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Abstract

The Rayleigh-Plesset equation is used extensively to model spherical bubble dynamics, yet it has been shown
that it cannot correctly capture damping effects due to mass and thermal diffusion. Full single bubble models
have been successfully used to study these diffusion effects, but these are too computationally expensive to
implement into the continuum model for bubbly cavitating flows since the diffusion equations must be solved
in the radial direction at each position in the flow. The focus of the present research is the development
of simpler and more efficient bubble dynamic models that capture the important aspects of the diffusion
processes. We present some preliminary results from a full bubble model that has been developed to provide
insight into possible simplifications. This in turn can be used to develop and validate simpler models. The
full model is contrasted to the Rayleigh-Plesset equation, and a suggestion for possible improvement to the
Rayleigh-Plesset equation is made.

1 Introduction

A model that couples the Rayleigh-Plesset equation for bubble dynamics with the continuum equations of
continuity and momentum (van Wijngaarden 1968) has been used extensively in the computation of bubbly
cavitating flows (Shimada et al. 1999, Wang & Brennen 1999, Colonius et al. 2000). Recently, Preston et
al. (2001) employed the continuum model in the computation of cavitating flow in a converging-diverging
nozzle and showed good agreement to experiments both with and without shock waves. While the model
has enabled a better understanding of the physics of cavitation in many different situations, a significant
limitation is the use of a polytropic approximation to account for the expansion and compression of the gas
bubble interior and an effective liquid viscosity to account for damping of the bubble radial motion due to
many effects including thermal and mass diffusion. The correct way to model these effects would be to solve
the full set of radial equations for the conservation of mass, momentum and energy in each bubble and the
surrounding liquid; however this would be a huge computation.

Matsumoto & Takemura (1994) have performed detailed computations of a single gas/vapor bubble,
including thermal and mass diffusion in both the gas and liquid phases, when the surrounding pressure
increases stepwise. They have shown that under these conditions significant gradients of temperature and
vapor concentration are formed inside the bubble, and heat and mass transfer have a great influence on
the bubble motion. While this full description of a single gas/vapor bubble has not been incorporated into
the continuum model, a simplified set of equations without mass diffusion have been used in the continuum
model to perform computations of shock waves in a liquid containing small bubbles of non-condensible gas
(Kameda & Matsumoto 1996). In their model the full equations for conservation of mass, momentum and
energy were solved for the interior of each bubble within the continuum mixture. Phase change of the liquid
and mass transfer across the bubble boundary were not considered. The liquid was assumed incompressible
and of constant temperature, which resulted in the interior equations being coupled to a Rayleigh-Plesset-like
equation for the liquid motion. Results demonstrated that the thermal gradients inside the bubble had a
significant impact on the structure of the bubbly shock.

A further simpification of the equations, which has been used to study the dynamics of single oscillating
gas and vapor bubbles, is to assume constant pressure in the gaseous phase. The problem can consequently be
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reduced to solving only diffusion equations for the temperature and vapor concentration distribution within
the bubble, coupled to a Rayleigh-Plesset type equation for the bubble motion. The boundary condition for
the bubble temperature can be obtained either by assuming a constant liquid temperature, or by solving
the energy diffusion equation in the liquid. Prosperetti (1991) used the former in investigating pure gas
bubbles, while the latter was used by Hao & Prosperetti (1999) for bubbles of pure vapor. Kawashima et al.
(2000) extended these analyses to the case of a gas/vapor bubble and found, at least in the case of oscillating
bubbles, that the phase change and gas diffusion at the bubble wall interact with each other in such a way as
to enhance the mass transfer at the bubble wall. However, for strongly collapsing bubbles (as may occur in
flows such as the cavitating nozzle) the velocities in the gas approach the gas sound speed and the assumption
of constant pressure may no longer be valid. In these situations the non-uniformity of the gas pressure can
lead to additional damping of the bubble motion. Moss et al. (2000) proposed a simple modification to
the gas pressure term that they incorporated as an extra damping term in the Rayleigh-Plesset equation,
and which could also be incorporated into the more sophisticated models mentioned above. This would
enable great efficiencies to be gained by removal of the radial continuity and momentum equations from the
problem.

Of course these bubble models that compute the full set of diffusion equations assume that there is
no mixing of the bubble contents which would destroy thermal and mass transfer boundary layers near
the bubble interface and other thermal and concentration gradients within the bubble. This disruption
could well occur when the bubble is distorted by the flow in the manner documented by Ceccio & Brennen
(1991) and Kuhn de Chizelle et al. (1995). Furthermore it is well recognized that when a bubble undergoes
violent collapse it normally fissions into smaller bubbles. Clearly when this fission happens there may be
significant dissipation (Brennen 2001) thus altering the dynamics of the bubble. In addition this fission
clearly disrupts any spherically symmetric heat and mass diffusion processes. These issues have not been
adequately investigated in the past and could have a significant impact on the global dynamics of bubbly
flows.

In the absence of mixing and fission models we focus here on efficient ways of incorporating the thermal
and mass diffusive effects into the continuum model. For this purpose we would ideally have a bubble
dynamic model that did not require the solution of the radial diffusion equations, yet still managed to
capture the important behaviors associated with the diffusion processes. Storey & Szeri (2001) proposed
the use of a Rayleigh-Plesset equation that is modified to enable better prediction of peak temperatures,
pressures and bubble composition during the collapse of a sonoluminescence bubble. The model switches
between an isothermal, variable mass process when the bubble dynamics are slow enough to allow diffusion
(the growth phase), and an adiabatic, constant mass process when the bubble dynamics are too fast to allow
time for diffusion (during collapse and initial rebound). The switching between the two limits is governed
by monitoring the representative timescales of the bubble dynamics and the diffusion processes. Although
the model is successful in obtaining more accurate estimates of peak temperature, pressure and bubble
composition during the first collapse it is not able to replicate the damping of bubble rebounds associated
with the diffusion processes.

In the present work, we propose to investigate efficient methods of incorporating heat and mass transfer
effects for spherical bubbles. Our initial step is to build up a full (expensive) single bubble model that
solves the full set of conservation equations in both the gas and liquid phases. This full model can then
be used to gain insight into possible simplifications that can be used to develop simpler, more efficient
models, and ultimately to verify the validity of these simpler models. Once a validated simplified model
for single bubble dynamics is obtained it will be implemented into the continuum model and applied to
various cavitating flows, such as the nozzle of Preston et al. (2001). In the current paper we present some
preliminary computations from our full bubble model and contrast it to the computations of the simple
Rayleigh-Plesset equation. Based on the preliminary results some tentative suggestions for improvement to
the Rayleigh-Plesset equation are made.

2 Physical Model

In the full model we solve the conservation equations of mass, momentum and energy in both the gas and
liquid phases. In the gas we assume that the perfect gas law holds for the mixture of water vapor and air,
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and use transport properties that are mass averages of the properties of the individual components. The
liquid is assumed to be incompressible, enabling the analytical integration of the continuity and momentum
equations from the bubble surface to infinity. This approach precludes the need for a non-reflecting boundary
condition in order to satisfy the radiation condition at infinity. We also assume that the liquid velocity at the
interface is equal to the velocity of the interface. This assumption is discussed in more detail shortly. This
results in a Rayleigh-Plesset-like equation, except the pressure on the gas side of the interface is obtained
from solving the full conservation equations in the gas rather then making use of the polytropic assumption.

Other interface conditions are important to the computation and are worth examining in closer detail.
The mass flux of vapor per unit area into the bubble is estimated from kinetic theory as,
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where « is the accommodation coefficient which is taken to be 0.4 following Matsumoto & Takemura (1994),
Pu.,, 1S the saturation vapor pressure, py4|.=g is the partial pressure of vapor at the interface, R, is the
perfect gas constant of the water vapor, and Tj,,; is the temperature of the interface.

We also have the continuity of mass of the mixture at the interface, which yields a condition on the gas
velocity,
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where V = R is the interface velocity and mi,” is the mass flux of air per unit area into the bubble and
is determined by the mass diffusion processes in the gas and liquid phases. A similar equation holds for
the liquid velocity at the interface, but the second term is about three orders of magnitude smaller due
to the liquid density replacing the gas density in the denominator. Therefore the second term is neglected
relative to the first term, which results in the previously mentioned assumption that the liquid velocity at
the interface is equal to the interface velocity. The validity of this assumption is examined in further detail
in section 3.

The mass diffusion equations in each phase are coupled by assuming Henry’s Law holds and by applying
conservation of individual species at the interface which yields a balance of diffusive fluxes. The energy
diffusion equations are coupled by assuming the temperatures in each phase at the interface are equal
(thermal equilibrium), and by balancing heat fluxes on either side of the interface with the latent energy
term associated with phase change.

A spectral method is chosen to solve the set of equations, since these have been shown to be more efficient
than standard finite difference methods for the solution of these problems (Kamath & Prosperetti 1989, Storey
& Szeri 1999). In particular we use a Chebychev spectral method adapted from Hao & Prosperetti (1999),
who solved the thermal diffusion equations in and around a pure vapor bubble under the assumption of
constant pressure within the bubble. We apply the method to the full set of equations in the gas/vapor (not
employing the constant pressure assumption) and the mass and thermal diffusion equations in the liquid. To
ensure there is enough spatial resolution, the number of expansion modes is increased or decreased during
the computation based upon the relative amplitude of the highest mode. Storey & Szeri (2000) employed
a similar spectral method, but with a different choice of expansion polynomials in the liquid phase, for the
solution of the full set of equations for a gas/vapor sonoluminescence bubble. However, they neglected the
diffusion of dissolved gas in the liquid phase which Kawashima et al. (2000) found could interact with the
phase change at the bubble wall in such a way as to enhance the mass transfer at the bubble wall.

An explicit fourth order Runge-Kutta method is used for time marching of the equations. The method
uses an adaptive time stepping technique to ensure efficiency and accuracy. Because the method is explicit
the time step is primarily governed by stability limitations. These become particularly limiting during the
violent bubble collapse where a large number of expansion modes (and hence large number of grid points)
are required. The problem is further exasperated by the choice of the Chebychev collocation points which
cluster grid points near the bubble interface. Many authors have employed implicit time marching for the
liquid phase to try and overcome this limitation.
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Figure 1: Comparison of full computation to Rayleigh-Plesset equation for different forcing amplitudes
and durations. Top three plots: A = 0.9,1.0,1.09 and t,, = 77us. Bottom three plots: A = 1.0 and
tw = 19,39,154us. (The value of effective viscosity, ves s, used in the Rayleigh-Plesset equation is chosen to
get a good match of the damping over the first few rebounds.)

3 Preliminary Results

In these preliminary results the effect of mass diffusion is neglected. In the application of sonoluminescence
it has been shown to have minimal impact on the bubble dynamics (Storey & Szeri 1999), and the effect
in the current context will be studied later. Consequently we neglect any dissolved gas in the liquid phase,
and assume that the concentration of vapor in the gas phase does not vary with radial position. For initial
computations the bubble is forced by a simple Gaussian pressure time history with amplitude and duration
that is chosen to roughly approximate the pressure history that would be experienced by a bubble travelling
through the nozzle of Preston et al. (2001);

poo(t) = o (1- el 3)

where pg = 101.3kPa and ty = 290us in all the following computations. Figure 1 compares the current full
computation with the Rayleigh-Plesset equation (RPE) for six different forcings. We see that apart from
the very short duration forcings the RPE significantly underpredicts bubble growth. This is most likely to
be caused by the RPE not employing the kinetic rate equation 1 for the mass flux of vapor into the bubble,
resulting in an underestimate of the mass flux during the bubble expansion. In fact it is possible to use an
artificially low value of the accommodation coefficient in the full computation to inhibit the mass flux of vapor
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Figure 2: Comparison of full computations with different accommodation coefficients to Rayleigh-Plesset
equation (A = 1.0 and ¢, = 77us).

and obtain good agreement with the RPE. Figure 2 shows such a computation, where the accommodation
coefficient has been reduced from 0.4 to 0.03 to obtain a good match in initial bubble growth. This result
immediately leads to the speculation that the RPE could be improved by the incorporation of equation 1
into the formulation, with very little computational cost. However, we must remember that the current full
computation neglects any mass diffusion of vapor in the bubble which may be very important in determining
the vapor pressure that appears in equation 1. Therefore this speculation needs to be revisited once the
mass diffusion equations are included in the model.

Figure 2 also shows the poor ability of the RPE equation to correctly model the diffusive damping of
the bubble rebounds. Improvements can be made by the use of an effective viscosity, as is done in figure 1.
However, the most appropriate value of effective viscosity that should be used varies depending upon the
forcing amplitude and duration and is not able to be determined without comparison to the full computation.
In addition it appears that a value that is chosen to get a good match of damping over the first few rebounds
fails to get a good match later in the collapse sequence. This is apparent in figure 1 where the attenuation
of the first few rebounds is matched by the RPE, but is then underpredicted by the RPE over the later
rebounds. The limitations of the use of effective viscosity to account for thermal damping in the non-linear
oscillations of bubbles has been well documented (Prosperetti et al. 1988, Prosperetti 1991). In application
to the continuum model these limitations would have significant impact on the structure of a bubbly shock
as discussed by Kameda & Matsumoto (1996).

With the current model we are able to examine the validity of the assumption that the liquid velocity
at the interface is approximately equal to the velocity of the interface itself. Hao & Prosperetti (1999)
have made an order of magnitude analysis that shows that additional velocities due to phase change at the
interface are about three orders of magnitude smaller than the typical interface velocities, and can therefore
be ignored. However, if there is substantial velocity due to phase change at instances where the interface
velocity is near zero (top of expansion phase and rebounds, and instantaneously during collapse) then this
order of magnitude analysis may not hold. Figure 3 plots the interface velocity, and the additional velocities
in the gas and liquid phases due to phase change at the interface for a typical computation. The additional
gas velocity is simply the last term of equation 2 with 7/ = 0 and is included in the computation, while the
addtional liquid velocity is obtained by replacing the gas density with the liquid density, and is neglected in
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Figure 3: Interface velocity, V, additional velocity in gas due to phase change, m; /pq|r=r, and additional
velocity in liquid due to phase change, m!//p;|.=r, for a typical full computation (A = 1.0 and t,, = 77us).

the computation. We see that the additional liquid velocity is at least three orders of magnitude smaller than
the interface velocity. Closer study of the plot also indicates that when the interface velocity is approximately
zero the additional liquid velocity is also zero and hence it can be neglected for the entire computation. On
the other hand, the additional gas velocity is often of the same order as the interface velocity and must be
included in the computation.

4 Conclusions

A single bubble model that solves the full set of conservation equations in both the gas and liquid phases
of a spherical bubble has been developed for the purpose of validating simpler bubble dynamic models.
Preliminary results contrast the damping behaviors of the full model with the standard Rayleigh-Plesset
equation, and also suggest some scope for immediate improvement of the Rayleigh-Plesset equation by the
incorporation of a rate equation for evaporation and condensation at the interface. The full model has also
been used to validate the commonly used assumption that the liquid velocity at the interface is approximately
equal to the interface velocity, while showing that a similar assumption on the gas velocity is not valid. Future
work will focus on using the full model in the development of simpler more efficent bubble dynamic models
that still capture the important aspects of the diffusion processes. These models will then be implemented
into the continuum model and applied to various cavitating flows.
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