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ABSTRACT

This paper presents a hydraulic analysis of a fluid cou-
pling which is designed to operate either in a forward or
reverse mode when a set of turning vanes are respectively
withdrawn or inserted into the flow between the driving
and driven rotors. The flow path is subdivided into a set
of streamtubes and an iterative method is used to adjust
the cross-sectional areas of these streamtubes in order to
satisfy radial equilibrium. Though the analyis requires
the estimation of a number of loss coefficients, it predicts
coupling performance data which are in good agreement
with that measured in NAVSSES tests of a large reversible
coupling intended for use in a ship drive train.

NOMENCLATURE

A; Cross-sectional area of flow at ¢ =1,2,3
Cp Pump torque coefficient, C, = T, /pR° N,
Cy Turbine torque coefficient, C; = T;/pR° N}
Cpw,Ctw  Pump and turbine windage loss coefficients
Cosw Seal windage torque coefficient

Cpa; Cpp Pump hydraulic loss coefficients

ta, Cty Turbine hydraulic loss coefficients
Cy Loss coefficient for the turning vanes
Actual, ideal total pressure rise across pump
Actual, ideal total pressure drop across turbine
Hy;, Hy, H,Total pressure losses in pump, turbine, turning
vanes (non-dimensionalized by pR*>N)

k Turning vane discharge blockage ratio
Ny, N Angular velocities of the pump, turbine (rad/s)
P Fluid pressure at locations i = 1,2,3
Q Volume flow rate of fluid

R Outer shell radius (0.5m)

T Radial position in the flow (m)

T Outer core radius/R

Te Inner core radius/R

rq Inner shell radius/R

Tji Mean radius of jth streamtube/R

S Slip = 1 — Ny/N,

I Formerly with WesTech Gear Corporation, now part of Philadel-
phia Gear.
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Ty, Ty Shaft torques for the pump, turbine

T Torque in seal between pump + turbine rotors

Tow, Ttw ~ Windage torques for the pump, turbine

U, Meridional component of fluid velocity at
stations 1 = 1,2,3 (= Q/A;)

v; Tangential fluid velocity at i = 1,2,3

ap, ay, 0y Angles of attack of flow on pump, turbine,
turning vanes (relative to axial plane)

Bp, Bty By Discharge vane angles for pump, turbine,
turning vanes (relative to axial plane)

- Effective discharge angle for turning vanes

0p,0t,0,  Inlet vane angles at pump, turbine,
turning vanes (relative to axial plane)

n Overall coupling efficiency, n = N, T} /NpT),

p Fluid density

1. INTRODUCTION

Fluid couplings and torque converters are now commonly
used in a wide variety of applications requiring smooth
torque transmission, most notably in automobiles. They
usually consist of an input shaft that drives a pump im-
peller which is closely coupled to a turbine impeller that
transmits the torque of an output shaft coaxial with the in-
put shaft. The fluid is usually hydraulic oil and the device
is normally equipped with a cooling system to dissipate
the heat generated. In a typical fluid coupling used, for ex-
ample, in a ship propulsion system, the pump and turbine
are mounted back to back with little separation between
the leading and trailing egdes of the two impellers. It is
common to use simple radial blades and a higher solidity
(the present pump rotor has 30 vanes) than would be uti-
lized in most conventional pumps or turbines (Stepanoff
[1], Brennen [2]). A torque converter as used in automo-
tive transmission systems has an added set of stator vanes
mounted between the turbine discharge and the pump in-
let.

In the present paper we present a hydraulic analysis of
another variant in this class of fluid transmission devices,
namely a reversible fluid coupling. This device was devel-
oped and built by Franco Tosi in Italy in conjunction with
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Figure 1: Cross-section of reversible fluid coupling show-
ing key locations in the fluid cavity.

SSS Gears Ltd. in the U.K. and in described in detail in
Fortunato and Clements [3], Clements and Fortunato [4]
and Clements [5]. Tests on the device conducted by the
US Navy (NSWC Philadelphia) and are documented in
Nufrio et al. [6] (see also, Zekas and Schultz [7]). This
paper presents a method of analysis of the performance of
such devices and uses one of the Franco Tosi designs tested
by NSWC as an example. As shown diagrammatically in
figure 1, the reversible fluid coupling has an added feature,
namely a set of guide vanes. With the vanes retracted the
device operates as a conventional fluid coupling and the
direction of rotation of the output shaft is the same as the
input shaft. When the vanes are inserted, the direction
of rotation of the output shaft is reversed. In traditional
terms, the reversible fluid coupling can, in theory, oper-
ate over a range of slip values from S =0to S = 2. In
the present paper, we utilize overall coupling performance
data obtained by NSWC and several investigations of flow
details carried out by WesTech Gear Corporation.

A number of recent papers have demonstrated how com-
plex and unsteady the flow is in torque converters (see, for
example, By and Lakshminarayana [8], Brun et al. [9],
Gruver et al. [10]. Due, in part, to the need to operate
the machines over a wide ranges of slip values, the inci-

STREAMTUBES

Figure 2: Sketch showing the subdivision of the flow into
streamtubes.

dence angles on the impeller blades tend to be very large
thus generating substantial flow separation at the leading
edges as well as much unsteadiness and high turbulence
levels. To accomodate these violent flows and to force the
flow to follow the vanes at impeller discharge, the solid-
ity of the impellers is usually much larger than would be
optimal in other turbomachines.

Though several efforts have been made to compute these
flows from first principles (By et al. [11], Schulz et al.
[12]), such complex, unsteady and turbulent flows with
intense secondary flows are very difficult to calculate be-
cause of the lack of understanding of unsteady turbulent
flows. In the present paper we begin with a simple one-
dimensional analysis of the flow in a reversible fluid cou-
pling. This one-dimensional analysis may be used as a first
order estimate of the coupling performance. Alternatively
it can be applied to a series of streamtubes into which the
coupling flow is divided. Such a multiple streamtube (or
two-dimensional flow) analysis allows accommodation of
the large variations in flow velocity and inclination which
occur between the core and the shell of the machine.

In the multiple streamtube analysis the flow is sub-
divided into streamtubes as shown in figure 2; all the
data presented here used ten streamtubes of roughly sim-
ilar cross-sectional area. The flow in each streamtube is
characterized by meridional and tangential components of
fluid velocity, u; and v;, at each of the transition stations,
it = 1,2,3, between the turbine and the pump (i = 1),
between the pump and the turning vanes (: = 2) and be-
tween the turning vanes and the turbine (i = 3). A typi-
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Figure 3: Velocity triangle at the turbine/pump transition
station, ¢ = 1. Flow is from the right to left, the direction
of rotation is upward and the angles are shown as they are
when they are positive.

Table 1: Basic geometric data for the reversible coupling.

Pump discharge vane angle, 3,, at shell 0°
Pump discharge vane angle, 3,, at core 0°
Turbine discharge vane angle, 3;, at shell 31.5°
Turbine discharge vane angle, §;, at core 44°

Turning vane discharge angle, 3, —55°
Pump inlet vane angle, 6,, at shell —17°
Pump inlet vane angle, 6,, at core —10°
Turbine inlet vane angle, d;, at shell 0°
Turbine inlet vane angle, d;, at core 0°
Turning vane inlet angle, d, 55°
Outer core radius/Outer shell radius, r, ~ 0.861
Inner core radius/Outer shell radius, r. 0.592

Inner shell radius/Outer shell radius, r4 0.29

cal velocity triangle, in this case for the transition station
i =1, is included in figure 3; the velocity triangles for the
other transition stations are similar.

Later we will present measured performance data for
the reversible coupling whose basic geometry is listed in
Table 1.

In the multiple streamtube analysis, the mean radius of
the jth streamtube (the numbering of the streamtubes is
shown in figure 2) at each of the locations i = 1,2, 3 is de-
fined by 7; ;. Since the distribution of velocity will change
from one station to the other, only one of these three sets
of streamtube radii can be selected a priori. We chose
to select the series 7;1 at the turbine/pump transition.
It follows that 7,2 and 7; 3, the streamtube radii at the
pump discharge and at the turning vane discharge must
then be calculated as a part of the solution. Discussion of
how this is accomplished is postponed until the solution
methodology is described in section .

2.  BASIC EQUATIONS

The process of power transmission through the coupling
(operating under steady state conditions) will now be de-
lineated. In the process, several loss mechanisms will
be identified and quantified so that a realistic model for
the actual interactions between the mechanical and fluid-
mechanical aspects of coupling results.

2.1 Pump

The power input to the pump shaft is clearly N,T,. Some
of this is consumed by windage losses in the fluid annulus
between the pump shell and the stationery housing. This
is denoted by a pump windage torque, T},,, which will be
proportional to NZ. Included in this loss will be the shaft
seal loss as it has the same functional dependence on pump
speed. It is convenient to denote this combined windage
and seal torque, T}, by a dimensionless coefficient, Cp,,
where T, = pwa5N3. Appropriate vales of Cp,, can
be obtained, for example, from Balje [13] who indicates
values of the order of 0.005.

Furthermore the labyrinth seal in the core between the
pump and turbine rotors causes direct transmission of
torque from the pump shaft to the turbine shaft. This
torque which is proportional to (N, — N;)? will be de-
noted by T and is represented by a seal windage torque
coefficient, Cy,,, defined as

Ts = CswaS(Tg - Tg)(N;D - Nt)2 (1)

A comparison with the experimental data (section 4) sug-
gests a value of Cy,, of about 0.014. In referring, to this
labyrinth seal, we should also observe that the leakage
through this seal has been neglected in the present anal-
ysis.

It follows that the power available for transmission to
the main flow through the pump is Ny, (T}, — Ty — 1) and
this manifests itself as an increase in the total pressure of
the flow as it passes through the pump. For simplicity, the
present discussion will employ a two-dimensional represen-
tation of the fluid flow in which the flow is characterized
at any point in the circuit by a single meridional velocity,
u;, and a single tangential velocity, v;, at the appropriate
rms radius. In practice, these quantities will vary over the
cross section of the flow and this variation is considered
later. At this stage it is not necessary to introduce this
complexity. The power balance between the mechanical
input, the losses and the ideal fluid power applied to the
pump, then yields

Np(Tp — Ty — TS) = QHm' (2)

where, from the application of angular momentum con-
siderations in the steady flow between pump inlet (i = 1)



and pump outlet (¢ = 2), the pump head rise, Hy;, is given
by
Hpi = pNp(rav2 — riv1) (3)

More specifically, H,; will be referred to as the ideal pump
total pressure rise in the absence of fluid viscosity when
the pump would be 100% efficient. However, in a real,
viscous flow, the actual total pressure rise produced, H),
is less than Hp;; the deficit is denoted by H); where

Hy = Hp; — Hy (4)

This total pressure loss, Hpy, is difficult to evaluate accu-
rately and is a function, among other things, of the angle
of attack on the leading edges of the vanes. Note that the
angle of attack, a,, on the pump blades is given by

—ri N,
a, =tan™? {w} — 0p (5)

U1

In the present context the total pressure loss, Hy;, is as-
cribed to two coefficients, Cpq, and Cp,. The first co-
efficient, Cpq,, describes a loss which is a fraction of the
dynamic pressure based on the component of relative ve-
locity parallel to the blades at the pump inlet. The second
coefficient, Cly, describes a loss which is a fraction of the
dynamic pressure based on the component of the pump
inlet relative velocity perpendicular to the blades. Thus

Hp = g [“% + (v1 — Tle)Q] [Cpa + (Cpp —

Cpa)sin2ap]
(6)

The coefficients Cp, and Cp, can be estimated using
previous experience in pumps. Though there are many
possible representations of the pump total pressure loss,
the above form has several advantages. First, at a given
flow rate, the loss is appropriately a minimum when o,
is zero, a condition which would correspond to the design
point in a conventional pump. And this minimum loss
is a function only of Cp,. On the other hand at shut-off
(zero flow rate) the loss is a function only of Cpy,. These
relations permit fairly ready evaluation of Cp, and Cly in
conventional pumps given the head rise and efficiency as a
function of flow rate. Typical values of C), and Cl are of
the order of unity; but the value of C}, must be less than
the value of Cpy, the difference representing the effect of
the inlet vane angle on the losses in the pump.

The hydraulic efficiency of the pump, 7,, is 1 —Hy/ Hp;.
In a conventional centrifugal pump for which v; = 0, the
maximum design point efficiency, n,, is expected to be
about 0.85. With the kind of uneven inlet flow to be
expected in the present flow a lower value of the order of
0.80 is more realistic. This value provides one relation for
Cpa and Chy.

2.2  Turbine

We now jump to the turbine output shaft and work back
from there. The power delivered to the turbine shaft is
N T;. As in the pump there are windage losses, N;T},
where the windage torque, T}, is described by a dimen-
sionless coefficient, Cy,, = Ty /pNZ. Then the power de-
livered to the turbine rotor, Ny(T; + Ty — Ts), by the
main flow through the turbine is related to the ideal total
pressure drop through the turbine, Hy;, by

Ne(Ty + Ty — Ts) = QHy; (7)
where, again, from angular momentum considerations
Hy; = Ny(ravs —r101) (8)

With an inviscid fluid, Hy; would be the actual total pres-
sure drop across the turbine. But in a real turbine the
actual total pressure drop is greater by an amount, Hy,
which represents the total pressure loss in the turbine, and
hence

Hy = Hy + Hy 9)

In a manner analogous to that in the pump, the total
pressure loss in the turbine, Hy;, is ascribed to two coeffi-
cients Cy, and Cy. The first coefficient, C;,, describes a
loss which is a fraction of the dynamic pressure based on
the component of relative velocity parallel to the blades at
the turbine inlet. This coefficient essentially determines
the minimum loss at the design point where the angle of
attack, ay, is zero. The second coefficient, Cyy, describes a
loss which is a fraction of the dynamic pressure based on
the component of the turbine inlet velocity perpendicular
to the blades. Thus

H, = p [uj + (vs —13N)?] [Cra + (Crp — Cra)sin® ]

2
(10)
where the the angle of attack, a;, on the turbine blades is
given by
— 1oV,
at:mn—l{w}—@ (11)
us

As in the case of the pump, appropriate values of C,
and Cy, are of the order of unity and should be such as
to yield a stand-alone turbine efficiency, Hy;/H; of the
order of 0.85. However, Cy, must be greater than Cy, to
reflect the appropriate effect of the inlet vane angles on
the hydraulic losses.

2.3  Turning Vanes

The geometry of a turning vane used in the coupling dis-
cussed here is shown in figure 4.



Figure 4: Cross-section of a turning vane.

The total pressure rise produced by the pump, H,, is
equal to the total pressure drop across the turbine, H;,
plus the total pressure drop across the turning vanes, H,,
so that

H,=H;+ H, with the turning vanes inserted (12)

H, =0 with the turning vanes retracted (13)

It is this balance which essentially determines the flow
rate, @, and the meridional velocities, u;. The total pres-
sure drop across the vanes, H,, is described a loss coeffi-
cient defined by

Cy = 2H,/p(v3 + u3) (14)

Though both H, and C,, will vary with the angle of attack
of the flow on the turning vanes, a,,, we have not exercised
that option here since there is no independent information
on the turning vane performance. Estimates from experi-
ence suggest that C, should lie somewhere between about
0.3 and 1.0.

2.4 Turbine Partial Admission Effect

Due to the large blockage effects of the turning vanes,
the flow discharging from the vanes consists of an array
of jets interspersed with relatively stagnant vane wakes.
This means that during reverse operation the turbine ex-
periences inlet conditions similar to those in a partial ad-
mission turbine. In the hydraulic analysis we can approx-
imately account for these partial admission effects by tak-
ing note of the following property of partial admission.
Consider and compare the flux of angular momentum in
the flow into the turbine, first, for full admission and, sec-
ond, for partial admission. Under uniform, full admission

conditions, uz and vz are independent of circumferential
position and the flux of angular momentum entering the
turbine is proportional to ugvs. If the swirl angle were de-
fined by the turning vane discharge angle then this reduces
to u% tan 3,. On the other hand a partial admission flow
consisting of jets with velocity components u3, v3 alter-
nating with stagnant wakes of zero velocity would have a
flux of angular momentum equal to kujv; where k is the
fraction of the cross-sectional area occupied by the jets
(0 < k < 1). But if the total flow rate is the same in both
cases then u} = us/k and if the jets are parallel with the
turning vane discharge angle then v = ujtan3,. Hence
the flux of angular momentum becomes u3tan3,/k. In
other words the blockage which creates the jets and wakes
also leads to an increase in the flux of angular momentum
by the factor, 1/k.

To account for this in the flow analysis, the appropri-
ate angular momentum flux (which is essential to the ba-
sic principles of the pump or turbine) can be maintained
by inputting an effective turning vane discharge angle de-
noted by 3. Comparing the above expressions the effec-
tive turning vane discharge angle is given by

tan 8 = tan 8, /k (15)

Hence by inputting a somewhat larger than actual turn-
ing vane discharge angle we can account for these partial
admission effects.

The problem therefore reduces to estimating an appro-
priate value for k from the experimental measurements.
For this purpose, we develop the relation between k and
the loss coefficient for the turning vanes, C,. If the total
head of the jets is assumed to be equal to the upstream
total head (at location ¢ = 2), then it is readily shown
that the mean total head of the discharge (including the
wakes) implies the following relation between k and C,:

1 — Cytan?p, 3
—J v v 1
k { 1+C, } (16)

The value of C,, = 0.36 which is deployed later along with
the appropriate 3, = —55° yield 3} = —72.8° and a block-
age ratio (or partial emission factor) of k& = 0.44 which
seems reasonable given the geometry of the turning vane
cascade.

3. SOLUTION OF THE FLOW
3.1 Solution for an individual streamtube

Consider first the solution of the flow in an individual
streamtube where it is assumed that the velocity at any
location in the circular path (figure 2) can be character-
ized by a single meridional and a single tangential velocity.



Assume for the moment that the radial positions of the
streamtube are known; then the inlet and discharge angles
encountered by that particular streamtube at those radial
positions at each of the transition stations can be deter-
mined. Then for a given slip, S = 1 — N;/N,, the first
step is to solve the flow equation (12) or more specifically:

Hpi — Llpl = Hti + Htl + Hv (17)

to obtain the flow rate and velocities. The procedure used
starts with a trial value of u;. Values of us, uz follow from
continuity knowing the areas A;:

U; = ’U,lAl/Al' y 1= 2, 3 (18)

Furthermore, it is assumed that the relative velocity of
the flow discharging from the pump, the turning vanes or
the turbine is parallel with the blades of the respective
device (or the effective angle in the case of the turning
vanes). Given the high solidity of the pump and turbine,
this is an accurate assumption. This allows evaluation of
the tangential velocities:

v1 = r1 Ny + uq tan 3 (19)

vy = 19Ny, + ug tan g, (20)

where r1 and r9 are rms channel radii at each location and
v3 = vy for the turning vanes retracted and vs = ug tan g,
for the turning vanes inserted. These relations can then
be substituted into the definitions (3), (8), (6), (10) and
(14) to allow evaluation of all the terms in equation (17).
That equation is not necessarily satisfied by the initial
trial value for u;. Hence an iteration loop is executed to
find that value of uy which does satisfy equation (17). The
velocities and flow rate are thus determined for a given
value of the slip.

3.2 Multiple Streamtube Solution

As described in the last section, the multiple streamtube
analysis begins with a set of guessed values for the stream-
tube locations at the transition stations, ¢ = 2 and ¢ = 3.
It also begins with an assumed value for the flowrate in
each streamtube (more specifically an assumed value of
u; = 1.) Then the method of the last section is used
to solve for the flow and allows evaluation of the total
pressure changes and losses in each streamtube. Then,
the degree to which equation (17) is satisfied is assessed.
This leads to an improved value of u; and the process is
repeated to convergence (only three or four cycles are nec-
essary). By doing this for each streamtube we obtain the
total pressure and the static pressure differences between
all three locations for each streamtube.

Table 2: Power transmission and losses.

Pump shaft power = N,T,
Power lost in pump windage = NyTpw
Power to turbine through seal = N,T;
Power to main pump flow =QH,
= Np(Tp —Tpw — T5)
Power in main flow out of pump = Q(Hp; — Hpi)
Power lost in turning vanes = QH,
Power in flow entering turbine = Q(Hpi — Hy — Hy)
= Q(Hy + Hy)
Power to turbine rotor by flow = QHy
= N(T} + Ty — Ts)
Power to turbine through seal = NT,
Power lost in turbine windage = NiT}y,
Turbine shaft power = N,T;

The principle by which the streamtube geometry is ad-
justed is that the flows in each of the three locations should
be in radial equilibrium. This implies that, at each of the
locations ¢ = 1,2, 3, the flow must satisfy

oP v?
(%), % @

where P is the static pressure. Application of this condi-
tion at the turbine/pump transition station (i = 1) estab-
lishes the static pressure difference between each stream-
tube. Then using the information from the flow solution
on the static pressure differences between transition sta-
tions we can establish the pressure distribution between
the streamtubes at transition stations ¢ = 2 and ¢ = 3.
Then using equation (21) we examine whether the flows
in these locations are in radial equilibrium. Given the ini-
tial trial values of 7; » and 7 3, this will not, in general, be
true. The method adjusts the values of 7; 2 and 7; 3 and
then repeats the entire process until radial equilibrium is
indeed achieved at transition stations ¢ = 2 and ¢ = 3.
This requires as many as 30 iterations.

3.3 Power Transmission Summary

This completes the description of the power transmission
through the coupling which is summarized in Table 2. The
overall efficiency of the coupling, n, is given by

~ NIy, QHy — NiTyw + NpTs

0= - 22
Npr QHm’ + Nprw + Nst ( )

or substituting from equations (4) and (9):
_ Ni(rovs — riv1) = (NiThw + N T5)/Q (23)

© Ny(rava — 1) + (NpTpw + NpT4)/Q
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Figure 5: Efficiency and torque coefficients for the re-
versible coupling using Cp, = Ciq = 0.7, Cppy = Cyp = 1.0,
C, =0.36, Cy,y = 0.02, Cy, = 0.005 and an effective turn-
ing vane discharge angle of —72.8°.

This expression demonstrates an important feature of the
reversible coupling. In the forward mode with the vanes
removed, vo = w3, and the quantities in parentheses in the
numerator and denominator are identical. Therefore, if
the windage torques, T}, and T}, are small as is normally
the case and if @ is not close to zero (as can only happen
close to S = 0) then the coupling efficiency is close to
Ny/N, = 1— 5. Thus, in the forward mode, only the
windage losses cause the efficiency to deviate from 1 — S.
On the other hand no such simple relation exists in the
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Figure 6: Velocity of turning vane discharge jets for the
same conditions as listed in figure 5.

reverse mode.

Apart from the overall efficiency, 7, two other cou-
pling characteristics will be presented, namely the pump
torque coefficient, C),, and the turbine torque coefficient,
C}. Note the choice of N, in the denominator for C.

4. COMPARISON WITH EXPERIMENTS
4.1 Experimental Data

The efficiency, torque coefficients and fluid velocities mea-
sured during tests of the coupling conducted by NAVSSES
(using an oil of density 849 kg/m?) at a input (or pump)
speed of 1000rpm will be compared to the results of the
present analytical model. Note that although three graphs
for n, C), and C} are presented, these only represent two
independent sets of data since n = C(1 — S)/C).

4.2 Performance

A typical set of results for the performance of the cou-
pling are presented in figures 5 and 6. The coefficients
Chpas Cpb, Cta; Cuy, and Cq (and, to a lesser extent, Cy,
and Cy,,) were chosen to match the experimental data by
proceeding as follows. First note that C,, and Cy, have
little effect except close to S = 0. In fact, the peak in n
near S = ( is almost entirely determined by C, and values
of Cy, = 0.02 were found to fit the data near S = 0 quite
well. This value is also consistent with previous experience
on windage coefficients (Balje [13]). Similarly past expe-
rience would suggest a value of 0.005 for the seal windage
coefficient, Cl,,.

Turning to the pump, turbine and turning vane loss
coefficients, it is clear that the turning vanes have no effect
on forward performance (S < 1). Hence the pump and
turbine loss coefficients were chosen to match this data. In



Figure 7: Meridional velocity distributions at the transition stations for four different slip values.

this regard the efficiency is of little value since the forward
efficiency is always close to (1—.5). Values of Cpq = Ciq =
0.7 and Cp, = Cyp = 1.0 seemed to match the forward
torque coefficients well. These could be supported by the
argument that all the dynamic head normal to the vanes
at inlet will likely be lost (thus Cpy = Cy, = 1.0) and a
high fraction of that parallel with the vanes is also likely
to be lost (thus Cpq = Ciq = 0.7). Note that the results
presented are not very sensitive to the precise values used
for these loss coefficients. It should also be noted that
these loss coefficients yield sensible peak efficiencies for
the pump or turbine when these are evaluated for stand-
alone performance (respectively 79% and 86%).

Finally, then, we turn to the reverse performance (S >
1) with only one loss coefficient left to determine, namely
the loss due to the turning vanes, C,,. In the example
shown a value of C,, of 0.36 yields values of the efficiency
which are consistent with the experimental results.

Note that if the coefficients described above were used
with the actual turning vane discharge angle, there would
be substantial discrepancies between the observed and cal-
culated results; this helps to confirm the analysis of section

and the use of the effective turning vane discharge angle,
= —T72.8°.

4.3 Velocity Distributions

The multiple streamtube approach also provides informa-
tion on the distributions of flow, angles of attack, etc.
within the coupling and demonstrates how these change
with slip. Examination of the results revealed several
ubiqgitous non-uniformities and one example, presented in
figure 7, will suffice to illustrate these. At low slip values
in forward operation the meridional velocity profiles are
very non-uniform. This non-uniformity consists of much
higher meridional velocities near the axis in the turbine-
to-pump transition and at the outer radius in all the tran-

sitions. As the slip increases in forward operation this non-
uniformity decreases; near S = 1 it has disappeared at the
pump-to-turbine transition but remains at the turbine-to-
pump transition. When the turning vanes are inserted,
the velocity profiles show a highly non-uniform character
in the pump-to-turning-vane transition but this is almost
completely evened out by the turning vanes. The turbine-
to-pump non-uniformity near S = 1 is not too dissimilar
to that in forward operation near S = 1. However, it is
interesting to note that this non-uniformity is reversed as
S = 2 is approached. These changing non-uniformities are
important becaause they imply corresponding changes in
the distribution of the angles of attack on the pump, turn-
ing vanes, and turbine. Consequently, the optimal vane
inclination distributions (which would have as their ob-
jective uniform angles of attack) are different for forward
and reverse operation.

5. CONCLUSIONS

This paper presents a hydraulic analysis of a reversible
fluid coupling operating over a range of slip values in
both forward (0 < S < 1) and reverse (1 < S < 2) op-
eration. The analysis employs estimates loss coefficients
for the pump, turbine, turning vanes, windage and core
seal. It splits the flow into an array of streamtubes with
pressure balancing adjustment across those streamtubes
and solves to find the fluid velocities, flow rate and static
pressures at each of the transition stations for each stream-
tube. This information then allows evaluation of the over-
all performance characteristics including the efficiency and
the pump and turbine torque coefficients. Comparison
with data from the full scale testing (conducted by the
US Navy) of a reversible fluid coupling made by Franco-
Tosi demonstrates good agreement between the analysis
and the experiments. While the analysis involves the se-
lection and identification of a number of hydraulic loss



coefficients, the values of the coefficients do appear to be
valid over a wide range of operating points, slip values
and speeds. Moreover, though these coefficients are nec-
essarily specific to the particular coupling studied, they
nevertheless provide benchmark guidance for this general
class of machine.

When the coupling is operated in the forward mode,
the flow rates are small and hence the hydraulic losses are
quite minor. Thus the efficiency is close to the ideal. How-
ever, as the slip increases, the flow rates become larger and
the hydraulic losses (which increase like the square of the
flowrate) become substantial. Under these conditions the
device behaves much more like an interconnected pump
and turbine than a conventional fluid coupling and the
overall efficiency is similar to that one would expect from
a device which links drive trains through a combination
of a pump and a turbine. Even under the best of circum-
stances the analysis suggests that the efficiency of this
generic type of coupling could not be expected to exceed
60% in the reverse mode.

The analysis presented here also demonstrates that,
since it is used over a wide range of slip values, a re-
versible fluid coupling must operate over a wide range of
angles of attack of the flows entering the pump and tur-
bine rotors. With fixed geometry rotors, this inevitably
results in substantial hydraulic losses, particularly in the
reverse mode. Choosing the inlet blade angles in order to
minimize those losses is not simple and it is not clear how
the fixed geometry should be chosen in order to achieve
that end.
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