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ABSTRACT
The effects of unsteady bubble dynamics on cavitating flow

through a converging-diverging nozzle are investigated nume
ically. A continuum model that couples the Rayleigh-Plesse
equation with the continuity and momentum equations is use
to formulate unsteady, quasi-one-dimensional partial differenti
equations. These equations are solved numerically using a L
grangian finite volume method. Special formulations are used
the boundary cells to allow Eulerian boundary conditions to b
specified. Flow regimes studied include those where steady sta
solutions exist, and those where steady state solutions diver
at the so-calledflashing instability. These latter flows consist
of unsteady bubbly shock waves travelling downstream in the d
verging section of the nozzle. The computations show reasonab
agreement with an experiment that measures the spatial variat
of pressure, velocity and void fraction for steady shockfree flows
and good agreement with an experiment that measures the sh
position and throat pressure for flows with bubbly shocks.

INTRODUCTION
The first model of two phase flow through a converging

diverging nozzle was proposed by Tangren et al. (1949). The
employed a barotropic relation, which assumes that the flu
pressure is a function of fluid density only. This implies tha
dress all correspondence to this author.
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the only effect of the disperse gas phase is to allow fluid com-
pressibilty which results in the bubbly mixture being treated as a
single-phase compressible fluid. Brennen (1995) provides a gen
eral discussion of these barotropic models, as well as a summary
of the work of Tangren et al..

Bubble dynamics are neglected by the barotropic models,
but are thought to significantly alter the flow in cavitating noz-
zles, even in the mean. Wang & Brennen (1998) applied a non-
linear continuum bubbly mixture model to the computation of the
steady flow through a converging-diverging nozzle. This model
was first proposed by van Wijngaarden (1968, 1972) and incor-
porates the Rayleigh-Plesset equation to predict bubble size and
growth as a function of position and time. Wang & Brennen
found two different steady state flow regimes to exist, and termed
them quasi-steadyand quasi-unsteady. The former is charac-
terized by bubble growth that is induced by the low pressure
region in the nozzle contraction, followed by a series of bub-
ble collapses and rebounds downstream of the contraction. The
quasi-unsteady solutions correspond toflashingflow. Varying
the upstream conditions causes the flow to bifurcate from one
regime to the other. The bifurcation of the steady equations has
been studied in detail by Delale et al. (1998).

To illustrate the two regimes, the method of Wang & Bren-
nen is applied to a nozzle with a gentle contraction, depicted in
Fig. 1. Wang & Brennen investigated the bifurcation by vary-
ing the inlet void fraction; here we vary the cavition number,
Copyright  2000 by ASME
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Figure 1. The pressure coefficient and bubble radius for two steady com-

putations. Solid line is quasi-steady(σ = σ+
crit ), dashed line is quasi-

unsteadyor flashing(σ = σ�

crit ). Other parameters are, α0 = 10�2,

We= 117, δD = 0:43.

σ, and achieve a similar transition. Figure 1 presents the com
puted steady state solutions for the pressure and bubble radi
for cavitation numbers either side of the critical bifurcation value.
The solid and dashed lines correspond respectively to the qua
steady and quasi-unsteady solutions.

It is apparent in Fig. 1 that the flashing solution has un-
bounded bubble growth which results in a physically unrealis
tic downstream pressure. Physically realizable steady-state sol
tions do not exist in this flow regime, and hence anunsteadycode
is required to examine these flows. Ishii et al. (1993) propose
an unsteady bubbly flow model for the study of flows through
a convergent-divergent nozzle. However, by assuming that th
pressure inside the bubbles is equal to the ambient fluid presur
they neglected the bubble dynamics which are important in th
cavitating nozzle flow. The present work employs an unstead
quasi-one-dimensional code, based on the bubbly flow mode
used by Wang & Brennen, to demonstrate that the physicall
correct solutions in the flashing regime involveunsteadybubbly
shock waves propagating downstream from the nozzle contra
tion.

THE MODEL AND NUMERICAL METHOD
We consider a homogeneous1 continuum bubbly mixture

model that was first proposed by van Wijngaarden (1968, 1972
1Applying an order of magnitude analysis (Brennen 1995) indicates that, for
the present nozzle flows, relative motion of the two phases can be neglected.
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The model starts with the conventional quasi-one-dimensiona
continuity and momentum equations for flow of a compressible
fluid through a nozzle:

∂
∂t
(ρA)+

∂
∂x

(ρuA) = 0; (1)

ρ
Du
Dt

+
1
2

∂CP

∂x
= 0: (2)

Note that the viscous terms and gravity have been neglected
the momentum equation. The two-phase bubbly mixture is now
assumed to be made up of an incompressible liquid phase with
dilute gas phase consisting of many spherical bubbles. By assum
ing that the flow properties vary on length scales that are larg
compared to the bubble radius and noting that the gas phase is
stricted to being dilute we can, at any point in the flow, relate the
local bubble radius to the local pressure by the Rayleigh-Pless
equation:

R
D2R
Dt2 +

3
2

�
DR
Dt

�2

+δD
1
R

DR
Dt

+
2

We

�
R�1

�R�3k
�

+
σ
2

�
1�R�3k

�
+

CP

2
= 0: (3)

The bubble population per unit liquid volume is fixed (neither
fission nor fusion occur), so that the following relation between
the mixture density and bubble radius holds,

ρ =

�
1+

α0R3

1�α0

�
�1

; (4)

where α0 is the initial volume void fraction. Equations (3)
and (4) dynamically relate the mixture density to the mixture
pressure. These two equations effectively replace the usu
barotropic relation used for single phase flows, and allow the se
of equations to be closed.

In equations (1) to (4)ρ is the mixture density made dimen-
sionless by the constant liquid density,ρd

L. The length and veloc-
ity scales used for non-dimensionalization are the equilibrium
bubble radius,Rd

0, and the nozzle inlet velocity,ud
0. The pres-

sure coefficient is defined asCP = (pd
� pd

0)=
1
2ρd

Lud2

0 , wherepd
0

is the upstream pressure. The cavitation number is defined
σ = (pd

0� pd
v)=

1
2ρd

Lud2

0 , wherepd
v is the vapor pressure of the liq-

uid. The Weber number is given byWe= ρd
LRd

0ud2

0 =Sd, where
Sd is the (constant) surface tension. The polytropic index, k, is
Copyright  2000 by ASME
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either unity for isothermal flow, or the ratio of the specific heats
of the gas phase for adiabatic flow. Theeffective dampingfor
the radial motion of the spherical bubbles is denoted byδD and
is discussed later in more detail. The nozzle area,A, is nondi-
mensionalized by the inlet area,Ad

0. Since viscous terms are ne-
glected,Ad

0 does not appear as a parameter of the computatio
only the axial area variation of the nozzle is relevent. Parenthe
cally, for comparisons to real experimental nozzles it is require

that
q

Ad
min� Rd

max for the continuum approximation to hold.
Equations (1) through (4) are integrated using a one

dimensional Lagrangian finite volume scheme. This formula
tion allows the substantial derivatives to be treated as ordina
derivatives, and hence the Rayleigh-Plesset equation can be
tegrated as an ordinary differential equation. Consider a qua
one-dimensional nozzle divided longitudinally intoN�1 control
volumes. Denoting the position of the control volume faces asxj

( j = 1;2; : : : ;N), we can define the nozzle areas and their deriva
tives at these positions:

Aj = A(xj); (5)

A0

j =
dA
dx

(xj ); (6)

whereA(x) and dA(x)=dx are known functions. Each control
volume face moves at the local fluid velocity and therefore:

dxj

dt
= uj ; (7)

whereuj is shorthand foru(xj(t); t). Integrating equations (1)
and (2) over the control volumes we obtain, forj = 1;2; : : : ;N�
1:

d
dt

Z xj+1

xj

ρAdx= 0; (8)

2
d
dt

Z xj+1

xj

ρuAdx= AjCPj �Aj+1CPj+1 +

Z xj+1

xj

CPA0dx: (9)

Equations (8) and (9) respectively describe the rate of change
the total mass and momentum in thejth control volume. Also,
Eq. (3) can be split into two first order equations at each fac
( j = 1;2: : : ;N):

dRjVj

dt
+Gj +

CPj

2
= 0; (10)

dRj

dt
�Vj = 0; (11)
3
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where,

Gj =
V2

j

2
+ δD

Vj

Rj
+

2
We

�
R�1

j �R�3k
j

�

+
σ
2

�
1�R�3k

j

�
: (12)

Finally, the density and bubble radius at the faces are related b

ρ j =

�
1+

α0R3
j

1�α0

�
�1

: (13)

To integrate this system of (as yet exact) equations, it re
mains to approximate the integrals in equations (8) and (9).
second-order approximation is used:

Z xj+1

xj

f dx =
∆xj

2
( f j + f j+1)+O(∆3

); (14)

where∆xj � xj+1�xj , and f is any ofρA, ρuA, orCPA0.
Equations (5) to (13) are 8N� 2 ODEs for 8N unknowns

(ρ j ;Rj ;Vj ;CPj ;uj ;Aj ;A0

j , andxj at the edges of the control vol-
umes, j = 1;2; : : : ;N). Specifying both of the boundary pres-
sures,CP1 andCPN closes the system. Alternative boundary con-
ditions, such as the non-reflective boundary condition develope
by Colonius et al. (1998, 1999), have also been successfully im
plemented. All results presented in this paper have the pressu
specified at both boundaries.

The equations are solved in the Lagrangian coordinate sy
tem, whereas the nozzle boundary conditions should be impl
mented in an Eulerian coordinate system. To circumvent th
situation a special control volume with a fixed upstream fac
and a moving downstream face is used at the upstream boun
ary. Hence we replace Eq. (7) for thej = 1 case withx1 =

constant. Additional flux terms are also added to equations (8
through (11). It is clear that the control volume will become very
large as the downstream face is convected away from the st
tionary upstream face. Remeshing is required to ensure that t
accuracy of Eq. (14) is maintained. This is achieved by simpl
splitting the control volume into two as necessary as the com
putation proceeds. Maintaining consistency with the order o
approximation of Eq. (14), variable values at the new face ar
obtained by linearly interpolating from values at either side. As
a new control volume is created at the upstream boundary a co
trol volume is removed from the downstream boundary. Henc
the downstream boundary is only approximately fixed in posi
tion, with fluctuations caused by the truncations as well as ne
expansions or compressions of the fluid over the entire domai
Copyright  2000 by ASME
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In practice the downstream boundary is positioned far enoug
from the nozzle contraction that, after initial transients, there ar
no appreciable gradients in the solution near the boundary,
that the exact location of the boundary is not important.

The discretized equations have similar properties to thos
arising in earlier work (Colonius et al. 1998, 1999) that examine
the generation of bubbly shocks by an oscillating plane boundar
That is, they are stiff, and do not conserve mass precisely wh
an explicit time marching scheme is used. Hence an implicit Eu
ler method is used for the basic time advancement. This is com
bined with a Richardson extrapolation method of which the de
tails are given by Hairer & Wanner (1996). The basic premise o
the method is to compute a series of predictions for the solutio
at the new time level based on different numbers of subdivision
of the time interval. The series of predictions is then used to ex
trapolate to the limit of zero time step, and to provide an error es
timate for the integration. The overall time step is adjusted base
on the number of subdivisions and the error estimate. Coloniu
et al. (1998, 1999) demonstrated through numerical experimen
that this scheme was far more efficient than first and second o
der implicit schemes. Given the similarity of their equations to
the present equations, we would expect the same to hold here

The basic time advancement of the extrapolation method
the implicit Euler method. For an ODE given by:

d f
dt

= f 0; (15)

the discrete form is:

f n+1
= f n

+h f 0n+1; (16)

whereh is the time step. Using this integration scheme on equa
tions (7) to (11) and going through the algebra, we can establi
2N equations of the form:

Fj(X
n+1
k ) = 0; j = 1; : : : ;2N; k= 1; : : : ;2N; (17)

where~X � [u1;R1;x2;R2;x3;R3; : : : ;xN;RN] is a vector contain-
ing the 2N unknowns. In each equationFj , various parameters of
the problem also appear as well as the fields from previous tim
levels. Newton’s method is used to solve the nonlinear equ
tions. When combined with the extrapolation scheme it is foun
that only one Newton iteration per time step is the most efficien
though in that case discrete global conservation is not guara
teed. The system of equations (17) results in a six-banded Jac
bian matrix, enabling relatively efficient solution.
4
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RESULTS
The nondimensional parameters that are chosen to be stu

ied areα0 = 10�2, We= 117,δD = 0:43,k= 1:4 (adiabatic) and
σ ranging from 0.93 to 1.20. The value ofδD is chosen to achieve
realistic solutions with only a few bubble rebounds. It is shown
later that for an effective damping less than about 0.5 the macr
scopic flow properties are independent of the effective dampin
The nozzle has a Gaussian area variation given by,

A(x) = 1� (1�Amin)e
�(

x�x0
w )2; (18)

and for the present study we focus on the valuesAmin = 0:75,
x0 = 150:0,w= 30:0.

Flow Regimes
A series of computations are performed where the back pre

sure is varied over a wide range. The computed pressure, bu
ble radius and flow velocity for a typical set of computations ar
presented in Fig. 2. The solid lines represent final steady sta
solutions (obtained by computing until steady state is reached
while the dashed lines represent instantaneous flowfields as
unsteady shock wave travels downstream through the nozzle.

It is seen that much like the quasi-one-dimensional nozz
flows for a perfect gas, different regimes exist depending upo
the value of the back pressure. These regimes are,

(i) Steady solution with no shocks (0>CPb >CPcrit1)
For small negative back pressures there exist steady sta
solutions. One such solution is plotted as curve (i) in Fig. 2
It is apparent that there is only small growth of the bubble
radius, and no collapses and rebounds. The small press
gradient is supported by losses due to the effective dampin
term in the Rayleigh-Plesset equation.

(ii) Stationary shock in diverging section of nozzle (CPcrit1 >
CPb >CPcrit2)
The pressure drop is now large enough to cause choking
the throat and the formation of a steady bubbly shock wav
in the diverging section of the nozzle. Curve (ii) represent
one such solution. The bubbly shock structure is most ap
parent in the graph of the bubble radius, which shows th
characteristic bubble growth followed by a succession o
collapses and rebounds. The pressure in this case also
hibits a relatively sharp recovery associated with the bubb
shock wave.

(iii) Unsteady shock travelling down nozzle (CPcrit2 > CPb &
�σ)
The pressure drop is now large enough to cause the bubb
shock wave to move out of the diverging section and prop
agate downstream. The dashed curves of Fig. 2 show t
solution at four different times. The time interval between
Copyright  2000 by ASME
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Figure 2. The pressure coefficient, bubble radius and flow velocity for

four different back pressures. (i) Steady state solution with no shocks, (ii)

Shock standing in diverging section of nozzle, (iii) Unsteady shock trav-

elling downstream, (iv) Steady state solution with expansion near nozzle

exit. (All computations have α0 = 10�2, We= 117, δD = 0:43, and σ
ranges from 0:93 to 1:20.)

each curve is constant, so it is evident that the propagati
speed of the bubbly shock is approximately constant. It
likely that within this range of back pressures it is phys
ically possible to have a finalsteady statesolution where
the flow in the nozzle is “overexpanded”, and the increas
to the back pressure takes place across a system of bub
shock waves outside the nozzle.

(iv) Steady, underexpanded flow (CPb.�σ)
Now the back pressure is low enough to allow the shoc
to pass through the downstream boundary and out of th
computational domain. The flow in the nozzle is “underex
panded” and expands near the end of the nozzle to mat
the back pressure. This is apparent in curve (iv) of the pre
sure plot in Fig. 2, which shows the expansion taking plac
near the domain boundary.
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Calculations with lower initial void fractions yielded be-
havior that was qualitatively identical to the higher void frac-
tion computations. As expected, the lower void fraction results
in higher maximum bubble radius and hence more violent col-
lapses.

Choking
For small negative back pressures a steady state, shockfre

solution exists. As the back pressure is lowered, the mass flow
rate will increase until the flow eventually chokes and the mass
flow rate becomes constant. To illustrate this phenomena man
calculations of the steady flow solution were carried out to pro-
duce the curves in Fig. 3, which presents the mass flow rate (non
dimensionalized by the choked mass flow rate) versus the bac
pressure. Results with effective dampings ranging from 0.22 to
0.85 are shown.

For very small negative back pressures the curves have
constant slope, which smoothly transition to choked flow (where
the curves have no slope) as the negative back pressure is i
creased. It is interesting to note that the variation of effective
damping does not affect the value of critical choking back pres-
sure. The only significant impact that the value of effective
damping has, is to cause the constant slope portion of the curv
to shift sideways. This corresponds to the expected result tha
for a given back pressure, cases with a smaller effective dampin
have a larger mass flowrate.

Figure 4 presents the bubble radius for four different back
pressures indicated by (i)-(iv) in Fig. 3. Curve (i) in Fig. 4 illus-
trates that for small negative back pressures there are no bubb
collapses or rebounds. This accounts for the straight section
of the curves in Fig. 3. For larger pressure drops bubble col-
lapses and rebounds become apparent (curve (ii) in Fig. 4). Thi
increases the losses in the system and hence causes the curv
sections in Fig. 3. This smooth transition to choked flow contin-
ues as the negative back pressure becomes larger and the bub
dynamics become more pronounced (curve (iii) in Fig. 4), un-
til eventually the flow chokes and a bubbly shock wave forms
(curve (iv) in Fig. 4).

Effect of Damping
The appropriate magnitude of the effective damping,δD,

which should be used in the Rayleigh-Plesset equation is an un
resolved issue. van Wijngaarden (1972) reviews some analyti
cal and empirical expressions for contributions to the effective
damping from viscous, acoustic and thermal effects. These est
mates are generally based on low amplitude motions, such as th
attenuation of sound waves, whereas in the nozzle flow there i
strong bubble growth and collapse. Comparisons between expe
iments and calculations show that for strong bubble collapses th
value of effective damping required to achieve a realistic num-
ber of collapses and rebounds is far greater than those estimat
Copyright  2000 by ASME
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Figure 3. Non-dimensional mass flow rate as a function of back pressure

for different values of effective damping, δD, in the range 0:22 to 0:85.
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Figure 4. The bubble radii corresponding to the four back pressures in-

dicated in Fig. 3.

given in van Wijngaarden. It seems likely that the bubble brea
up that occurs in real collapses would introduce additional an
perhaps dominant damping mechanisms.

While we cannot fully explain these effects in the context o
the present model, it is of interest to quantify the effect of th
effective damping on the computed flow field. A series of un
steady computations with effective damping ranging from 0.2
to 3.78 was performed. The initial values of the other paramete
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Figure 5. Bubble radius for a series of different values of effective damp-

ing, δD, in the range 0:22 to 3:78 (σ = 0:76 to 0:95,�CPb = 0:27 to

0:36, We= 115to 153).

were held constant, but the final values of the parameters var
slightly due to the renormalization with the inlet velocity. Fig-
ure 5 plots the bubble radius for each of these calculations a
time when the bubbly shock is propagating in the constant ar
section of the nozzle. For values of effective damping lower tha
about 0.5 the macroscopic behavior is relatively independent
effective damping. That is, there is large growth of the bubb
radius followed by a rapid collapse; the jump conditions acros
the shock are not significantly impacted by the value of effectiv
damping. The main effect of decreasing the effective dampin
is to increase the amplitude and number of the bubble reboun
For larger values of effective damping the bubble growth begin
to be affected, eventually limiting the growth to the extent tha
there is no sharp collapse. These results are consistent with e
lier work (Colonius et al. 1998, 1999) which examined the gen
eration of bubbly shock waves by an oscillating plane boundar

COMPARISON TO EXPERIMENTS
Shockfree steady flow

Here we will compare the results of the bubbly model with
the experiments of Ishii et al. (1993) who measured the pressu
void fraction, and flow velocities of both the liquid and gas com
ponents at four locations in a steady nozzle flow, and compar
them with their own bubbly flow model. Their model assume
that the pressure inside a bubble was equal to the ambient pr
sure, and hence neglected any of the bubble dynamics descri
by the Rayleigh-Plesset equation. They did however account
relative motion between the liquid and gas phases, which may
Copyright  2000 by ASME
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important to correctly predict the void fraction distribution in the
nozzle.

Non-dimensionalization of the flow parameters yields a cav
itation number,σ = 23:5 and Weber number,We= 20:7. From
the air and water mass flow rates that are provided, and assumi
no relative motion at the inlet, it is possible to compute the inle
void fraction as,α0 = 0:039.

Since the experimental data is only for a steady run, a stead
code based on that of Wang & Brennen (1998) is used to com
pute the solution. In addition the barotropic solution is calcu
lated. Figure 6 shows the comparisons of the present dynam
computation (solid lines) and the barotropic calculation (dashe
lines) to the experimentally measured pressures, void fraction
and velocities of Ishii et al.. The maximum bubble growth in this

flow is only about 7 percent which results in
q

Ad
min=Rd

max= 124,
so the continuum approximation is valid. The small amount o
bubble growth implies that bubble dynamics are not importan
for this flow. This accounts for the barotropic computation being
almost identical to the dynamic computation. For flows nearing
the critical regime, bubble dynamics become important and th
dynamic and barotropic models obtain vastly different results.

Agreement of both the dynamic and barotropic models to th
experimental pressure and liquid velocities is excellent, as it als
was for the model of Ishii et al.. The computed void fraction fares
much worse. The only point of agreement is right in the throa
itself, with the other points being considerably lower upstream
of the throat and higher downstream of the throat. The consid
erably more complicated model of Ishii et al., which incorpo-
rates the relative motion of the phases, had reasonable succes
matching the first and last experimental points, but significantl
underestimated the void fraction at and immediately downstrea
of the throat.

Unsteady flows with shocks
Sandhu & Jameson (1979) performed experiments in a co

verging diverging nozzle with equal inlet and outlet areas, an
a throat area ratio of 0:132. Non-dimensionalization of the flow
parameters yields a cavitation number of,σ = 81:6 and a Weber
number,We= 4:1. The initial void fraction wasα0 = 0:107. In
calculations we use an effective damping ofδD = 15:2. Steady
calculations similar to those presented in Fig. 5 determined th
to be close to the upper limit, below which the value ofδD does
not have any significant impact on the maximum bubble growt
and the jump conditions across the bubbly shock. The effectiv
damping was chosen to be as close as possible to this limit to e
able efficient computation, while still ensuring that its value did
not impact the relevant flow physics.

Computations with different back pressures were performed
In each case as the back pressure was lowered the flow acce
ated until at some instance the flow became choked and a bubb
shock wave formed in the diverging section of the nozzle. Th
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Figure 6. Comparison of Ishii et al.’s experimentally measured pres-

sures, void fractions and velocities with dynamic and barotropic solutions

(α0 = 0:039, σ = 23:5, We= 20:7, δD = 0:5).

position of the shock would oscillate about its steady state pos
tion for a few cycles. Computations were carried out until it was
clear where the final steady state position of the shock was.

For these flows the maximum bubble growth was over 300

percent which results in
q

Ad
min=Rd

max= 20. The continuum ap-
proximation is probably still valid, but it should be noted that
the dilute gas phase assumption is violated with void fraction
as high as 25 percent being reached. Hence bubble-bubble int
actions are important, and the Rayleigh-Plesset equation shou
be modified to account for this. Nevertheless, Fig. 7 shows re
markable agreement of the computed steady state shock positi
to the experimental observations presented in Fig. 4 of Sandh
& Jameson (1979). The slight rightward shift of the computed
points can be attributed to the friction losses in the experimen
that are not accounted for in the model. To end up with a bubbl
shock in a certain fixed position, the experiment would require
a larger negative back pressure to overcome the additional fric
tional losses. The computed throat pressures were also compa
Copyright  2000 by ASME
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Figure 7. Shock position as a function of back pressure for present com-

putation and experimental observations of Sandhu et al. (Parameters are,

σ = 81:6, We= 4:1, δD = 15:2.)

to those measured in the experiments and were found to be abo
ten percent larger. This can also be attributed to the neglect o
friction losses in the model.

CONCLUSION
An efficient and accurate numerical method has been de

veloped for computing unsteady, quasi-one-dimensional, bubb
cavitating flows through converging-diverging nozzles. Four dif-
ferent flow regimes are shown to exist depending on the value o
the back pressure. For small negative back pressures there e
ist steady state solutions with no shocks. As the back pressu
is lowered the flow becomes choked, and a steady bubbly shoc
wave forms in the diverging section of the nozzle. For lower back
pressures the bubbly shock wave begins to travel downstream
the diverging section of the nozzle. This unsteady bubbly shoc
wave is the correct solution in the regime where steady state com
putations result inflashingsolutions. Finally, for even lower back
pressures, there exist underexpanded, steady state solutions w
no shocks.

The computations show reasonable agreement with two se
of experiments; one where spatial variations of flow variables ar
measured in steady flows, and the other where shock position a
throat pressure are measured for flows with bubbly shocks.
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