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ABSTRACT

The speed and attenuation of small amplitude kine-
matic waves were measured in vertical bubbly and par-
ticulate flows in a continuous medium of water. This was
done by evaluating the time delay and phase lag of coher-
ent random fluctuations in the volume fraction signal at
two measuring locations. The volume fraction was mon-
itored using two closely spaced Impedance Volume Frac-
tion Meters (Kytémaa (1986)). Using the broad-band
volume fraction perturbations yields the dependence of
the kinematic speed and attenuation on wave number
from a single experiment for one set of conditions. The
kinematic waves were found to be non-dispersive. Bubbly
flows are observed to undergo a change in flow regime at
an approximate volume fraction of 45%. Prior to onset o
churn-turbulence, a sharp drop in kinematic wave attenu
ation is observed above volume fractions of 40%. When
further increase in volume fraction is attempted, the hc
mogeneous dispersion suddenly becomes unstable. Th
particulate flows remain uniformly dispersed for all vo
ume fractions, but above a value of & 55%, the mixtw
flows like a solid plug. The volume fraction fluctuatios
become increasingly persistent as the volume fraction aj
proaches the solidification value, but no instability is ol
served. It is argued that the inability of air-water flows
to withstand bubble-bubble forces without break-up may
account for the differences between the bubbly and par-
ticulate flow results.

1. INTRODUCTION

The departure of a two-component flow from the uni-
form dispersion of its constituents is known to be a ma-
jor cause of inefficient fluidized bed operation (Homsy
& al (1980), Anderson & Jackson (1967 & 1968), Zenz
(1971)). It is also believed to be responsible for increased
settling rates in liquid suspensions, as shown by Batch-
elor (1986), Fessas and Weiland (1981) and Whitmore
(1955). The growth of small perturbations in the local
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concentration of particles is believed to be the source of
such non-uniformities. The growth of structure in sedi-
menting two-particle mixtures of zero net flow has been
studied by Batchelor and Fessas & Weiland. Their work
uncovered the complex streaming as well as globular na-
ture of the structure in bi-disperse systems. Didwania
& Homsy (1981) studied the behavior of mono-disperse
solid-liquid mixtures in two-dimensional fluidized beds,
and observed the break down of initially planar concen-
tration waves into two-dimensional structure. In this
study, we focus on the nature of one-dimensional two-
component flows. The propagation and growth of con-
centration waves is studied in flowing mixtures of inter-
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ach is limited by the difficulty
-ottling the disperse medium to
create small amplitude perturbations. Alternately, nat-
urally occurring random fluctuations in volume fraction
can be used as the perturbations of which the speed and
growth rate are sought. This is the method used to ob-
tain the dispersion relation for kinematic waves. For this,
the “noise” in the volume fraction signals at two closely
spaced locations was used to obtain the wave speed and
attenuation of coherent volume fraction fluctuations.

2. EXPERIMENTAL FACILITY

The Three Component Flow Facility (TCFF) shown
in Figure (1) was used to study small amplitude kine-
matic wave propagation in bubbly and particulate two-
component flows. The test section is a vertical clear
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acrylic pipe .1016 meters (4 inches) in diameter and 2.2
meters in length. The air- water flows are formed by in-
troducing the gas through an injector situated inside“the
vertical pipe, .5 meters below the test section. The in-
jector consists of an array of twelve 3.2 mm (1/8 inch)
diameter brass tubes perforated with .4 mm (1/64 inch)
holes. - An 8 atm (120 psi) compressed air line supplies
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Figure (1) Schematic of the Three Component Flow Facility.

the injector through a regulator, an orifice plate flow me-
ter (to monitor air mass flow), valves to control air flow
and a manifold to distribute the air flow evenly among
the brass tubes. The solid-liquid flows studied consist of
water and polyester particles. The facility is able to han-
dle solids and to control their flow rate independently of
the liquid without having to add or remove solids from
the exterior of the system. When at rest prior to an ex-
periment the solids are trapped between a vertical 4 inch
control cylinder and the storage hopper (see Figure (1)).
As the control cylinder is raised from the reducer on top
of which it sits, the gap created allows particles to enter
the test section under the action of gravity. The vertical
position of the control cylinder can be varied by means
of a control rod attached to a worm gear mechanism and
this permits the solids flow rate to be controlled by vary-
ing the gap between the cylinder and the reducer. To
recycle the solids after an experiment the control cylin-

der is lowered to the closed position and sufficient upward
water flow is generated to fluidize the solids in the lower
tank and to carry them back to the hopper where they
settle into their original position.

The volume fraction of the dispersed medium is mea-
sured using a non-intrusive Impedance Volume Fraction
Meter (IVFM). The IVFM was developed by Bernier
(1981). It has been modified for temperature compen-
sation and now has a shielded electrode configuration
which decreases the axial extent of the influence volume
over which the measurement is carried out. The active
stainless steel electrodes which are flush mounted into a
section of .1016 meter (4 inch) diameter non-conducting
acrylic pipe are 6.4 mm in axial length and form dia-
metrically opposed 90 degree arcs on the circumference
of the pipe. The active electrodes are each sandwiched
between two shielding electrodes. These are 9.5 mm in
axial length and also form 90 degree arcs. Figure (2)
shows the electrode configuration. The shielding elec-
trodes duplicate the active electrode potential through a
high input impedance voltage follower. The IVFM is ex-
cited at an amplitude of .3 volts r.m.s. and a frequency of
40 KHz at which the impedance is found to be primarily
resistive. The excitation and signal processing equipment
is described in more detail by Bernier (1981}, while the
shielding and temperature compensation aspects of the
device are described in Kytdmaa (1986). The IVFM has
excellent linearity with both bubbly and particulate flows
up to volume fractions of 50%. With a sensitivity of .15
Volts per percent of volume fraction, the passage of indi-
vidual bubbles (or particles) is readily detectable.
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Figure (2) Isometric view of the shielded Impedance Volume
Fraction Meter electrode geometry.

The mean bubble and polyester particle diameters
were 4 mm (£ .5 mm) and 3 mm (4 .5 mm) respectively.
Only low flowrates were studied; the liquid fluxes of all
two-component flows considered were no larger than .3
m/s.



3. THE CROSS-CORRELATION FUNCTION
AND ITS INTERPRETATION

It has previously been established that the spatial
resolution of the IVFM is of the order of 1 cm in the
axial direction (Kytdmaa (1986)), and that the influence
volume of the measurement remains unchanged for vol-
ume fractions and flow rates considered. These prop-
erties make the IVFM suitable for the study of volume
fraction perturbations over a broad range of wave lengths
and allows the IVFM’s to be used close to one another
without the problem of cross-talk. Measurements of the
fluctuations in the volume fraction signal were made si-
multaneously at two closely spaced locations (h=.0735
m) under steady flow and volume fraction conditions for
both bubbly and particulate flows.

The IVFM fluctuating component was obtained by
passing the IVFM output signal through a high pass filter
with a 3 dB cut off frequency of .032 Hz and a fall off slope
of 10 dB per octave. The filter output was recorded on
magnetic tape for reduction. The record length used was
1 minute. Cross-correlations of simultaneously recorded
data from the two IVFM’s were obtained on an HP 3562a
signal processor. Repeatable cross-correlograms were ob-
tained by ensemble averaging the measurement with en-
sembles each of of 1 second in length. The record lengths
were as long as 20 minutes for bubbly flow measurements
and no shorter than 1 minute in the case of particulate
flows. The fluctuating components of the signal pair were
cross-correlated to yield the residence time of coherent
signal between the two concentration transducers. The
cross-correlation (Ry ;) of the fluctuating components

of the two IVFM signals is defined as

L1 (T
R17'1\7:(T) =Tlgx:°— A Vl(t)Vg(t-{-T) dt, (1)

where 171 and f’z are the fluctuations of the IVFM out-
puts under steady state conditions. Typical measured
cross-correlation records are shown in Figure (3). The
residence time is obtained from the location in time of
the peak in cross-correlograms. Knowing the time taken
by the coherent signal to travel from one IVFM to the
other, and the distance, h, between the electrode pairs,
we calculate the speed of propagation of information, vy
in the two-component flows in question.

vx = ——, (2

Tmax

This propagation velocity is later shown to be the in-
finitesimal kinematic speed by comparing it with the dis-
perse medium velocities (of bubbles and particles) and
the infinitesimal kinematic wave velocities obtained us-
ing the Drift Flux Model {Zuber & Staub (1966), Wallis
(1969), Kynch (1952)).

Bernier (1981), who used an unshielded IVFM elec-

trode configuration showed that the velocity obtained
through cross-correlation was the kinematic wave speed,
not the speed of bubbles. At the other extreme, it has
been shown that the cross-correlation of the signals of two
point volume fraction measuring devices such as hot film
anemometers or fiber optic probes separated by a small
distance (of the order of the diameter of the dispersed
medium) yields the dispersed medium (bubble) velocity.
To verify that the speeds measured here are indeed kine-
matic wave speeds and not the disperse medium speed,
we compare cross-correlation speeds to actual bubble and
particle speeds and to kinematic wave speeds as predicted
by the Drift Flux Model.
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Figure (3) Typical cross-correlations of the IVFM output fluc-
tuating voltage in bubbly and particulate ows.

The bubble speed relative to the liquid is obtained
from the measured air and water fluxes (j, and 5} and «
the volume fraction using
jq jl (3)

T da T A(-oa)

The kinematic wave speed relative to the liquid is derived
using the Drift Flux Model which is well decribed in Wal-
lis’s text. It is directly dependent on the relative velocity-
volume fraction function obtained experimentally. The
Drift Flux infinitesimal kinematic wave speed and the
velocity obtained using the above cross-correlation tech-
nique are compared in Figure (4). The results eliminate
the ambiguity in interpretation of our measurement and



confirms that the cross-correlation of the volume fraction
fluctuations (as measured using the IVFM’s) yields the
speed of infinitesimal kinematic waves for bubbly flows.
These findings agree well with similar results obtained
by Bouré and Mercadier (1982) who used a capacitive
measurement of volume fraction.
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Figure (4) Infinitesimal kinematic wave speed values obtained
by the cross-correlation technique for bubbly flows.
The solid curve is the infinitesimal kinematic wave
speed based on the Drift Flux Model and measure-
ments of the air drift fux.

In polyester particle-water flows we are unable to di-
rectly measure the particle speed. The particle velocity
relative to water was obtained indirectly by measuring
the propagation speed of finite kinematic shocks. This
method was tested with bubbly flows and showed to be a
consistent method of determining the disperse medium
velocity. The method, outlined in detail in Kytdmaa
(1986), models the particle velocity as the third order
function of volume fraction which best fits the kinematic
shock speed results. The infinitesimal kinematic wave
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Figure (5) Infinitesimal kinematic wave speed values obtained
by the cross-correlation technique for particulate
flows. The solid curve is obtained using the Drift
Flux Model.

speed obtained from it and the transport velocity de-
duced from cross-correlation measurements are compared
in Figure (5). The results allow us to conclude, as for
bubbles, that peaks in the cross-correlation of the IVFM
fluctuations for steady polyester particle-water flows cor-
respond to the residence time of infinitesimal kinematic
waves between the IVFM’s.

4. THE NON-DISPERSIVE NATURE OF IN-
FINITESIMAL KINEMATIC WAVES

In this section we turn our attention to modeling the
propagation and attenuation of structure in vertical two-
component flows. A measure of the structure is obtained
from the statistical properties of the fluctuations in the
volume fraction signal. The continuous reordering of the
disperse species in the stable steady two-component flows
observed is modelled as an attenuation of the coherent
signal from one IVFM to the other. The power spectra
of volume fraction fluctuations at two different locations
of the same (kinematically stable) flow were found to be
equal within the scatter in the measurement; experimen-
tally obtained power spectra demonstrate this feature in
Figure {6) for two different values of volume fraction for
bubbly flows. Therefore, the amplitude of the uncorre-
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Figure (6) Power spectra of the IVFM output fluctuating volt-
age measured simultaneously at two locations sepa-
rated by .0735 m, for bubbly and particulate flows.

lated signal is taken to be equal to the amount removed
from the coherent signal through the attenuation, such
that the power spectra of the fluctuations of the two
IVFM’s are the same. In general both the attenuation
of the kinematic waves and their residence time between



the IVFM’s depend on the wave number. For this rea-
son, the model is best presented in the frequency domain
in terms of the wave number of the perturbations. The
wave number and the frequency are linearly related by
the following expression:

N=—. (4)
For kinematic waves travelling from IVFM1 to IVFM2,

the Fourier-transform of the measured fluctuations can
therefore be written as

Vy(N) = %/_x e~V (2)t, ‘ (5)
Va(N) = ¢(N)e NTEV, (N) +Var, (6)

where ¢(N) is the wave number dependent attenuation
and T(NV) is the transit time of the perturbation of wave
number N between the two detector positions. The fac-
tor e—*NT(¥) ig the characteristic “time delay exponen-
tial” which arises when taking the Fourier- transform of
a signal with a time lag T(N) . The quantity Va g is the

fluctuating term which is not correlated with Vi

The well defined cross-correlation peaks obtained in-
dicate that signal structure propagates at a fixed speed
for each record. If the waves were strongly dispersive,
the peaks would be broad. Conversely, if the waves were
non-dispersive, the peaks would be sharp. Let us first
consider the wave number dependence of the delay time.
This is best done by studying the phase of the cross-power
spectrum of the fluctuations of IVFM1 and IVFM2. This
is defined as

Sp.5, = Vi(N)V2(N), W)

where * denotes the complex conjugate of the function to
which it is applied. Substituting (6) into (7) we obtain

5‘71‘7: = g(N)e—iNT(N)SV'l‘h, (8)

where Sy 7, is the power spectrum of the fluctuations of
IVFMI, and is defined as

g, = VIIN)VL(N). (9)

. Power spectra are real functions; therefore the phase
#(N) of the cross-power spectrum in (8) is

#(N) = —NT(N). (10)

The cross-power spectrum phase, ¢(N), was evaluated
on the signal processor for the recorded data used for
the cross-correlation measurements; typical results are
shown in Figure (7). The phase was found to be lin-
ear in N in the region where the cross-power spectrum
amplitude is significant for both bubbly and particulate
flows. In other words, T(N) is independent of the wave

Cross-spectral density

number N. Thus, the kinematic waves can be considered
to be non-dispersive for the range of wave numbers with
measurable amplitudes. Therefore the slope of the phase
is the time lag of the signal between the two detectors.
This was compared to the time lag obtained using the
cross-correlation technique. The two were found to be
consistent.
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Figure (7) Cross-power spectrum of the IVFM output fluctuat-
ing voltage at two locations separated by .0735 m,
for bubbly flow showing the linear relation between
phase and wave number.

5. THE ATTENUATION OF INFINITESIMAL
KINEMATIC WAVES

The main motivation behind shielding the electrodes
of the IVFM was to improve the spatial resolution of the
device thereby allowing us to study the properties of short
wave length infinitesimal kinematic waves (< ..1m}, which
have eluded many authors due to the large geometry of
their measuring devices. This was successfully accom-
plished as indicated by the power spectra in Figure (6)
which contain reduced wave numbers up to 0.8 or wave
lengths down to .05 m.

We now seek the attenuation of infinitesimal kine-
matic waves as a function of the reduced wave number.
This is readily obtained from the coherence function v(N})
which is defined as

¥(N) = o (11)



where 4(N) can only assume values between 0 and 1.
Substituting for Sy, from (7) we get

F(N) = ¢(N). (12)

The attenuation of the correlated signal is identical to the

coherence of the fluctuating signals V; and V2. Assuming
that the attenuation is exponential in form, we write

A(N) = e HMT, (13)

where k is the attenuation time constant of infinitesimal
kinematic waves. This form is valid for small fluctuations
in the volume fraction signal, which is the case as long
as the fluctuations are stable and die away, ie. k£ > 0.
Taking the natural logarithm of (13) yields

KN) = —2in (V). (14

The attenuation k() is always positive since v(N) is al-
ways found to be less than 1, as expected since the flows
considered here were all invariant with time. The coher-
ence was obtained as a function of wave number from
the recordings of IVFM voltage fluctuations on the sig-
nal processor. Amplitude resolution of the coherence was
enhanced by chosing a relatively broad filter band width
(band width: An < .0015}) in the frequency domain com-
putation, but narrow enough not to “flatten out” mean-
ingful coherence fluctuations. The coherence displays a
“global” maximum at the most persistent wave number
which can be seen in Figure (8) for air-water flows and
Figure (9) for solid-liquid flows. The attenuation time
constant was then deduced using Equation (14) and is
shown in Figures (10) and (11) in reduced form against
reduced wave number for bubbles and solids respectively.

terminal velocity relative to the continuous medium at
zero volume fraction.

6. ERROR ANALYSIS

For all volume fractions of both bubbly and particu-
late flows, the coherence function exhibits a peak which
corresponds to the most persistent wave number. All ex-
perimental coherence traces contain some scatter. This
is manifested as parasitic non-repeatable fluctuations in
the measuerd coherence. This error, which is due to the
finite length of our measurements, is inversely propor-
tional to the root of the record length. Clearly, the ideal
record length should be very large. However, the batch
type particle flows which use a finite volume of particu-
late material, have a maximum run time which depends
on the solids volume fraction and flowrate. The shortest
flow duration was one minute. By comparison, twenty
minute runs were used for the bubbly flows. The error
in coherence is largest in large flow rate, high volume
fraction particle flows. However, if the coherence is large
then the relative size of the error is decreased. Fortu-
nately, large coherences were obtained for large volume
fraction bubbly and solids flows. Since we are most inter-
ested in the values of the time constant corresponding to
the peak in coherence, the least significant data obtained
(low coherence away from the peak) is of little interest to
us. The error in the time constant which is algebraically
derived from the coherence is

6k &y

& Aln(v)

+

Sk

(16)

Based on the scatter in measurements, the error terms
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Figure (8) Coherence of the two [IVFM fluctuating output signals (separation of IVFM’s
= .0735 m) in bubbly flows plotted against reduced wave number.

The reduced attenuation time constant and wave number
are defined as

kD

il = ND. 15
22, n=ND (19)

K =

where D is the disperse medium diameter and V; is its

are estimated fo be:

by =1, an
and

6T

T = 2 (18)



Using the above, the error in the time constant becomes

6k
T|q=.25 = '49’ (lg)
5k
T lims = 49, (20)
bk
_k-|l1=.75 =.6 (21)

The contributions to the error from inaccuracies in the
delay time and coherence are found to be of equal order
of importance.

7. RESULTS AND DISCUSSION

7.1 TRANSITION FROM BUBBLY TO CHURN-
TURBULENT FLOWS

The coordinates of the minimum reduced attenua-
tion time constant, x and the corresponding wave num-
ber n,.:n Were noted and each plotted against air volume
fraction. A sharp decrease in magnitude of the minimum
attenuation constant was measured prior to the change
in regime of the air-liquid flow. The minimum reduced
attenuation constant x is shown in Figure (12) versus air
volume fraction for bubbly flows. At a volume fraction
of 40%, « starts to decrease abruptly from a value of .03
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Figure (9) Coherence of the two IVFM fluctuating output signals {separation of IVFM’s
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Figure (10) Reduced attenuation time constant calculated from the coherence for bubbly
flows, showing a characteristic minimum representative of the least stable wave
number. Note the decrease in the minimum value at high volume fraction
(~ 40%) prior to the onset of churn turbulence.
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to less than .003. This sudden fall in x is accompanied
by a shift in the most persistent reduced wave number
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Pigure (12) Mini t t tant of bubbly flows of

varjous volume fraction and flow rate conditions pre-
sented versus volume fraction. Note the sudden de-
crease in this variable at a = 40% prior to the onset
of churn-turbulence.

Nymin from .07 to .03. These values correspond to kine-
matic perturbation wavelengths of .3m and .8m respec-
tively. These are very large in relation to the pipe diam-
eter which is .1016m. Values of the most persistent wave
number 7,n:, are plotted in Figure (13). Upon further
increase of the air flux the flow becomes churn-turbulent
at o = 45%. If we were to extrapolate the experimen-
tal x curve for larger values of volume fraction, x would
cross the horizontal axis at « =~ 45%. Such a change in
sign indicates that small perturbations in volume frac-
tion would now grow in an unstable fashion. Thus, the
observed onset of large scale structure (churn-turbulence)
is interpreted as a loss of kinematic stability.
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Figure (13) Most coherent wave number in bubbly flows of vari-
ous volume fractions and flow rates.

7.2 SOLID-LIQUID FLOWS

For solid-liquid flows, the minimum value of the re-
duced attenuation constant « of each experiment is plot-
ted against the solid volume fraction in Figure (14) for
three groups of total flux. The points describe a curve
which has a maximum at v ~ 15%. This implies that the

Reduced Attenuation

Reduced Wave Number

mixture loses its structure fastest at this volume fraction.
At higher volume fractions (> 15%), the attenuation con-
stant & for solid-liquid flows gradually decreases from a
maximum of .025 to .0015 at ¥ = 55%. The monotonic
decrease of the minimum attenuation constant for volume
fractions > 15% differs from the sudden decrease experi-
enced with the bubbly flows, and it seems to asymptote
to the horizontal axis. The bubbly flows, on the other
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Figure {14) Minimum attenuation constant of particulate flows
of various volume fractions and Row rates. The grad-
ually decreasing attenuation constant displays the
increased persistence of structure in the flow.

hand exhibited a sharp fall in « and the subsequent on-
set of instability as k& became negative. As the extreme
case consider a plug flow in which there is no relative
motion between particles. For such a flow, the IVFM sig~
nals at the two monitoring locations would be identical
and exhibit a time lag. The corresponding attenuation
constant would then be zero for all wave numbers. The
flows considered were not completely plug flows. How-
ever, low values (< .003) of x were obtained for flows
with v >= 40%. Also, at high volume fractions, the at-
tenuation constant is found to drop to lower values for
all wave numbers which is in agreement with the above
example. The advent of broad band structure persis-
tence for v > 40% is shown by the sharp increase in
the wave number of lowest k at these high volume frac-
tions in Figure (15). The wave number n,,;, assumes
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Figure (15) Most coherent wave number in particulate flows of
various volume fractions and flow rates.



values of .04 + .02 for solid fractions up to 40%. The
corresponding most persistent wave length in the solid-
liquid flows is .5m, which is approximately five time the
pipe diameter. In summary, the ability of the particles
to withstand particle-particle forces allows the medium
to maintain its structure at high volume fractions and
no distinct change in flow regime takes place. This is
in contrast to bubbly flows of high air volume fraction
in which the structure cannot be maintained since close
encounters between bubbles lead to coalescence.

8. CONCLUSION

The one-dimensional propagation and attenuation
of small amplitude concentration waves in steady state
bubbly and particulate flows were measured for the full
range of attainable volume fractions. The mixtures stud-
ied were initially homogeneously dispersed. The time de-
lay and the decay in amplitude of coherent fluctuations
of the volume fraction signal were measured between two
closely spaced IVFM’s. This information was then used
to determine the kinematic wave speed and attenuation
as a function of the wave number. The detected waves
were determined to be non-dispersive for wave numbers
of measurable amplitudes. The wavelength of the most
persistent perturbations in volume fraction was of the
order of .3 and .5m for bubbly and particulate flows re-
spectively; these dimensions are much larger than the
diameter of the pipe (.1m) in which the flows are con-
tained.

The kinematic wave attenuation time constant, &,
was found to be representative of the nature of the flow.
In a bubbly mixture, « began to fall in magnitude at a vol-
ume fraction 5% smaller than the critical value at which
onset to churn-turbulence occurs. Prior to the change

in regime, the structure is increasingly persistent, and

ultimately is observed to become unstable. The vari-
able k£ was found to behave differently for bubbly and
particulate flows. For increasing solids volume fractions,
% assumed slowly decreasing values, and it is shown to
reach an asymptotic value of zero corresponding to the
translating structure of a plug flow. The smooth decrease
in k corresponds to a gradual transition from the dis-
persed particulate flow to the plug flow. Despite the
persistent structure in solid-liquid flows, these did not
exhibit kinematic instability. In contrast, the increased
persistence in bubbly flow structure leads to the onset of
churn-turbulence.
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