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A numerical investigation of unsteady bubbly cavitating nozzle flows
A. T. Preston, T. Colonius,a) and C. E. Brennen
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~Received 27 June 2000; accepted 28 August 2001!

The effects of unsteady bubble dynamics on cavitating flow through a converging-diverging nozzle
are investigated numerically. A continuum model that couples the Rayleigh–Plesset equation with
the continuity and momentum equations is used to formulate unsteady, quasi-one-dimensional
partial differential equations. Flow regimes studied include those where steady-state solutions exist,
and those where steady-state solutions diverge at the so-calledflashing instability. These latter flows
consist of unsteady bubbly shock waves traveling downstream in the diverging section of the nozzle.
An approximate analytical expression is developed to predict the critical backpressure for choked
flow. The results agree with previous barotropic models for those flows where bubble dynamics are
not important, but show that in many instances the neglect of bubble dynamics cannot be justified.
Finally the computations show reasonable agreement with an experiment that measures the spatial
variation of pressure, velocity and void fraction for steady shockfree flows, and good agreement
with an experiment that measures the throat pressure and shock position for flows with bubbly
shocks. In the model, damping of the bubble radial motion is restricted to a simple ‘‘effective’’
viscosity, but many features of the flow are shown to be independent of the specific damping
mechanism. ©2002 American Institute of Physics.@DOI: 10.1063/1.1416497#
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I. INTRODUCTION

The first model of two phase flow through a convergin
diverging nozzle was proposed by Tangrenet al.1 They em-
ployed a barotropic relation, which assumes that the fl
pressure is a function of fluid density only. This implies th
the only effect of the disperse gas phase is to allow fl
compressibility which results in the bubbly mixture bein
treated as a single-phase compressible fluid. Brennen2 pro-
vides a general discussion of the barotropic model, as we
a summary of the work of Tangrenet al.

Bubble dynamics are neglected by the barotropic mo
but are thought to significantly alter the flow in cavitatin
nozzles, even in the mean. Wang and Brennen3 applied a
nonlinear continuum bubbly mixture model4–6 to the compu-
tation of the steady flow through a converging-divergi
nozzle. This model incorporates the Rayleigh–Plesset e
tion to predict bubble size and growth as a function of po
tion and time. Wang and Brennen found two different stea
state flow regimes to exist, and termed themquasi-steady
and quasi-unsteady. The former is characterized by bubb
growth that is induced by the low pressure region in
nozzle contraction, followed by a series of bubble collap
and rebounds downstream of the contraction. The qu
unsteady solutions correspond toflashingflow. Varying the
upstream conditions causes the flow to bifurcate from
regime to the other. The bifurcation of the steady state eq
tions has been studied by Delaleet al.7

To illustrate the two regimes, the method of Wang a
Brennen is applied to a nozzle with a gentle contracti
depicted in Fig. 1. Wang and Brennen investigated the bi

a!Electronic mail: colonius@caltech.edu
3001070-6631/2002/14(1)/300/12/$19.00
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cation by varying the inlet void fraction; here we vary th
cavitation number,s, and achieve a similar result. Figure
presents the computed steady-state solutions for the pres
and bubble radius for cavitation numbers either side of
critical bifurcation value. The solid and dashed lines cor
spond, respectively, to the quasi-steady and quasi-unst
solutions.

It is apparent in Fig. 1 that the flashing solution h
unbounded bubble growth which results in a physically u
realistic downstream pressure. Physically realizable stea
state solutions do not exist in this flow regime, and hence
unsteadycode is required to examine these flows. Ishiiet al.8

proposed an unsteady bubbly flow model for the study
flows through a convergent-divergent nozzle. However,
assuming that the pressure inside the bubbles is equal to
ambient fluid pressure, they neglected the bubble dynam
which are important in the cavitating nozzle flow. Chen a
Heister9 incorporated bubble dynamics into the computati
of bubbly flow through a nozzle by using a form o
Rayleigh–Plesset equation that was modified to allow
high void fractions.10 However, the nozzle flow was not th
focus of their work and was only studied in noncavitati
regimes for the purpose of demonstrating grid convergen

The motivation of the present work is to investigate t
cavitating regimes where steady-state computations pred
physically unrealizable flashing solution. An unsteady qua
one-dimensional code, based on the bubbly flow model u
by Wang and Brennen, is employed to demonstrate
physically realizable solutions in the flashing regime invol
unsteadybubbly shock waves propagating downstream fro
the nozzle contraction. An important restriction of th
present results is that anad hoc, but computationally fast,
model is used for damping the bubble radial motion. In S
© 2002 American Institute of Physics
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301Phys. Fluids, Vol. 14, No. 1, January 2002 Unsteady bubbly cavitating nozzle flows
III D we demonstrate that the basic flow features are in
pendent of the damping mechanisms.

II. THE MODEL AND NUMERICAL METHOD

We consider a homogeneous continuum bubbly mixt
model that was first proposed by van Wijngaarden.4,5 ~Ap-
plying an order of magnitude analysis2 indicates that, for the
present nozzle flows, relative motion of the two phases
be neglected.! The model starts with the conventional qua
one-dimensional continuity and momentum equations
flow of a compressible fluid through a nozzle

]

]t
~rA!1

]

]x
~ruA!50, ~1!

r
Du

Dt
1

1

2

]CP

]x
50. ~2!

Note that the viscous terms and gravity have been negle
in the momentum equation. The two-phase bubbly mixtur
now assumed to be made up of an incompressible liq
phase with a dilute gas phase consisting of many sphe
bubbles. By assuming that the flow properties vary on len
scales that are large compared to the bubble radius and
ing that the gas phase is restricted to being dilute we can
any point in the flow, relate the local bubble radius to t
local pressure by the Rayleigh–Plesset equation

R
D2R

Dt2 1
3

2 S DR

Dt D 2

1dD

1

R

DR

Dt
1

2

We
@R212R23k#

1
s

2
@12R23k#1

CP

2
50. ~3!

The bubble population per unit liquid volume is fixed~nei-
ther fission nor fusion occur!, so that the following relation
between the mixture density and bubble radius holds

FIG. 1. The pressure coefficient and bubble radius for two steady comp
tions. Solid line isquasi-steady(s5scrit

1 ), dashed line isquasi-unsteadyor
flashing (s5scrit

2 ). The cavitation number is defined as,s5(p08

2pv8)/
1
2rL8u08

2, wherepv8 is the vapor pressure of the liquid,p08 andu08 are
the upstream pressure and velocity, andrL8 is the liquid density.
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, ~4!

wherea0 is the initial volume void fraction. Equations~3!
and~4! dynamically relate the mixture density to the mixtu
pressure. These two equations effectively replace the u
barotropic relation used for single phase flows, and allow
set of equations to be closed.

In Eqs.~1!–~4! r is the mixture density made dimension
less by the constant liquid density,rL8 . The length and ve-
locity scales used for nondimensionalization are the equi
rium bubble radius,R08 , and the nozzle inlet velocity,u08 .
The pressure coefficient is defined asCP5(p8

2p08)/
1
2rL8u08

2, wherep08 is the upstream pressure. The cav

tation number is defined ass5(p082pv8)/
1
2rL8u08

2, wherepv8
is the vapor pressure of the liquid. The Weber number
given by We5rL8R08u08

2/S8, whereS8 is the ~constant! sur-
face tension. The use of the polytropic index,k, which is
either unity for isothermal flow or the ratio of the specifi
heats of the gas phase for adiabatic flow, assumes tha
bubble contents are fully mixed. This assumption combin
with the use of aneffective damping, dD , to account for both
viscous and diffusive contributions to damping of bubble
dial motions, circumvents the need for solving unsteady d
fusion equations at the scale of the bubble at every poin
the flow. The impact of this simplified model is discussed
Sec. III D. The nozzle area,A, is nondimensionalized by the
inlet area,A08 . Since viscous terms are neglected,A08 does
not appear as a parameter of the computation; only the a
area variation of the nozzle is relevent. Parenthetically,
comparisons to real experimental nozzles it is required
AAmin8 @Rmax8 for the continuum approximation to hold.

Equations ~1!–~4! are integrated using a one
dimensional Lagrangian finite volume scheme. This form
lation allows the substantial derivatives to be treated as o
nary derivatives, and hence the Rayleigh–Plesset equa
can be integrated as an ordinary differential equation~ODE!.
Consider a quasi-one-dimensional nozzle divided longitu
nally into N21 control volumes. Denoting the position o
the control volume faces asxj ( j 51,2,...,N), we can define
the nozzle areas and their derivatives at these positions:

Aj5A~xj !, ~5!

dAj

dx
5

dA

dx
~xj !, ~6!

whereA(x) anddA(x)/dx are known functions. Each con
trol volume face moves at the local fluid velocity and, the
fore,

dxj

dt
5uj , ~7!

whereuj is shorthand foru(xj (t),t). Integrating Eqs.~1! and
~2! over the control volumes we obtain, forj 51,2,...,N21

d

dt Exj

xj 11
rAdx50, ~8!

ta-
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2
d

dt Exj

xj 11
ruAdx5AjCPj

2Aj 11CPj 11

1E
xj

xj 11
CP

dA

dx
dx. ~9!

Equations ~8! and ~9!, respectively, describe the rate
change of the total mass and momentum in thej th control
volume. Also, Eq.~3! can be split into two first order equa
tions at each face (j 51,2,...,N)

dRjVj

dt
1Gj1

CPj

2
50, ~10!

dRj

dt
2Vj50, ~11!

where

Gj5
Vj

2

2
1dD

Vj

Rj
1

2

We
@Rj

212Rj
23k#1

s

2
@12Rj

23k#.

~12!

Finally, the density and bubble radius at the faces are rel
by

r j5F11
a0Rj

3

12a0
G21

. ~13!

To integrate this system of~as yet exact! equations, it
remains to approximate the integrals in Eqs.~8! and ~9!. A
second-order approximation is used

E
xj

xj 11
f dx5

Dxj

2
~ f j1 f j 11!O~D3!, ~14!

where Dxj[xj 112xj , and f is any of rA, ruA, or
CP(dA/dx).

Equations~5!–~13! are 8N22 ODEs for 8N unknowns
(r j , Rj , Vj , CPj

, uj , Aj , dA/dxj , andxj at the edges of
the control volumes,j 51,2,...,N!. Specifying both of the
boundary pressures,CP1

and CPN
closes the system. Alter

native boundary conditions, such as the nonreflective bou
ary condition developed by Coloniuset al.11,12 and the im-
pedance boundary condition used later in this paper, h
also been successfully implemented.

The equations are solved in the Lagrangian coordin
system, whereas the nozzle boundary conditions should
implemented in an Eulerian coordinate system. To circu
vent this situation a special control volume with a fixed u
stream face and a moving downstream face is used at
upstream boundary. Hence we replace Eq.~7! for the j 51
case withx15constant. Additional flux terms are also add
to Eqs.~8!–~11!. It is clear that the control volume will be
come very large as the downstream face is convected a
from the stationary upstream face. Remeshing is require
ensure that the accuracy of Eq.~14! is maintained. This is
achieved by simply splitting the control volume into two
necessary as the computation proceeds. Maintaining co
tency with the order of approximation of Eq.~14!, variable
values at the new face are obtained by linearly interpola
from values at either side. As a new control volume is c
Downloaded 20 Apr 2004 to 131.215.101.185. Redistribution subject to AI
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ated at the upstream boundary a control volume is remo
from the downstream boundary. Hence the downstre
boundary is only approximately fixed in position, with fluc
tuations caused by the truncations as well as net expans
or compressions of the fluid over the entire domain. In pr
tice the downstream boundary is positioned far enough fr
the nozzle contraction that, after initial transients, there
no appreciable gradients in the solution near the boundary
that the exact location of the boundary is not important.

The discretized equations have similar properties
those arising in earlier work11,12that examined the generatio
of bubbly shocks by an oscillating plane boundary. That
they are stiff, and do not conserve mass precisely when
explicit time marching scheme is used. Hence an impl
Euler method is used for the basic time advancement. Th
combined with a Richardson extrapolation method.13,14 The
basic premise of the method is to compute a series of
dictions for the solution at the new time level based on d
ferent numbers of subdivisions of the time interval. The
ries of predictions is then used to extrapolate to the limit
zero time step, and to provide an error estimate for the in
gration. The overall time step is adjusted based on the n
ber of subdivisions and the error estimate.

The basic time advancement of the extrapolation met
is the implicit Euler method. Using the integration schem
on Eqs.~7!–~11! and going through the algebra, we can r
duce the number of independent variables to 2N resulting in
equations of the form,

F j~Xk
n11!50, j 51,...,2N, k51,...,2N, ~15!

where X[@u1 ,R1 ,x2 ,R2 ,x3 ,R3 ,...,xN ,RN#. In each equa-
tion F j , various parameters of the problem also appear
well as the fields from previous time levels. Newton
method is used to solve the nonlinear equations. The sys
of Eqs.~15! results in a six-banded Jacobian matrix, enabl
relatively efficient solution.

Grid convergence studies were conducted for flows
the regime where a steady bubbly shock wave stands in
diverging portion of the nozzle. For each of the three diff
ent grid resolutions the back pressure was lowered to init
the flow, and the computation was performed until stea
state was reached. Figure 2 presents the computed bu
radius for the different grid resolutions. The medium and fi
grids are indistinguable indicating that the solution is me
independent. The coarse grid is slightly different because
not quite fine enough to fully resolve the series of bub
rebounds and collapses following the bubbly shock. In
remainder of the paper all results presented have enough
points to fully resolve the bubbly shock structure.

III. RESULTS

The nondimensional parameters that are chosen to
studied area051022, We5117, dD50.43, k51.4 ~adia-
batic! and s ranging from about 0.93 to 1.20. These corr
spond to atmospheric pressure at the nozzle inletp08
5101.3 kPa) with water at 20 °C~rL851000 kg/m3, S8
50.073N/m, pv853.5 kPa! and air bubbles of equilibrium
radius,R0851024 m, with inlet velocity, u08 , ranging from
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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12.7 to 14.5 m/s. The value ofdD is chosen to achieve rea
istic solutions with only a few bubble rebounds. It is show
later that for an effective damping less than about 0.5
macroscopic flow properties are independent of the effec
damping. The nozzle has a Gaussian area variation give

A~x!512~12Amin!e
2@~x2x0! /w!] 2

, ~16!

and for the present study we focus on the valuesAmin

50.75,x05150.0,w530.0.

A. Flow regimes

A series of computations are performed where the b
pressure is varied over a wide range. As the back pressu
changed we obtain different mass flow rates through
nozzle, and hence the cavitation number is also varying.

The computed pressure, bubble radius and flow velo
for a typical set of computations are presented in Fig. 3. T
solid lines represent final steady-state solutions~obtained by
computing until steady state is reached!, while the dashed
lines represent instantaneous flowfields as an unsteady s
wave travels downstream through the nozzle.

It is seen that much like the quasi-one-dimensio
nozzle flows for a perfect gas, different regimes exist
pending upon the value of the back pressure~or cavitation
number!. These regimes are:

~i! Steady solution with no shocks (0.CPb.CPcrit1
)

Recall that for anyinviscid flow in a nozzle with
equal inlet and outlet areas~such as the one bein
examined! that no steady state, shockfree solutio
exist for a nonzero pressure drop. If a pressure dro
applied the flow will accelerate until it become
choked at the throat. A shock will then form in th
diverging section of the nozzle, with its position d
pending upon the value of the pressure drop. The
tire total enthalpy drop is achieved over the sho
with all other parts of the flow remaining isentropic

In the present bubbly model there is no mac
scopic viscosity of the fluid, but there are losses as
ciated with the bubble dynamics. These are accoun

FIG. 2. The bubble radius for three different grid resolutions.
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for by the effective damping,dD , in the Rayleigh–
Plesset equation. Provided that the effective damp
is not zero, then for a small pressure drop a stea
state, shockfree solution is obtained. One such so
tion is plotted as curve~i! in Fig. 3. It is apparent tha
there is only small growth of the bubble radius, a
no collapses and rebounds.

~ii ! Stationary shock in diverging section of nozz
(CPcrit1

.CPb.CPcrit2
)

The pressure drop is now large enough to ca
choking at the throat and the formation of a stea
bubbly shock wave in the diverging section of th
nozzle. Curve~ii ! represents one such solution. Th
bubbly shock structure is most apparent in the gra
of the bubble radius, which shows the characteris
bubble growth followed by a succession of collaps
and rebounds. The pressure in this case also exhib
relatively sharp recovery associated with the bub
shock wave.

It would be expected that the shock position wou
be a function of the back pressure in a manner ana
gous to the gas dynamics case. This is shown to be
case in Sec. V B, where the computed shock posit
is compared with experimentally observed shock p
sitions.

~iii ! Unsteady shock traveling down nozzle (CPcrit2
.CPb

&2s)
The pressure drop is now large enough to cause

bubbly shock wave to move out of the diverging se

FIG. 3. The pressure coefficient, bubble radius and flow velocity for f
different back pressures~and cavitation numbers!. ~i! Steady-state solution
with no shocks (s51.20). ~ii ! Shock standing in diverging section of nozz
(s50.940). ~iii ! Unsteady shock traveling down nozzle (s50.932). ~iv!
Steady-state solution with expansion near nozzle exit (s50.937).~All com-
putations havea051022, We5117,dD50.43.!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tion and propagate downstream. The dashed curve
Fig. 3 show the solution at four different times. Th
time interval between each curve is constant, so i
evident that the propagation speed of the bub
shock is approximately constant.

It is also interesting to note that while the structu
of the shock in terms of the bubble radius and flo
velocity remains essentially the same at each time
stant, the structure in terms of the pressure does
This is apparent in the last of the instantaneous cur
which shows a larger pressure peak at the position
first collapse. In actuality similar pressure pea
manifest themselves at other earlier instances in
computation, but by coincidence the time instanc
shown on the plot do not exhibit these. Studying sim
lar plots with a far higher temporal resolution ind
cates that the magnitude of the pressure peak at
collapse in fact oscillates in time, probably due
acoustic waves reflecting between the shock and
boundary. The pressure is far more sensitive to th
waves than either the bubble radius or flow velocit

Given the upstream and downstream radius, as w
as the upstream pressure, Eq.~6.69! of Brennen2 can
be used to compute the speed of the one-dimensi
shock. This was done for the case illustrated with
vorable comparisons. However, the computed sho
speed is very sensitive to the value of upstream p
sure that is used; indeed it is possible compute
shock speed of zero with only the smallest of chan
to the upstream pressure.

It is likely that within this range of back pressures
is physically possible to have a finalsteady-stateso-
lution where the flow in the nozzle is ‘‘overex
panded,’’ and the increase to the back pressure ta
place across a system of compressions and expans
outside the nozzle.

~iv! Steady, underexpanded flow (CPb&2s)
Now the back pressure is low enough to allow t

shock to pass through the downstream boundary
out of the computational domain. The flow in th
nozzle is ‘‘underexpanded’’ and expands near the e
of the nozzle to match the back pressure. This is
parent in curve~iv! of the pressure plot in Fig. 3
which shows the expansion taking place near the
main boundary. The flashing solution of Fig. 1 is o
of these solutions, albeit with an unrealistically lo
back pressure.

If we choose the back pressure to match the pr
sure upstream of the shock wave~i.e., CPb'2s!,
then there would be no such expansion. This cor
sponds to the ‘‘perfectly expanded’’ solution of th
flow of a perfect gas.

Calculations with a lower void fraction ofa051023

were performed to evaluate the effect of void fraction on
various regimes discussed above. Figure 4 presents
bubble radius for this series of computations. Once again
solid lines correspond to steady solutions while the das
lines represent a time series of the unsteady solution.
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behavior is qualitatively similar to that of the higher vo
fraction computations. As expected, the lower void fracti
results in higher maximum bubble radius and hence m
violent collapses.

B. Choking

As the cavitation number is decreased, the back pres
will also decrease naturally until, eventually, the flow b
comes choked. The decrease of the cavitation number ca
considered as a combination of two physical changes to
flow; decreasing the inlet pressure,p08 and/or increasing the
inlet velocity, u08 . If we consider situations where the inle
pressure is fixed then only the inlet velocity is changing, a
from the definition of the cavitation number

u085F p082pv8
1
2 rL8s

G 1/2

. ~17!

The dimensional mass flow rate is given by

ṁ85r08u08A085rL8~12a0!u08A08 . ~18!

Substituting Eq.~17! into Eq. ~18!, nondimensionalizing by
the choked mass flow rate, and cancelling all the cons
inlet conditions yields the following simple equation for th
nondimensional mass flow rate

ṁ[
ṁ8

ṁcrit8
5Fscrit

s G1/2

, ~19!

wherescrit is the cavitation number at choking.
Many calculations of the steady flow solution were ca

ried out with varying cavitation numbers. Figure 5 plots t
nondimensional mass flow rate@computed by Eq.~19!# ver-
sus the back pressure which is obtained as a result of e
calculation. Results with effective dampings ranging fro
0.22 to 0.85 are shown. It is interesting to note that the va
tion of effective damping does not affect the critical choki

FIG. 4. The bubble radius for a set of calculations with lower void fracti
~a051023, s50.688 to 1.000,We5159,dD50.37!.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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305Phys. Fluids, Vol. 14, No. 1, January 2002 Unsteady bubbly cavitating nozzle flows
back pressure. This is discussed further in Sec. III C. As
pected, for a given back pressure, cases with a smaller e
tive damping have a larger mass flowrate.

Figure 6 presents the bubble radius for four differe
back pressures indicated by~i!–~iv! in Fig. 5. Curve~i! in
Fig. 6 illustrates that for small pressure drops there are
bubble collapses or rebounds. This accounts for the stra
sections of the curves in Fig. 5. For larger pressure dr
bubble collapses and rebounds become apparent@curve ~ii !
in Fig. 6#. This increases the losses in the system and he
causes the curved sections in Fig. 5. This smooth trans
to choked flow continues as the pressure drops become la
and the bubble dynamics become more pronounced@curve
~iii ! in Fig. 6#, until eventually the flow chokes and a bubb
shock wave forms@curve ~iv! in Fig. 6#.

C. Critical back pressures

For a particular set of flow parameters it would be use
to be able to predict the back pressure at which the fl

FIG. 5. Nondimensional mass flow rate as a function of back pres
coefficient for different values of effective damping,dD , in the range 0.22
to 3.78~a051022, We5117!.

FIG. 6. The bubble radii corresponding to the four back pressures indic
in Fig. 5 ~dD50.43,a051022, We5117!.
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chokes and shocks form (CPcrit1
), as well as the back pres

sure at which the shock becomes unsteady and begins
eling downstream through the constant area portion of
nozzle (CPcrit2

). The first transition is difficult to analyze
since it is not clear when a series of bubble collapses
rebounds become a bubbly shock, and the finite thicknes
a bubbly shock wave means that the nozzle area change
occurs over the shock thickness cannot be neglected. H
ever, the second transition occurs in the constant area pa
the nozzle and enables the one-dimensional jump condit
to be used to predictCPcrit2

.
Consider the typical steady bubbly shock wave shown

Fig. 1. Integrating the steady forms of Eqs.~1! and~2! from
the position of critical radius upstream of the shock (xc), to
a position well downstream of the shock (xb) yields

ruAux5xc

x5xb50, ~20!

A~2ru21CP!ux5xc

x5xb2E
xc

xb
CP

dA

dx
dx50. ~21!

Also note that at positionsxc and xb the derivatives with
respect tox vanish, so that for the steady flow the Rayleigh
Plesset equation reduces to

CP~Rc,b!52s@12Rc,b
23k#2

4

We
@Rc,b

212Rc,b
23k#. ~22!

Substituting Eq.~22! into ~21! and noting that the integra
term in Eq. ~21! vanishes because there is no area cha
betweenxc andxb , yields a nonlinear equation relatingRb to
Rc . Noticing that for the current computationsRb511Rb8
whereRb8!1, it is useful to linearize this equation with re
spect toRb8 . Neglecting terms higher than second order,
lows Rb8 to be determined as an explicit function ofRc

Rb85
h~Rc!2r0

3a0h~Rc!2vN
2 , ~23!

where

h~Rc![
CP~Rc!

2
1r~Rc!uc

25
CP~Rc!

2
1

r0
2

r~Rc!
,

and vN is the bubble natural frequency which is comput
by

vN
2 [

3ks

2
1~3k21!

2

We
.

Once Rb8 is computed, the following variables can also
computed to first order:

Rb511Rb8 , ~24!

CPb
522vN

2 Rb8 , ~25!

ub5113a0Rb8 . ~26!

Of course the present method requires knowledge of
critical radiusRc . It would be preferable to be able to predi
the critical back pressure from knowledge of the flow para
eters only. Wang and Brennen3 neglected the integral term o

re

ed
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Eq. ~21!, and assumed that the critical bubble radius w
large compared to the equilibrium radius to develop
simple approximate expression,Rc5(s/2a0)1/3. Applying
the method to the computation of Fig. 1 wherescrit50.932
anda051022 yields Rc53.598, andCPbcrit2

520.035. This

is vastly different from the back pressure in Fig. 1 which
20.151.

From the computation of Fig. 1 we find that the critic
radius is in fact 3.429 which is approximately five perce
lower than that predicted by the method of Wang and Br
nen. Using this value orRc in Eqs. ~23! and ~25! yields
CPbcrit2

520.160, which compares well with the value

Fig. 1.
In order to obtain a reasonable estimate of the criti

back pressure it is, therefore, crucial to first obtain an ac
rate estimate of the critical radius. The most significa
source of error in Wang and Brennen’s3 estimate ofRc is the
neglect of the integral term of Eq.~21! when integrating
from the initial condition through the nozzle contraction
the position of critical radius. Wang15 addresses this issu
and formulates a complicated nonlinear equation forRc ,
which has to be solved numerically and is subject to a c
vergence condition. It is likely that this estimate would res
in a better estimate of the critical back pressure.

It is important to note that the preceding analysis do
not involve the effective damping. That is, the critical ba
pressure is independent of the effective damping used.
has already been observed in Sec. III B, where it was d
onstrated that the onset of choking did not change when
effective damping was varied. The role of the effecti
damping is discussed more fully in the next section.

D. Effect of damping

The present model employs the use of an effect
damping parameter to account for all radial damping mec
nisms of the bubble motion. This is achieved by using a to
effective liquid viscosity to include the contributions
damping from acoustic radiation and mass and thermal
fusion. van Wijngaarden5 reviews some analytical and em
pirical expressions for contributions to the total effective v
cosity from viscous, acoustic, and thermal effects. Th
estimates are generally based on low amplitude linear
tions, such as the attenuation of sound waves, whereas i
nozzle flow there is strong bubble growth and collapse.
cent studies16–18 have investigated the diffusive dampin
mechanism for noncondensible gas bubbles in the nonlin
regime by numerically solving the full unsteady diffusio
equations at the scale of the bubble. They indicate that
simple model that we have used may not be able to corre
capture the structure of the bubbly shock waves. Howe
other important damping effects, such as acoustic radia
and bubble fission, have not yet been fully addressed in
of the studies.

Colonius et al.12 recently demonstrated that for low
frequency forcing of bubbles it is relatively unimportant
model the detailed diffusive processes in the bubble. T
demonstrated that the value of effective damping param
used does not have a significant impact on the macrosc
Downloaded 20 Apr 2004 to 131.215.101.185. Redistribution subject to AI
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flow field as long as it is below a critical value. Their resu
hinged on the fact that the dissipation associated with
shock jump conditions is much larger than, and independ
of, the dissipation provided by any of the damping proces
that are modeled by the effective damping. For the pres
nozzle flow being studied the independence of the sh
jump conditions on the value of the effective damping ha
been previously observed in Secs. III B and III C. Moreov
we now demonstrate that for realistic values of effect
damping that the basic flow features are also independen
the magnitude of the effective damping parameter so long
it is sufficiently small~in the asymptotic sense!. A series of
unsteady computations with effective damping ranging fr
0.22 to 3.78 was performed. The initial values of the oth
parameters were held constant, but the final values of
parameters varied slightly due to the renormalization w
the inlet velocity. Figure 7 plots the bubble radius for each
these calculations at a time when the bubbly shock is pro
gating in the constant area section of the nozzle. For va
of effective damping lower than about 0.5 the macrosco
behavior becomes independent of effective damping. Tha
there is large growth of the bubble radius followed by a ra
collapse; the jump conditions across the shock are not
nificantly impacted by the value of effective damping. T
main effect of decreasing the effective damping is to incre
the amplitude and number of the bubble rebounds. For la
values of effective damping the bubble growth begins to
affected, eventually limiting the growth to the extent th
there is no sharp collapse. For the results presented e
where in this paper the effective damping is chosen to
small enough so that the macroscopic flow properties
independent of decreases or small increases in the effe
damping.

IV. COMPARISON TO BAROTROPIC MODEL

Barotropic results for isothermal (k51) nozzle flow
were first reported by Tangrenet al.1 and differs from the
present model in that bubble dynamic effects are neglec
at every point in the barotropic flow the bubbles are in eq

FIG. 7. Bubble radius for a series of different values of effective dampi
dD , in the range 0.22 to 3.78~s50.76 to 0.95,2CPb

50.27 to 0.36,We
5115 to 153!.
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librium with the local pressure. Brennen2 presents the baro
tropic results for any polytropic index, and nondimension
izing those equations for the casekÞ1, andu08Þ0 yields the
following set of equations:

u5
12a0

A~12a!
, ~27!

u2215s̃F12r k2
k

k21

a0

12a0
$12r k21%G , ~28!

CP5s̃@r k21#, ~29!

wherer is defined as

r[
a0~12a!

a~12a0!
, ~30!

and s̃5p08/
1
2rL8u08

2 is a parameter which is the same as t
cavitation number ifpv850. Equation~27! represents conti-
nuity, Eq. ~28! is the momentum equation that has been
tegrated using the barotropic relation given by Eq.~29!. Sub-
stituting Eq.~27! into Eq. ~28! yields an algebraic equatio
that can be solved fora if the nozzle area and initial void
fraction is specified. The flow velocity and pressure can th
be computed from Eqs.~27! and ~29!, respectively.

Consider solving fora in the nozzle throat, whereA
5Amin . Equations~27! and~28! have either zero, one, or tw
real roots, depending upon the value ofs̃. For high values of
s̃ there exist two real roots, corresponding to subsonic
supersonic conditions. Given that the initial condition is su
sonic, only the subsonic root is valid for these conditions.
s̃ is lowered the two roots approach each other until, fo
particular critical value ofs̃, there is only the single soni
solution at the throat, corresponding to choked flow. For t
s̃crit the flow downstream of the throat can be either subso
or supersonic, depending on the downstream boundary
dition. For values ofs̃ below s̃crit , there are no solutions
indicating that no steady-state solutions exist.

It is useful to compare the results of the present pa
~which we term the dynamic calculations! with those of the
barotropic model. To compare the barotropic calculations
first proceed to finds̃crit by trial and error. That is,s̃ is
varied until Eqs.~27! and~28! have only the sonic root at th
throat. The value ofs̃crit will depend only upon the initial
void fraction, a0 , and throat area,Amin . For the computa-
tions of Fig. 3 ~a051022, Amin50.75! we find that s̃crit

51.011. This is different to the critical cavitation number
Fig. 3, which is s̃crit50.937. The difference ofs̃crit2scrit

51.011– 0.93750.074 is due to the~constant! vapor pres-
sure, pv8 , of the liquid. It is chosen to keep this algebra
difference constant for comparisons at all values ofs. That
is, to compare a barotropic calculation to a dynamic com
tation with a cavitation number ofs, we uses̃5s10.074.

The computed dynamic and barotropic pressures
three different cavitation numbers are presented in Fig
The upper graph presents comparisons for a flow that is
from critical ~high cavitation number!. The curves for the
dynamic and barotropic calculations overlay each other in
cating that for flows which are far from critical bubble d
namics are not important and the barotropic model is va
Downloaded 20 Apr 2004 to 131.215.101.185. Redistribution subject to AI
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The middle graph compares the two models for a fl
that is almost critical~cavitation number only slightly above
critical!. The agreement is good up until the throat, at wh
point the dynamic computation develops an asymmetry
to the radial inertia associated with the bubble growth. It
apparent that the barotropic model is no longer valid, due
the effects of bubble dynamics.

The lower graph presents comparisons for computati
at the critical condition. Agreement is excellent up until ju
after the throat, at which point the pressure in the dynam
computation increases above the minimum value attai
near the nozzle throat. The minimum pressure in the thr
being lower than the back pressure is again caused by
radial inertia that the bubbles have as they approach
throat. The barotropic model is unable to model this behav
due to the neglect of bubble dynamics. Also presented in
lower figure is a comparison at critical condition for a low
initial void fraction of 1023. It is noted that the difference
between the dynamic and barotropic models are greates
the lower void fraction flow. This is consistent with the o
servation in Sec. III A that lower void fraction computation
have a higher maximum bubble radius and more viol
bubble collapses.

V. COMPARISON TO EXPERIMENTS

A. Shockfree steady flow

Here we will compare the results of the bubbly mod
with the experiments of Ishiiet al.8 who measured the pres

FIG. 8. Comparison of pressures for dynamic and barotropic computat
for s51.200 ~upper!, s50.940 ~middle!, and s50.937 ~lower! ~a0

51022 unless otherwise specified!.
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sure, void fraction, and flow velocities of both the liquid a
gas components at four locations in a steady nozzle flow,
compared them with their own bubbly flow model. The
model assumed that the pressure inside a bubble was equ
the ambient pressure, and hence neglected any of the bu
dynamics described by the Rayleigh–Plesset equation. T
did, however, account for relative motion between the liq
and gas phases, which may be important to correctly pre
the void fraction distribution in the nozzle.

The nozzle had an area that varied linearly to a thr
with area ratio~relative to the inlet! of 0.375, and then ex
panded to an area ratio of 0.50 at the exit. The flow con
tions were water at 20 °C~rL85998 kg/m3, pv853.5 kPa,S8
50.073N/m!, with air bubbles withaverageequilibrium ra-
dius,R0851024 m, with inlet velocity,u0853.90 m/s, and in-
let pressure,p085182 kPa. These conditions resulted in
cavitation number,s523.5 and Weber number,We520.7.
From the air and water mass flow rates that are provided,
assuming no relative motion at the inlet, it is possible
compute the inlet void fraction as approximately,a0

50.039.
Since the experimental data are only for a steady flow

steady code based on that of Wang and Brennen3 is used to
compute the solution. In addition the barotropic solution d
cussed in Sec. IV is calculated. Figure 9 shows the comp
sons of the dynamic computation~solid lines! and the baro-
tropic calculation ~dashed lines! to the experimentally
measured pressures, void fractions and velocities of I
et al.8 The maximum bubble growth in this flow is onl
about 7 percent which results inAAmin8 /Rmax8 5124, so the

FIG. 9. Comparison of Ishiiet al. experimentally measured pressures, vo
fractions and velocities with barotropic and computed solutions~a0

50.039,s523.5,We520.7,dD50.5!.
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continuum approximation is valid. The small amount
bubble growth implies that bubble dynamics are not imp
tant for this flow. This accounts for the barotropic compu
tion being almost identical to the dynamic computation. F
flows nearing the critical regime, bubble dynamics beco
important and the dynamic and barotropic models obt
vastly different results.

Agreement of these models to the experimental press
and liquid velocities is excellent, as it was also for the mo
of Ishii et al. The computed void fraction fares much wors
The only point of agreement is right in the throat itself, wi
the other points being considerably lower upstream of
throat and higher downstream of the throat. The considera
more complicated model of Ishiiet al., which incorporates
the relative motion of the phases, had reasonable succe
matching the first and last experimental points, but sign
cantly underestimated the void fraction at and immediat
downstream of the throat.

B. Unsteady flows with shocks

Sandhu and Jameson19 performed experiments in a
converging-diverging nozzle with equal inlet and outlet a
eas, and a throat area ratio of 0.132. The nozzlediameter
varied linearly between the transitions, which meant the a
varied quadratically. In the implementation of the unstea
code, the function describing the throat area was constru
of Gaussian and error functions to ensure that it was i
nitely differentiable, even at the transitions. The amount
smoothing at the transitions was kept to a minimum so a
have minimal impact on the flow.

Sandhu and Jameson used a surfactant to reduce bu
coalescence and hence maintain a large proportion of v
fine bubbles. The surfactant would reduce the surface ten
of the water, but in the absence of any data we useS8
50.073 N/m, which is the value for water at 20 °C. Oth
flow conditions are, water with density and vapor pressu
rL851000 kg/m3 and pv853.5 kPa, inlet pressure,p08
5214 kPa, and air bubbles withaverageequilbrium radius,
R085631025 m. The inlet velocity was not specified i
Sandhu and Jameson, but from a range of volume flow r
it was possible to determine that the velocity ranged from
to 3.1 m/s. It was found by trial and error with the stea
code that an inlet velocity ofu08'2.27 m/s resulted in choked
flow. The above values resulted in a cavitation numbers
581.6 and Weber number,We54.1. In calculations we use
an effective damping ofdD515.2, which was determined t
be ‘‘asymptotically small’’ according to the method dis
cussed in Sec. III D.

Computations with different back pressures were p
formed. In each case as the back pressure was lowered
flow accelerated until at some instance the flow beca
choked and a bubbly shock wave formed in the diverg
section of the nozzle. The position of the shock would os
late about its steady-state position for a few cycles. Com
tations were carried out until it was clear where the fin
steady-state position of the shock was.

For these flows the maximum bubble growth was ov
300 percent which results inAAmin8 /Rmax8 520. The continuum
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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approximation is probably still valid, but it should be note
that the dilute gas-phase assumption is violated with v
fractions as high as 25 percent being reached. He
bubble–bubble interactions are important, and the Raylei
Plesset equation should be modified to account for this. N
ertheless, the upper plot of Fig. 10 shows reasonable ag
ment of the computed steady-state shock position to
experimental observations presented in Fig. 4 of Sandhu
Jameson. The rightward shift of the computed points may
attributed to the friction losses in the experiment that are
accounted for in the model. To end up with a bubbly shock
a certain fixed position, the experiment would require
larger negative back pressure to overcome the additional
tional losses. Since the dissipation associated with the sh
jump conditions is far greater than the viscous losses,
reasonable to assume that the fractional effects do not
nificantly alter the flow field. We can here use the densit
and velocities from the inviscid computation to estimate
pressure drop due to viscous losses in the experimen
assuming a fully developed turbulent pipe flow. For the d
point atCPb

'220 in the upper plot of Fig. 10 we estima
the viscous losses in the experiment to beDCPvisc

'4.0.
Hence if we were to include the friction losses in the mo
we would have to lower the back pressure an additional
units to achieve a shock in the same position. This co
sponds to moving the data point 4.0 units to the left, wh
would then give good agreement with the experimental
sults.

The lower plot of Fig. 10 shows that the computed thro
pressure is about ten percent larger than that measured

FIG. 10. Shock position and throat pressure as functions of back pres
for present computation and experimental observations of Sandhuet al.
~parameters ares581.6,We54.1, dD515.2!.
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perimentally, and does not closely follow the upward tre
on the right of the graph. These differences can again
attributed to the friction losses in the experiment that are
accounted for in the model. In the experiment a relativ
small negative back pressure can result in a shockfree
since there are appreciable friction losses to support the p
sure gradient. Hence the experimental data points trend
wards on the right of the graph. The numerical model ho
ever only has losses in the bubble dynamics, so the s
negative back pressure results in the flow accelerating un
chokes and a bubbly shock forms. Hence the throat pres
remains at the constant choked value.

Effect of impedance BC on shock position. In physical
experiments there is usually a length of pipe~that may have
valves and other apparatus! downstream of the nozzle sectio
before the fluid exits into the atmosphere or reservoir. T
has the effect of adding some impedance to the system
that the back pressure is not accurately controlled imme
ately downstream of the nozzle section; instead it would te
to fluctuate about some mean value. To investigate the e
that this would have on the computed shock position an
pedance BC was implemented at the downstream bound
This was done, for illustrative purposes, using a simple fo
balance model at the boundary

pN2p~ t !5rLm

duN

dt
, ~31!

wherer is the average density of the bubbly mixture at t
boundary,Lm is a specified impedance length,p(t) is the
specified back pressure, andpN anduN are the pressure an
velocity at the last grid point in the computational domain

Figure 11 plots the time evolution of the shock positi
for three different impedance lengths. In each case the sh
position exhibits the behavior of a damped oscillator. T
final steady-state shock position and the initial amplitude
oscillation are independent of the impedance length. Initia

re

FIG. 11. Shock position versus time for different impedance lengths (CPb

5230.8).
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the shock position oscillates back and forth about 200 bub
radii which, based on the average equilibrium bubble rad
of the experiment, corresponds to 12 mm. This is of the sa
order as the 2–5 mm observed in the experiment. As wo
be expected, the period of the transient oscillations increa
with increasing impedance length.

The dependence of the oscillation frequency on imp
ance length can be explained by considering acoustic mo
in the length of duct between the shock and the downstre
boundary. Assuming that the length,L, and the linear~zero
frequency! sound speed,c, between the bubbly shock and th
downstream boundary are constant, and neglecting the
velocity as being small compared to the sound speed,
this region is governed by the acoustic wave equations.
boundary conditions can be expressed in terms of the no
mensional complex impedance,z

p̂5rczû. ~32!

Equation~31! directly yieldsz52 ivLm /c as the value
of impedance at the downstream boundary. It should
noted that Eq.~32! is an approximation for the far mor
complicated behavior of the bubbly shock; in reality the
would be a complex dynamic interaction between the bub
shock and an acoustic wave. Nevertheless we assume a
plex value for the shock impedance, and then solve the
sulting acoustic problem for a series of discrete complex
quencies. Figure 12 plots the lowest~fundamental! frequency
as a function of impedance length for three assumed va
of shock impedance. As expected these theoretical cu
show that the real part of the frequency decreases as
impedance length is increased. Note that the normalized
quency isp/2 for the case of infinite shock impedance a
zero impedance length. This corresponds to the familiar re
nant frequency for an open–closed tube.

Also plotted on Fig. 12 are some points obtained fro
computations. The real part of the frequency is obtained
applying a fast-Fourier transform to the time series of
shock position.~There are not enough cycles to allow use

FIG. 12. Frequency of shock oscillation as a function of impedance len
(CPb5230.8).
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an FFT for the two highest impedance lengths, so the
quency is computed by measuring the period of oscillation
Fig. 11.! The imaginary part of the frequency is comput
from the ratio of amplitudes of successive peaks on Fig.
It is worth noting that the damping ratio is approximate
constant for all values of impedance length, so that the
tenuationper cycleis independent of impedance length. Th
error bars essentially indicate the resolution of the FFT.
timates of the error due to not knowing the domain leng
and sound speed precisely were also made, but were abo
order of magnitude smaller than the resolution of the FF

The acoustic theory correctly predicts the trend of d
creasing real frequency with increasing impedance length
complex shock impedances with magnitudes ranging fr
near unity to infinity. In the limit of infinite shock impedanc
the theory results in an imaginary frequency of zero, in co
trast to the computed data points. To obtain reasonable a
lute agreement for both real and imaginary frequencies
necessary to use a shock impedance with magnitude ran
from 1.5 to 4.5 and a complex phase of about22. If we were
to further allow the magnitude of the shock impedance to
a function of frequency it is conceivable that we could obta
a single theoretical curve to match all the computed d
points. In any case, the frequency of the shock oscillation
demonstrated to be governed by acoustic modes betwee
shock and the downstream boundary, and so in physical
periments the observed frequency would depend upon
experimental apparatus that existed between the shock
the pressure release surface.

VI. CONCLUSION

An efficient and accurate numerical method has be
developed for computing unsteady, quasi-one-dimensio
bubbly cavitating flows through converging-divergin
nozzles. Four different flow regimes are shown to exist
pending on the value of the back pressure. For small nega
back pressures there exist steady state solutions with
shocks. As the back pressure is lowered the flow beco
choked, and a steady bubbly shock wave forms in the dive
ing section of the nozzle. For lower back pressures the b
bly shock wave begins to travel downstream in the diverg
section of the nozzle. This unsteady bubbly shock wave
the correct solution in the regime where steady-state com
tations result inflashing solutions. Finally, for even lower
back pressures, there exist underexpanded, steady-state
tions with no shocks.

Results are demonstrated to agree with barotropic m
els for those cases where bubble dynamics are not impor
but show that in many instances that the neglect of bub
dynamics in the barotropic models cannot be justified. T
computations show reasonable agreement with two set
experiments; one where spatial variations of flow variab
are measured in steady flows, and the other where th
pressure and shock position are measured for flows with b
bly shocks. The frequency of oscillation of the shock po
tion is shown to be dependent on downstream impeda
and can be explained by considering acoustic modes in
region between the shock and downstream boundary.

th
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