order:

R,=1+R|, (24)
05 F Cp,=—2w3Ry, (25
0 S S S S n Ub:1+3a0R{). (26)
0 100 200 300 400 )
¥ Of course the present method requires knowledge of the

critical radiusR. . It would be preferable to be able to predict

FIG. 6. The bubble radii corresponding to the four back pressures indicatefn€ critical back pressure from knowledge O_f the flow param-
in Fig. 5(8p=0.43,2g=10"2, We=117). eters only. Wang and Brennieneglected the integral term of
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Eqg. (21), and assumed that the critical bubble radius was
large compared to the equilibrium radius to develop the
simple approximate expressioR.= (o/2a0)'. Applying
the method to the computation of Fig. 1 wherg;;=0.932
and ap=10""? yields R.=3.598, andCpy, = —0.035. This

is vastly different from the back pressure in Fig. 1 which is
—0.151.

From the computation of Fig. 1 we find that the critical
radius is in fact 3.429 which is approximately five percent
lower than that predicted by the method of Wang and Bren-
nen. Using this value oR; in Egs. (23) and (25) yields

Cpp_.=—0.160, which compares well with the value in F
crit2 [

i 0 PSR S [ GO NN S SN T SR
Fig. 1. 0 100 200 300
In order to obtain a reasonable estimate of the critical x

back pressure it is, therefore, crucial to first obtain an aCCU-IG 7. Bubble radius for a series of different values of effective dampin
rate estimate c_>f the critical radius. The most s_lgmflcanl{;)Y'in'the range 0.22 10 3,787 0.76 t0 0.95— Cp — 027 10 0_36,Wep g
source of error in Wang and Brennehéstimate ofR, is the —115 to 153, b
neglect of the integral term of Eq21) when integrating
from the initial condition through the nozzle contraction to
the position of critical radius. Wang addresses this issue flow field as long as it is below a critical value. Their result
and formulates a complicated nonlinear equation Rgr, hinged on the fact that the dissipation associated with the
which has to be solved numerically and is subject to a conshock jump conditions is much larger than, and independent
vergence condition. It is likely that this estimate would resultof, the dissipation provided by any of the damping processes
in a better estimate of the critical back pressure. that are modeled by the effective damping. For the present
It is important to note that the preceding analysis doesiozzle flow being studied the independence of the shock
not involve the effective damping. That is, the critical backjump conditions on the value of the effective damping have
pressure is independent of the effective damping used. Thigeen previously observed in Secs. Il B and 11l C. Moreover,
has already been observed in Sec. Il B, where it was demwe now demonstrate that for realistic values of effective
onstrated that the onset of choking did not change when thdamping that the basic flow features are also independent of
effective damping was varied. The role of the effectivethe magnitude of the effective damping parameter so long as

damping is discussed more fully in the next section. it is sufficiently small(in the asymptotic sengeA series of
unsteady computations with effective damping ranging from
D. Effect of damping 0.22 to 3.78 was performed. The initial values of the other

é)arameters were held constant, but the final values of the

dam-lg—)ri]r?g Eﬁ;ﬁ;tg?giccec:?ﬁtof{:sr etxneragf'j d(:m?)?ngefr:fecélr:/ parameters varied slightly due to the renormalization with
) ) . . . the inl locity. Fi 7 pl h I ius f h of
nisms of the bubble motion. This is achieved by using a totzl € inlet velocity. Figure 7 plots the bubble radius for each o

: T : . o hese calculations at a time when the bubbly shock is propa-
effective liquid viscosity to include the contributions to y prop

d ing f i diati q d th | d_fgating in the constant area section of the nozzle. For values
amping from acoustic radiation and mass and thermal dif¢ offe ctiye damping lower than about 0.5 the macroscopic
fusion. van Wijngaardénreviews some analytical and em-

. ; - ) . behavior becomes independent of effective damping. That is,
pmgal expressions for contrlputlons to the total effective ViS-ihare is large growth of the bubble radius followed by a rapid

coglty from viscous, acoustic, and thermal_ effect_s. Thes%ollapse; the jump conditions across the shock are not sig-
e_stlmates are generally bgsed on low amplitude “near_m%ificantly impacted by the value of effective damping. The

tions, such as the attenuation of sound waves, whereas in the.;, effect of decreasing the effective damping is to increase
nozzle ﬂO\,N trl%e I strong beb'e growth.and_ coIIapse.. Refhe amplitude and number of the bubble rebounds. For larger
cent studie¥™"® have investigated the diffusive damping values of effective damping the bubble growth begins to be

mephanlsm for no_ncondens_|ble gas bubbles in the _nonl_'neaa[ffected, eventually limiting the growth to the extent that
regime by numerically solving the full unsteady diffusion o6 is no sharp collapse. For the results presented else-

eguations at the scale of the bubble. They indicate that thg, oo in this paper the effective damping is chosen to be
simple model that we have used may not be able to correctlgma” enough so that the macroscopic flow properties are

capture the structure of the bubbly shock waves. However,yonendent of decreases or small increases in the effective
other important damping effects, such as acoustic rad'at'oﬂamping

and bubble fission, have not yet been fully addressed in any
of the studies.

Colonius et al.** recently demonstrated that for low-
frequency forcing of bubbles it is relatively unimportant to Barotropic results for isothermalkE& 1) nozzle flow
model the detailed diffusive processes in the bubble. Theyvere first reported by Tangreet al® and differs from the
demonstrated that the value of effective damping parametgsresent model in that bubble dynamic effects are neglected;
used does not have a significant impact on the macroscopat every point in the barotropic flow the bubbles are in equi-

|12 IV. COMPARISON TO BAROTROPIC MODEL
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librium with the local pressure. Brenrfepresents the baro-
tropic results for any polytropic index, and nondimensional-
izing those equations for the cals& 1, anduj+# 0 yields the
following set of equations:

_ 1_CYO 2
u—m, ( 7)
2— =7 — k—_i — k—1
U'=1=0|1-r'= 1 — 1—a0{1 r<=1, (28)
Cp=0{r*-1], (29
wherer is defined as
_ag(l-a)
r= a(l—ag)’ (30

and &= py/3p{upy? is a parameter which is the same as the
cavitation number ifp, =0. Equation(27) represents conti-
nuity, Eq. (28) is the momentum equation that has been in-
tegrated using the barotropic relation given by Et9). Sub-
stituting Eq.(27) into Eq. (28) yields an algebraic equation
that can be solved fow if the nozzle area and initial void
fraction is specified. The flow velocity and pressure can thel
be computed from Eq$27) and(29), respectively.

Consider solving fora in the nozzle throat, wheré&
= Anmin- Equationg27) and(28) have either zero, one, or two
real roots, depending upon the valueoofFor high values of

Unsteady bubbly cavitating nozzle flows 307
0
-0.2 F
a, -04¢F
O st
-0.8
qF ‘
0 100 200 300
X
R
(S)
-0.8 Dynamic
I Barotropic
0 100 200 300
X
0
-0.2
a -0.4 )= 107, 6 = 0.689
© -0.6
08¢y NN
'1 N . kel _T """""""""
0 100 200 300

X

o there exist two real roots, corresponding to subsonic an@IG. 8. Comparison of pressures for dynamic and barotropic computations

supersonic conditions. Given that the initial condition is sub-
sonic, only the subsonic root is valid for these conditions. As~ 10
o is lowered the two roots approach each other until, for a

particular critical value ofr, there is only the single sonic

solution at the throat, corresponding to choked flow. For thi
O it the flow downstream of the throat can be either subsoni
dition. For values ofo below o, there are no solutions,

indicating that no steady-state solutions exist.

It is useful to compare the results of the present pap
(which we term the dynamic calculationwith those of the
barotropic model. To compare the barotropic calculations w
first proceed to findo; by trial and error. That isy is
varied until Eqs(27) and(28) have only the sonic root at the
throat. The value otr;; will depend only upon the initial
void fraction, ag, and throat areaf.,,. For the computa-
tions of Fig. 3 (ag=10"2, Ay»=0.75 we find thatT
=1.011. This is different to the critical cavitation number in
Fig. 3, which iso;=0.937. The difference 0 ii— ot
=1.011-0.93%0.074 is due to thdconstank vapor pres-
sure, p, , of the liquid. It is chosen to keep this algebraic
difference constant for comparisons at all valuesrofl hat
is, to compare a barotropic calculation to a dynamic compu
tation with a cavitation number af, we useo= o+ 0.074.

The computed dynamic and barotropic pressures fo

e

three different cavitation numbers are presented in Fig. 8:

S
ic
or supersonic, depending on the downstream boundary o

e

for 0=1.200 (upped, o=0.940 (middle), and o0=0.937 (lower) (g
2 unless otherwise specified

The middle graph compares the two models for a flow
that is almost criticalcavitation number only slightly above
critical). The agreement is good up until the throat, at which
oint the dynamic computation develops an asymmetry due
to the radial inertia associated with the bubble growth. It is
apparent that the barotropic model is no longer valid, due to
the effects of bubble dynamics.

The lower graph presents comparisons for computations

at the critical condition. Agreement is excellent up until just

G

after the throat, at which point the pressure in the dynamic
computation increases above the minimum value attained
near the nozzle throat. The minimum pressure in the throat
being lower than the back pressure is again caused by the
radial inertia that the bubbles have as they approach the
throat. The barotropic model is unable to model this behavior
due to the neglect of bubble dynamics. Also presented in the
lower figure is a comparison at critical condition for a lower
initial void fraction of 10°3. It is noted that the differences
between the dynamic and barotropic models are greatest for
the lower void fraction flow. This is consistent with the ob-
servation in Sec. Ill A that lower void fraction computations
have a higher maximum bubble radius and more violent
bubble collapses.

The upper graph presents comparisons for a flow that is fay. COMPARISON TO EXPERIMENTS

from critical (high cavitation number The curves for the

dynamic and barotropic calculations overlay each other ind
cating that for flows which are far from critical bubble dy-
namics are not important and the barotropic model is valid.

A. Shockfree steady flow

Here we will compare the results of the bubbly model
with the experiments of Ishiét al® who measured the pres-
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continuum approximation is valid. The small amount of
bubble growth implies that bubble dynamics are not impor-

Nozzle Geometry

2 tant for this flow. This accounts for the barotropic computa-
© tion being almost identical to the dynamic computation. For
-4 flows nearing the critical regime, bubble dynamics become
‘ important and the dynamic and barotropic models obtain
5 1000 2000 3000 vastly different results.
* Agreement of these models to the experimental pressure
0.05 |- o and liquid velocities is excellent, as it was also for the model
0.04 __,__,//\\ of Ishii et al. The computed void fraction fares much worse.
= 003 b ’ The only poipt of ag.reement 'is right in the throat itself, with
0.02 L the other points being considerably lower upstream of the
001 b throat and higher downstream of the throat. The considerably
0 ) . more complicated model of Ishét al, which incorporates
0 1000 . 2000 3000 the relative motion of the phases, had reasonable success at
matching the first and last experimental points, but signifi-
3F : cantly underestimated the void fraction at and immediately
» downstream of the throat.

= Dynamic B. Unsteady flows with shocks
1 " eeeee-- Barotropic .
pOsauii il Sandhu and Jamestnperformed experiments in a
0 ' " converging-diverging nozzle with equal inlet and outlet ar-
0 1000 2000 3000 ; ;
X eas, and a throat area ratio of 0.132. The noziineter

, ; . ., varied linearly between the transitions, which meant the area
FIG. 9. Comparison of Ishiet al. experimentally measured pressures, void . . . .
fractions and velocities with barotropic and computed solutigng varied quadratically. In the implementation of the unsteady
=0.039,0=23.5,We=20.7, 5,=0.5). code, the function describing the throat area was constructed
of Gaussian and error functions to ensure that it was infi-
nitely differentiable, even at the transitions. The amount of
sure, void fraction, and flow velocities of both the liquid and Smoothing at the transitions was kept to a minimum so as to
gas components at four locations in a steady nozzle flow, an@@ve minimal impact on the flow.
compared them with their own bubbly flow model. Their Sandhu and Jameson used a surfactant to reduce bubble
model assumed that the pressure inside a bubble was equal@@@lescence and hence maintain a large proportion of very
the ambient pressure, and hence neglected any of the bubbige bubbles. The surfactant would reduce the surface tension
dynamics described by the Rayleigh—Plesset equation. Thedf the water, but in the absence of any data we 85e
did, however, account for relative motion between the liquid=0.073 N/m, which is the value for water at 20°C. Other
and gas phases, which may be important to correctly predidtow conditions are, water with density and vapor pressure,
the void fraction distribution in the nozzle. p{=1000kg/nt and p;=3.5kPa, inlet pressure,p;

The nozzle had an area that varied linearly to a throat=214kPa, and air bubbles withverageequilbrium radius,
with area ratio(relative to the inlet of 0.375, and then ex- Rp=6x10">m. The inlet velocity was not specified in
panded to an area ratio of 0.50 at the exit. The flow condiSandhu and Jameson, but from a range of volume flow rates
tions were water at 20 °Cp/ =998 kg/n?, p,=3.5kPa,S’ it was possible to determine that the velocity ranged from 1.1
=0.073\/m), with air bubbles withaverageequilibrium ra-  to 3.1 m/s. It was found by trial and error with the steady
dius,R)= 10~*m, with inlet velocity,u,=3.90m/s, and in- code that an inlet velocity af(~2.27 m/s resulted in choked
let pressurep,=182kPa. These conditions resulted in aflow. The above values resulted in a cavitation number,
cavitation numberg=23.5 and Weber numbeWe=20.7. =81.6 and Weber numbeWe=4.1. In calculations we use
From the air and water mass flow rates that are provided, an@n effective damping o6, =15.2, which was determined to
assuming no relative motion at the inlet, it is possible tobe “asymptotically small” according to the method dis-
compute the inlet void fraction as approximately, cussed in Sec. IlID.
=0.039. Computations with different back pressures were per-

Since the experimental data are only for a steady flow, dormed. In each case as the back pressure was lowered the
steady code based on that of Wang and Brehiensed to  flow accelerated until at some instance the flow became
compute the solution. In addition the barotropic solution dis-choked and a bubbly shock wave formed in the diverging
cussed in Sec. IV is calculated. Figure 9 shows the comparisection of the nozzle. The position of the shock would oscil-
sons of the dynamic computatigsolid lines and the baro- late about its steady-state position for a few cycles. Compu-
tropic calculation (dashed lines to the experimentally tations were carried out until it was clear where the final
measured pressures, void fractions and velocities of Ishiteady-state position of the shock was.
et al® The maximum bubble growth in this flow is only For these flows the maximum bubble growth was over
about 7 percent which results ifA//R,.=124, so the 300 percent which results iffA,,/R...,=20. The continuum
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FIG. 10. Shock position and throat pressure as functions of back pressur%ttribmed to th? friction losses in the eXperiment that ar_e not
for present computation and experimental observations of Saetilai  accounted for in the model. In the experiment a relatively
(parameters are=81.6,We=4.1, §,=15.2. small negative back pressure can result in a shockfree flow
since there are appreciable friction losses to support the pres-
o _ _ _ sure gradient. Hence the experimental data points trend up-
approximation is probably still valld! buF it should be.noteq wards on the right of the graph. The numerical model how-
that the dilute gas-phase assumption is violated with voiyer only has losses in the bubble dynamics, so the same
fractions as high as 25 percent being reached. Hencgegative back pressure results in the flow accelerating until it
bubble-bubble interactions are important, and the Rayleigh¢nokes and a bubbly shock forms. Hence the throat pressure
Plesset equation should be modified to account for this. NeVremains at the constant choked value.
ertheless, the upper plot of Fig. 10 shows reasopgble agree- Effect of impedance BC on shock positidn physical
ment .of the computeq steady-state _sho_ck position to th%xperiments there is usually a length of pipleat may have
experimental observations presented in Fig. 4 of Sandhu anghyes and other apparaiidownstream of the nozzle section
Jameson. The rightward shift of the computed points may bgefore the fluid exits into the atmosphere or reservoir. This
attributed to the friction losses in the experiment that are nof 55 the effect of adding some impedance to the system, so
accounted for in the model. To end up with a bubbly shock ihat the back pressure is not accurately controlled immedi-
a certain fixed position, the experiment would require ately downstream of the nozzle section; instead it would tend
larger negative back pressure to overcome the additional friGy, fyctuate about some mean value. To investigate the effect
tional losses. Since the dissipation associated with the shogkat this would have on the computed shock position an im-
jump conditions is far greater than the viscous losses, it .i?)edance BC was implemented at the downstream boundary.

reasonable to assume that the fractional effects do not sigrhs was done, for illustrative purposes, using a simple force
nificantly alter the flow field. We can here use the densitieg)5jance model at the boundary

and velocities from the inviscid computation to estimate the

pressure drop due to viscous losses in the experiment by duy

assuming a fully developed turbulent pipe flow. For the data  Pn—P(t)=pLn—5~ (32)
point atCp, ~—20 in the upper plot of Fig. 10 we estimate

the viscous losses in the experiment to A€p ~4.0.  wherep is the average density of the bubbly mixture at the
Hence if we were to include the friction losses in the modelboundary,L,, is a specified impedance lengtp(t) is the
we would have to lower the back pressure an additional 4.@pecified back pressure, apgd anduy are the pressure and
units to achieve a shock in the same position. This correvelocity at the last grid point in the computational domain.
sponds to moving the data point 4.0 units to the left, which ~ Figure 11 plots the time evolution of the shock position
would then give good agreement with the experimental refor three different impedance lengths. In each case the shock
sults. position exhibits the behavior of a damped oscillator. The
The lower plot of Fig. 10 shows that the computed throatfinal steady-state shock position and the initial amplitude of
pressure is about ten percent larger than that measured esscillation are independent of the impedance length. Initially
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n/2 an FFT for the two highest impedance lengths, so the fre-
g4\ {15620 quency is computed by measuring the period of oscillation in

- - m = [=45e2 Fig. 11) The imaginary part of the frequency is computed
12 { > from the ratio of amplitudes of successive peaks on Fig. 11.

1 -g\ Computed It is worth noting that the damping ratio is approximately
Y constant for all values of impedance length, so that the at-

3 08 [ tenuationper cycleis independent of impedance length. The
~ 06 | error bars essentially indicate the resolution of the FFT. Es-
S o4l T timates of the error due to not knowing the domain length

- T i S and sound speed precisely were also made, but were about an

02F e order of magnitude smaller than the resolution of the FFT.

0 R The acoustic theory correctly predicts the trend of de-
ol ;’ﬁ"t—_' - _,r;a;in;r; _____ creasing real frequency with increasing impedance length for
T N I T complex shock impedances with magnitudes ranging from

0 2 4 6 8 near unity to infinity. In the limit of infinite shock impedance
L /L the theory results in an imaginary frequency of zero, in con-

trast to the computed data points. To obtain reasonable abso-
FIG. 12. Frequency of shock oscillation as a function of impedance lengtHute agreement for both real and imaginary frequencies it is
(Cpp=—130.8). necessary to use a shock impedance with magnitude ranging
from 1.5 to 4.5 and a complex phase of abet. If we were
to further allow the magnitude of the shock impedance to be
the shock position oscillates back and forth about 200 bubbl@ function of frequency it is conceivable that we could obtain
radii which, based on the average equilibrium bubble radiug single theoretical curve to match all the computed data
of the experiment, corresponds to 12 mm. This is of the sam@oints. In any case, the frequency of the shock oscillation is
order as the 2—5 mm observed in the experiment. As woul§leémonstrated to be governed by acoustic modes between the
be expected, the period of the transient oscillations increasé#1ock and the downstream boundary, and so in physical ex-
with increasing impedance length. periments the observed frequency would depend upon the
The dependence of the oscillation frequency on impedexperimental apparatus that existed between the shock and
ance length can be explained by considering acoustic moddge pressure release surface.
in the length of duct between the shock and the downstream
boundary. Assuming that the length, and the linealzero VI. CONCLUSION
frequency sound speed;, between the bubbly shock and the
downstream boundary are constant, and neglecting the flow An efficient and accurate numerical method has been
velocity as being small compared to the sound speed, thetleveloped for computing unsteady, quasi-one-dimensional,
this region is governed by the acoustic wave equations. Thieubbly cavitating flows through converging-diverging
boundary conditions can be expressed in terms of the nondirozzles. Four different flow regimes are shown to exist de-
mensional complex impedancé, pending on the value of the back pressure. For small negative
N N back pressures there exist steady state solutions with no
p=pcsl. (32 shocks. As the back pressure is lowered the flow becomes
Equation(31) directly yields{= —iwL,,/c as the value choked, and a steady bubbly shock wave forms in the diverg-
of impedance at the downstream boundary. It should béng section of the nozzle. For lower back pressures the bub-
noted that Eq.(32) is an approximation for the far more bly shock wave begins to travel downstream in the diverging
complicated behavior of the bubbly shock; in reality theresection of the nozzle. This unsteady bubbly shock wave is
would be a complex dynamic interaction between the bubblyhe correct solution in the regime where steady-state compu-
shock and an acoustic wave. Nevertheless we assume a cotations result inflashing solutions. Finally, for even lower
plex value for the shock impedance, and then solve the reéback pressures, there exist underexpanded, steady-state solu-
sulting acoustic problem for a series of discrete complex fretions with no shocks.
quencies. Figure 12 plots the lowégindamentalfrequency Results are demonstrated to agree with barotropic mod-
as a function of impedance length for three assumed valuess for those cases where bubble dynamics are not important,
of shock impedance. As expected these theoretical curvdsut show that in many instances that the neglect of bubble
show that the real part of the frequency decreases as tldynamics in the barotropic models cannot be justified. The
impedance length is increased. Note that the normalized fresomputations show reasonable agreement with two sets of
quency isw/2 for the case of infinite shock impedance andexperiments; one where spatial variations of flow variables
zero impedance length. This corresponds to the familiar res@are measured in steady flows, and the other where throat
nant frequency for an open—closed tube. pressure and shock position are measured for flows with bub-
Also plotted on Fig. 12 are some points obtained frombly shocks. The frequency of oscillation of the shock posi-
computations. The real part of the frequency is obtained byion is shown to be dependent on downstream impedance,
applying a fast-Fourier transform to the time series of theand can be explained by considering acoustic modes in the
shock position(There are not enough cycles to allow use ofregion between the shock and downstream boundary.
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