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ABSTRACT

Nonlinear interactive effects in a bubbly cloud
have been studied by investigating the frequency re-
sponse of a bubble layer bounded by a wall oscillat-
ing norme! to itself. First, a fourier analysis of the
Rayleigh-Plesset equation is used to obtain an ap-
proximate solution for the nonlinear response of a sin-
gle bubble in an infinite fluid. This is used to solve
for nonlinear effects in a semi-infinite layer containing
bubbles with a distribution of size.

A phenomena termed harmonic cascading is seen
to take place due to presence of distribution of bubble
sizes. This phenomena consists of a large response at
twice the excitation frequency when the mixture con-
tains bubbles with a natural frequency equal to twice
the excitation frequency. The ratio of the amplitude of
the second harmonic response to the amplitude of the
first harmonic response is observed to increase when
the number of small bubbles is increased relative to the
number of large bubbles. The response is also seen to
be weakened by an increase in the total number of bub-
bles per unit liquid volume at constant void fraction.

1. INTRODUCTION

The purpose of this research is to gain some un-
derstanding of the global effects of bubble dynamics
in the fluid mechanics of bubbly flows and, in par-
ticular, cavitating flows.

At the most basic level,
bubble-bubble interactions occur because the pressure
changes generate rapid bubble volume changes which

cause accelerating velocity fields which effect the pres-
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sure distribution in the flow. These effects may occur
in the kinds of bubbly cavitating flow which produce
noise, damage, and performance deterioration in ship
propellers. hydrofoils and turbomachines. The under-
standing of flows of bubbly mixtures is also important
in the design and operation of sonar systems, cavita-
tion detection devices and in acoustical techniques of
flow measurement.

Traditionally, cavitating flows have been stud-
ied using single bubble dynamics and assuming no in-
teraction among the bubbles in the flow field. Such
an approach ignores the interactive effects that the
bubble dynamics have on the global pressure distribu-
tion in the flow field and is accurate only in case of
extremely dilute bubble concentrations. The experi-
mental results of Arakeri and Shanmuganathan (1985)
and Marboe et al. (1986) have shown that noise pro-

duced by travelling bubble cavitation can be modi-
fied by interactive effects at higher bubble concentra-
tions in ways that can not be explained on the ba-
sis of single bubble theories. To model these effects
researchers have used continuum models incorporat-
ing bubble dynamics to analyze global interactive ef-
fects. Early studies treated the bubbly mixture as an
equivalent compressible homogeneous medium (Tan-
gren, Dodge and Seifert 1949{). Among the first to
focus on the dynamics of bubble clusters was van Wi-
jngaarden (1964) who analyzed the collapse of a large
number of bubbles next to a flat wall and found con-
siderable increase in the pressure at the wall as result
of the interactive effects. Biesheuvel and van Wijn-
gaarden (1984) used ensemble and volume averaging
of the conservation equations for each phase to develop
more general equivalent flow models of dispersed two
phase mixtures, including the phenomena of bubble
dynamics, relative motion and liquid compressibility.
Most of the later research efforts are based on these
equations. d’Agostino and Brennen (1988) and Omta
(1987) found that the characteristic natural frequen-
cies of a spherical cloud of bubbles can be much smaller
than the natural frequency of a single bubble. Chahine
{1982) ploneered other approach to solution the flow of
bubble clouds which utilises the method of matching
asymptotic expansions and sums up the contribution
of individual bubbles in the cloud. Birnir and Smereka

(1990) have carried out numerical solutions for bubble
clouds and investigated the solutions using techniques
used to study dynamical systems. They found that
the bubble radius, the flow velocity and pressure were
bounded and the cloud was seen to posses natural fre-
quencies.

However, most of the recent analyses use lin-
earized models of the bubble dynamics and the flow.
It is well known that the dynamics of a bubble can be
quite nonlinear (Prosperetti (1975)) which in combi-
nation with nonlinear convective effects may produce
significant nonlinear effects in bubbly flows. An at-
tempt to understand these nonlinear effects by study-
ing an analytically amenable model problem is pre-
sented here. The purpose is to obtain a qualitative
understanding of the various mechanisms of frequency
dispersion in the bubbly two phase mixtures associ-
ated with cavitation. The dynamics of a bubbly liquid
next to a flat wall which oscillates normal to its own
plane has been studied. Almost all of the work re-
ported in the literature assume the clouds to contain
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identical bubbles. A semi-infinite layer with a given
bubble size distribution has been examined and reveals
new phenomena of harmonic cascading in such clouds.

2. NOMENCLATURE
1 imaginary number
k polytropic constant for gas expansion
and contraction
Jj,m,n integer indices
I reference length scale
) pressure in liquid flow field
Py pressure of permanent gas in
the bubble at undisturbed condition
P, complex amplitude of pressure
oscillation at frequency né
reference pressure in the liquid
vapor pressure inside the bubble
pressure at infinity
radius of the bubble
radius of the smallest bubbles
in the layer
radius of the largest bubbles
in the layer
radius of the bubble at undisturbed
reference conditions
complex amplitude of radius
oscillation at {requency né
surface tension of the liquid
time
Lagrangian time
velocity of the liquid
Eulerian space coordinate
normal to the wall

ERFERRR

S R

X Lagrangian space coordinate
normal to the wall
X, complex amplitude of fluid displacement
oscillation at frequency né
o volume fraction of bubbly
mixture
a, volume fraction of bubbly mixture
at undisturbed reference conditions
6 increment in the frequency
v ratio of specific heats
v kinematic viscosity
wh natural frequency of the bubble
{(in radians/sec)
wy forcing frequency for pressure or wall
oscillation (in radians/sec)
wy reference frequency (in radians/sec)
n(R,) bubble number density per unit

liquid volume

n* (R,) bubble number density per unit
total volume

n number of bubbles per unit
liquid volume

R real part of complex quantity

P density of the liquid

Pv density of the vapor in the bubble

T volume of the bubble

Tn complex amplitude of the bubble
volume oscillation at frequency né

To volume of the bubble at undisturbed

reference conditions
3. SOME TYPICAL APPLICATIONS AND VALUES

Clouds of cavitation bubbles occur in a variety of
technological situations. Cavitation clouds are gener-
ated by propellers and are an important source of noise
and damage. Furthermore. single bubbles in travelling
bubble cavitation have been observed to breakup into

many smaller bubbles (Blake et al. (1977) and Ceccio
and Brennen (1991)) and the dynamics of these small
clouds are clearly important. The typical data used for
illustration of the present analysis have been selected
with these physical situations in mind.

A number of researchers have measured the size
of free stream nuclei (Gates and Acosta (1978)) and
cavitation bubbles (Maeda et al. (1991)). Typical

nuclei range in size from 10 pm to 150 um; the size
distribution can usually be aproximated by

Nt

1(Ro) = = M

where 1 (R,) dR, is the number of nuclei per unit lig-
uid volume with equilibrium radii between R, and
R, + dR,. A distribution of the form given by the
equation (1) has been used to describe the size distri-
bution of free stream nuclei in sea water and various
water tunnel facilities with N ~ 10 and m~ 3 — 4
(Brennen and Ceccio(1989)). The bubble size distri-
bution in cavitation clouds (Maeda et al. (19913) can

also be approximately described by equation (1) with
suitable values of N* and m.

The void fraction values due to free stream nu-
clei are extremely small. Though the void fraction for
a cavitation cloud is larger than that of free stream,
it is still small at approximately 0.03% (Maeda et al.
(1991)). No measurements of the void fraction of a
cloud resulting from the breakup of a collapsing bubble
exist. For purpose of illustrating the present results,
void fractions were estimated from the experiments of
Arakeri and Shanmuganathan (1985). The fluid has
been chosen to be water at room temperature (20 °
C). A bubble subject to periodic excitation oscillates
with value of the polytropic constant, k, between 1 and
v (Plesset and Hsieh (1960)) and so, for for illustrative
purposes, the value of the polytropic constant, k, has
been chosen to be 1. When a distribution of bubble
sizes is used the form given by equation (1) will be em-
ployed and a range of nuclei sizes between 10 um and
100 pm will be used. The values of ambient pressure
have been chosen to be typical values for reduced pres-
sure in the water tunnel (13146 Pa) and atmospheric
conditions for cavitation at the ocean surface (101325

Pa). These will be referred to as Water Tunnel and
Ocean conditions.

4. NONLINEAR SOLUTION FOR A SINGLE BUB-
BLE

There exists a substantial body of literature on
the nonlinear dynamics of a single bubble in an infinite
fluid (Plesset and Prosperetti (1977)). In the present
work it is necessary to construct the very simplest
nonlinear solution of the Rayleigh-Plesset equation for
a single bubble. Later this will be used as a building
block for the problems of many bubbles interacting
in a flow. The bubble is assumed to be spherical
and to contain water vapor and residual permanent
gas. The bubble interior is assumed to be uniform
with constant vapor pressure, P,. The permanent
gas in the bubble is assumed to behave polytropically
with an index, k, between 1 and ~ (Plesset and Hsieh
(1960)). The liquid compressibility 1s only included in
the radiation damping and this is done by including it
in the effective viscosity used for the bubble dynamics
(Devin (1959) and Prosperetti (1977)). The bubble
growth due to rectified diffusion has been ignored since
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that takes place at a much slower time scale than the
natural cycle of the bubble (Hsieh and Plesset (1961)).
With these assumptions the Rayleigh—Plesset equation
describing the bubble dynamics becomes

DR 3(171&;:)2 4w DR 25 P, —Pwlt)
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In the present solution a Fourier series expansion is
used and terms up to second order are retained in order
to examine these corrections to the linear solution.
The bubble radius, R(t), and the pressure at infinity,
P.(t), are expanded in the form

2

N
R=R,+ 3 R(Rne™) (3)
n=1
N
i".‘;_(t.). =P, + Z%(Pnemét) )
n=1

where P, and R, are complex guantities and the fre-
guencies né. n = 1, N represent a discretization of the
frequency domain. These expansions are substituted
1nto equation {2) and all terms of third or higher order
in Bn /R, are neglected in order to extract the simplest
nonlinear effects. Finally, coefficients of e'*%! on both
sides of the simplified equation are equated to yield
the following relation for P, and R,:

Pl'l

WDQ R—oz

n-1 R. .
ALY 51 (n,) B
o J=1 Q 0

(3)

e

N-n
. Ry Rugg
+j_;ﬁ2(n’1)Ro Ro

where the overbar denotes complex conjugate and the
bubble natural frequency, wj is given by

1
[~ 2
w = (3kPg20 _ _25_5> (6\
pR, pRo

and A(n), 31{n,7) and B (n.;) are defined as

i o k14
Afn) = |2 1~ im 7
) \ 2 lw‘wao} 0
. 3k+1 3k-1 S 162 . ]
)= ——+—5 wb2R03+§m("—J)<n+§>
7 .
+1wbRozw—b(n—])
(8)
and
3k+1
i) = —— k—1) ————
Band) = 5= 4 (k= 1) s N
+l62 (n? = nj— %) +i 2v nb
2wy? 7= wyRo® wh

Using a Newton-Raphson scheme, equation (5) is
solved iteratively for R,/R, given Py, the fluid prop-
erties and individual bubble characteristics. It was
seen numerically that if there is a single excitation fre-
quency, wj, then the only non-zero components of the

Radius, R(7) /R,

0 20 40 60 80 100

Time, T = wyt

Figure 1. Radius, R(7)/R,, is plotted against the
nondimensional time, T = wyt, for a single bubble of 14
pm radius for (a) P, /wp?R,%= 0.04 and (b) P, /w52R02=
0.08 The parameters : wy/wy = 3.0 and v/wyR,? and
S/pwy?R,? are for the water tunnel conditions. { )

is the nmumerical solution and (==~ is the approxi-
mate analytical solution

bubble oscillation, R,, will occur at harmonics of that
single excitation frequency. It is also seen that the
response R, /R, decays with increase in the order of
the harmonic and is negligible (amplitude < 10720)
at harmonics of order higher than 50. Thus calcu-
lating the response up to 50 harmonics was consid-
ered sufficient. It is also clear from the equations (8)
and (9) that f1(n,j) and B2(n,j) are functions of
né/wy and j/n. Furthermore, note from equation (5)
that for a single excitation frequency, the only coef-
ficients £y (n,7) and B2(n,j) which enter the calcu-
lations are those for which ; and n take values cor-
responding to harmonics of the excitation frequency.
Consequently the only values of né/wy and j/n which
enter the calculations are those which are ratios of
an excitation frequency harmonic to the natural fre-
quency of the bubble or two excitation frequency har-
monics. Hence, despite the explicit appearance of §,
the results of the calculation are independent of this
parameter used in discritizing the frequency domain.
Finally, note also that the pressure perturbations, Py,
occur in (5) only in linear form and thus can be large
without introducing error into the solution. However,
the analysis is valid only for |R./R,| < 1. This defines
the extent of the weak nonlinear effects which are ex-
amined here and indirectly implies an upper limit on
the magnitude of P,/wy’R,".

For illustrative purposes, we select the values of
the parameters v/wyR,% ( = 0.01) and S/pws?R,> (
= 0.10) at the water tunnel condition for a bubble of
14 pum radius. We chose to consider a single bubble
subjected to an oscillating pressure at infinity contain-
ing a single frequency, wy, such that w3/wy = 3.0 and
several values of P,/wy’R,%. Results obtained from
equation (5) are compared to a numerical integration
of the Rayleigh-Plesset equation (which uses a fourth
order Runge-Kutta scheme) in Fig. 1 for P,/wiR? =
0.04 and 0.08. Tt can be seen that present approximate
analysis works very well for the smaller amplitude and
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Fourier Amplitude

Frequency Ratio, né/wy

Figure 2. Comparison of the spectra of {1 — R(r) /R,)
obtained for a single bubble of 14 um radius from nu-
merical integration of the Rayleigh-Plesset equation
(——) and the present approximate (- = =) analysis.
The parameters : P,,/wbzR,,2= 0.08, wy/wy = 6.0 and
viwsR,? and S/ pwy?R,® are for the water tunnel con-
ditions.
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Figure 3. Schematic of the Oscillating Wall Problem.

begins to show some discrepancies at larger amplitude.

It was previously noted that the equation (5)
has a nonzero solution only at the harmonics of exci-
tation frequency. However, at present, it is impossible
to prove the uniqueness of the solution for nonlinear
equations such as the equation (5). The agreement
demonstrated in Fig. 1 adds some confidence that the
present solutions are unique.

A comparison of the spectra of (1 — R(t)/R,)

is made in Fig. 2 for the case in which the P,/wy?R,*
and wy/wy values are 0.08 and 6 respectively. It can be
seen that the present approximate solution agrees well
with the numerical integration for frequencies at which
the magnitude is significant. Note that the radius
oscillations occur at harmonics of the frequency of the
pressure oscillation, wy.

Eller and Flynn (1969) observed that for pres-
sure oscillations with amplitude larger than a thresh-
old value, the bubble radius oscillation will contain a
subharmonic of order one half. This can also be seen
in Lauterborn(1976)’s numerical calculation of the fre-
quency response of a single bubble and in the 3rd or-

der perturbation solution of Prosperetti(1975). The
present solution does not give rise to subharmonics in
the domain of its validity, i.e., |Ro/R,| <« 1. This
is because the subharmonics are generated by nonlin-
earities at an order higher than quadratic. Thus, the
absence of subharmonics from our approximate solu-
tion does not invalidate our analysis.

More accurate nonlinear solutions than the one
described above (for example Prosperetti (1974)) exist
and have been reported in the literature. The value of
present solution lies in its simplicity and the feasibility

of incorporating it in analysis of the collective response
of a cloud of bubbles.

5. A SEMI-INFINITE LAYER WITH BUBBLE SIZE
DISTRIBUTION

Most of the research efforts in modelling bubbly
mixtures so far have assumed bubbly mixtures of iden-
tical bubbles. In most practical circumstances, uni-
formly sized bubbles are very difficult if not impossible
to achieve. Moreover, cavitation nuclei in water have a
distribution of bubble sizes ranging over several orders
of magnitude (Gates and Acosta (1978)).

In this section, we present a weakly nonlinear
model of flows of such bubbly mixtures. Since the
flow now has a number of length and time scales in
terms of the bubble radii and their natural periods, we
can expect different mechanisms causing interactions
between the different time scales. We shall find a new

mechanism for frequency dispersion called harmonic
cascading.

The specific problem addressed in this analysis
is shown schematically in Fig. 3. Liquid containing
bubbles is bounded by a flat wall which oscillates in
a direction normal to itself at a frequency, wys. The
resulting flow is assumed to be a function of z and ¢
alone. A number of simplifying assumptions are intro-
duced in order to obtain a soluble set of equations. The
volume of liquid involved in condensation and evapo-
ration during bubble oscillation has been ignored; this
is reasonable in view of large differences in the den-
sity of liquid and vapor phases. The liquid has been
assumed to be incompressible and the relative motion
between the phases has been ignored. Both were found
by d’Agostino and Brennen (1988) to have very little
effect on important features such as natural frequen-
cies of the flow. The most important feature of these
effects is the damping that they cause at the resonant
frequencies. This can be incorporated in the present
solution by taking an appropriate value of effective vis-
cocity in place of liquid viscocity used in the Rayleigh~
Plesset equation.

We assume that the bubble number density dis-
tribution, n(R,), is known and that it is piecewise
uniform. Then, the number of bubbles per unit liquid
volume with equilibrium size between R, and R,+dR,

is n(R,)dR,. The volume of bubbles per unit liquid
volume is

a Ru
I = / n(R,) rdR, (10}

where 7 is the volume of a bubble and R,, and Ry
are minimum and maximum equilibrium bubble radn
present in the layer. Thus, the number of bubbles per
unit total volume with equilibrium radius between R,
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and R, + dR,, can be written as

n(R,)dR,

n" (Ro)dRo = 1(R,) (1 - a)dR, =
1+ [2¥ n(R,) rdR,

(11)

We use a dispersed phase number continuity equation
to ensure mass and number conservation. Assuming
the liquid to be incompressible, it follows that if the
bubbles are neither created nor destroyed then

du

L dR, + dR, =0 (12)
—_ - * (R, °
i /m n (Ro) o 9I_/ n ( )

™

Assuming that the number density per unit total vol-
ume is conserved, the above equation reduces to

Dy (R.) . Su _
T+T} (Ro)g—o (13)

The corresponding momentum equation is

Du _ 0p
p(1—a)7)-t-_—5; (14)

The solution to the problem represented by (2), (11)
(13) and (14) was solved in Lagrangian coordinates,
X and T using a method parallel to that described in

Kumar(1991). The above equations ((13) and (14))
become

on’ (Ro)_ai . zli _ 15
5 6X+n(R°)6X—O (15)
and
8u Oz 1 9P

2o - — 16
PoTox ~ 1-adX (16)
Consistent with the structure of the solution sought,

the relationship between Lagrangian and Eulerian co-
ordinates, X and z, is written in the form

N
T=X 4+ RN, (X)emT) a7

n=}

and the bubble volume, 7, and pressure, P, are written
as

N

T=1T,+ z R (1, (X) e™T) (18)
n=1

P X :

5= Po+ Y R(P.(X)e™T) {19)

n=1

Substituting the expansion (18) into equation (10) we
obtain

Qo

R N
/ n(Ro)rdR, = < 22 4 SR (Aae™T)  (20)
~ n=l

where

Ru
Ao= [ n(Rordr, 1)

The above equations ((15), (16) and (20) ) along with
the expansions ((17), (18) and (19) ) have been used
to vield following governing equation for the pressure
oscillations in the layer ( Kumar (1991))

P (Pofwll2) 3 Pn N P Paj
AxLy? o har Tt ;‘“"”)5’?’1‘3 T
(22)
2y o P Pats
where
2 2 né 2 0
Al =(1-a,) u—) ¢’ (n) (23)
sz [P )
w(ng)= (1= a0 (2) 2—n ,
- T )¢ =)
(24)
. . 2 né 24, . P
(n.) = (1= a0 () 0'(n (@)
L R 3n(R.) Tcwzlz i 7 (963
Ak A o
R a4 .
o [P (Rl (1 Bi(n,d)
v (n“’)_/ﬂm AA(n-juwiRr} [5_ A(n) R, (27)
Lo RM 3 (R,) rowiid i
o (n, :/ _ 3n(Ro) rowll} _Ba(n,j)
"= e TGIAm+ Dol [l A(m | @

and wr and I, are suitable reference frequency and
length scales respectively. Equation (22) has the fol-
lowing approximate solution (accurate to the second
order, details are given in Kumar (1991))

n-1 .
_‘T"z =cpe~ M X/le 4 ¥(n,jjcien;
w2

Coi =t An )X 1
i=1 ('\j + /\"—j) - ’\"r:

N-n 6 oy —
)Gty (T rnsn) ¥,
2
im0 5+ Ane) =2
(29)
Using the solution given by equation (29) and the mo-
mentum equation (Kumar(1991)) the following rela-
tion for the conditions at the wall may be obtained -

(O’o - l) <EE> 1\71 (O) = /\nCn + Z (AJ * ’\"-‘j)d)(r:“])c{,c"‘j
e l (/\] + ’\n—j)_ - A;l

j=1

N-n

+ Y (5 + Anss) 0(n,5) Tenss
I OE ) =R

(30)

In the case of identical bubbles, we have
1(R.) = 1'6 (R, — Ry) (31)

where 7' is the total number of bubbles per unit liquid
volume and R, is the radius of the bubbles. It can
be seen that above result reduces to the result for
identical bubbles given in Kumar (1991).

For purpose of illustration we examine a bub-
ble layer containing bubbles of radii between 10.0
pm and 100.0 gm under the water tunnel conditions.
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Figure 4. The frequency response of a bubbly
layer w1thq a given size distribution of bubbles:
[Pal /w,zg,'( X =0) is plotted against the frequency
ratio. nd/w,, for the first two harmonics and the
linear solution for (a)m = 2, (b)m = 3 and (c)m
= 4. The parameters: X,(0)/l,= 0.0002. a,= 0.05

a,nld the ambient conditions are for the water tun-
nel.
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Natural Frequency (Hz)
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Figure 5. Natural frequency of a single bubble for
water tunnel and ocean conditions.

The largest natural frequency of the bubble and the
largest bubble radius present in cloud are convenient
choices for the reference frequency. w, and the refer-
ence length scale, I, respectively. In the sample cal-
culations the coefficients. o' (n), ¥'(n.j) and €' (n, ;)
were evaluated using equations (26), (27) and (28) re-
spectively. The integrals were evaluated numerically
using the trapezoidal rule and Richardson extrapola-
tion was used to estimate the value of the integral
for zero step size. The parameters A, ) (n,;) and
B2(n, ) were calculated from equations (7), (8% and
(9), and A,, ¥ (n,7) and 6(n, ;) could then be calcu-
lated using equations (23)-(25). Equation (30) was
then solved using a Newton-Raphson scheme to cal-
culate the constants ¢, for a given amplitude of wall
oscillation, X, (0)/l,. Knowing c,, the amplitude of

pressure oscillation could be calculated from the equa-
tion (29). Using this solution, the values of R,/R,
were calculated for different values of R, and the am-
plitude of R,/ R, is checked to insure that it is less than
unity. Note that, equation (30) is similar in structure
to the equation (5) and hence the solution is nonzero
only at harmonics of the excitation frequency. Once
again calculations of up to 20 harmonics were found
to be sufficient.

Numerical results were computed for a number of
typical cases. For each case the results were obtained
for the size distribution density parameter, m = 2, 3,
4 (see equation (1)) and the value of N* was adjusted
to obtain the required value of the void fraction. The
results for six different cases were obtained in order
to investigate the effect of changes in void fraction,
ambient conditions and amplitude of wall oscillation.

A typical frequency response of the cloud is
shown in Fig. 4 for the water tunnel conditions. This
illustrates the features of the frequency response com-
mon to all cases. The amplitude of pressure oscillation
for the fundamental and the second harmonic, which
are marked [1] and {2] respectively, as well as the so-
lution obtained from the linearized analysis which is
marked [L], are shown. Amplitudes of higher harmon-
ics were found to be negligible. The frequency ratio is
the ratio of the actual frequency at which the response
occurs to the reference frequency and thus the abscissa
represents wy/w, for the line marked {1] and [L} and
2w¢/w, for the line marked [2]. It is seen that the am-
plitude of first harmonic pressure oscillation increases
with increasing excitation frequency. The reason for
this is that there is a larger number of smaller bub-
bles, for which the natural frequency of the bubble
is larger. Thus for larger frequency ratios (excitation
frequencies) a larger number of bubbles are excited at
their natural frequency thus leading to an increase in
the amplitude of the pressure oscillation. The stiff be-
haviour of bubbles whose natural frequencies are less
than the excitation frequency (seen in Kumar (1991) as
a response to the super-resonant excitation (wy > wy),
applied to the cloud of identical bubbles) also con-
tributes to an increase in the amplitude of pressure
oscillation.

Fig. 5 shows the natural frequency of the bub-
ble for the water tunnel and the ocean conditions. It
is clear that smaller bubbles have larger natural fre-
quencies, When the wall is oscillated at a frequency.
wy, the bubbles with their natural frequency equal to
wy are excited with the largest amplitude. Because
of the nonlinearity present in the system, the flow
variables oscillate at the harmonics of the excitation
frequency, wy. Thus, the pressure oscillation at 2wy
excites bubbles with their natural frequency equal to
2wy and since, the number of bubbles with the natural
frequency, 2wy, is larger than the number of bubbles
with the natural frequency, wy, the response resulting
from. the bubbles with natural frequency of 2wy may
be significant and may be larger for larger values of m.
In other words, the excitation may cascade towards
higher frequencies. We shall refer to this mechanism
as harmonic cascading.

The ratio of amplitude of the second harmonic to
the amplitude of the first harmonic increases for larger
values of the parameter, m (Fig. 4). This could be ex-
pected from the above description of the mechanism
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Figure 6. The effect of variation in the bubble
size density distribution slope, m, on the (a) first
and (b)second harmonic: |Py|/w,r2l,2(X = 0) is plot-
ted against the frequency ratio, (a) wy¢/w, and (b)
2wyg/w, respectively. The parameters: X,(0)/l,=

0.0002, a,= 0.05 and the ambient conditions are for
the water tunnel.

of haermonic cascading. Note that, the linear solution
is larger than the first harmonic and the difference
between the linear solution and the first harmonic is
larger for larger values of m. For excitation frequen-
cies larger than the reference frequency, «,, the ampli-
tude of second harmonic is very small and the differ-
ence between the linear and nonlinear solutions is also
very small. This could be anticipated since w, is the
highest natural frequency present in the cloud and the
effect of harmonic cascading is expected to decrease
for wall oscillation frequencies larger than 0.5w,. For
excitation frequencies up to 0.5w,, harmonic cascad-
ing remains an important effect with the amplitude of
second harmonic becoming larger than the amplitude
of first harmonic for m = 4. For excitation frequencies
larger than 0.5w,, the increase is due to the collective
response of the bubbles to the excitation. It is seen
that the pressure oscillation decays rapidly away from
the wall, decaying to verv small values at a distance

of 4/, from the wall.

Frequency responses for different values of the
size density distribution slope, m, are compared in the
Fig. 6. The void fraction is same for all cases. It ap-
pears that an increase in the value of m reduces the
amplitude of the first harmonic. For a given value of
the void fraction, the number of bubbles is larger for
larger values of m and the reduction in the amplitude
of pressure oscillation may be caused by the increased
damping in the system due to the larger number of
bubbles. The weaker response for increased void frac-
tion (also seen for a layer of identical bubbles (Kumar

05 10 1.5 20 25

Frequency Ratio, 2wy /w,

Figure 7. The effect of variation in ambient condi-
tions on the frequency response of the bubbly layer;
| Pal/wr?l,2(X = 0) for the (a) fundamental and the
(b) second harmonic is plotted against the frequency
ratio, (a)wy/wrand (b)2wy/wy, respectively for m =
3. The parameters: X,(0)/!,= 0.0002 and a,= 0.05.

(1991)) may also be caused by an increase in the num-
ber of bubbles. Note that the amplitude of the sec-

ond harmonic is not strongly effected by change in the
value of m.

The effect of changes in ambient conditions on
the frequency response are shown in Figs. 7. Cleariy
the effect is not a strong one. However, 1t does appear
that the ocean conditions do promote a little stronger
harmonic cascading. This may be explained as follows.
The super-resonant (ws > wy) excitation of the bub-
bles which have natural frequencies less than the ex-
citation frequency contributes significantly to the am-
plitude of the fundamental harmonic and this is not
strongly influenced by reduction in the viscous and
surface tension parameters for the ocean conditions.
However, bubble dynamics play a stronger role in the
generation of the second harmonic through hermonic
cascading and thus increase in the amplitude of the
second harmonic (with reduced effect of viscocity and
surface tension at the ocean conditions) may be ex-
pected. Hence, stronger harmonic cascading can be
expected for the ocean conditions.

The effect of changes in the void fraction on the
layer is shown in Fig. 8. It is clear that higher void
fraction reduces the magnitudes of both the first and
the second harmonic. As explained earlier, this may

be due to larger damping due to increased number of
bubbles.

- 177 -



T T T .
Fundamental Harmonic ]
400 ' ,
Void Fraction y
200 R , )
- — 010 ,

Frequency Ratio, wy/wr

] ata, i
4 \

80 ld Harmonic® '
Secon armon (b)

Pressure Coefficient, 106|I’,,|/w,21r2(x =0)

05 1.0 15 20 25
Frequency Ratio, 2wy /wr

Figure 8. The effect of variation in void frac-
tion on the frequency response of the bubbly layer;
|Pa!/w,21,2(X = 0) for the (a) fundamental and the
(b) second harmonic is plotted against the frequency
ratio, (a)ws/wrand (b)2ws/w,, respectively for m =
3. The parameters: Xn(0)/l,= 0.0002 and the am-

bient conditions are for the water tunnel. Values of
vtja?dl fraction, a,, of 0.01, 0.05 and 0.10 are used.

6. LIMITATIONS

In this section we shall examine the various lim-
itations of the present model. The limitation imposed
by the continuum mechanics model have been dis-
cussed in detail by d’Agostino and Brennen (1988) and

so we focus here on additional considerations necessary

in the present analysis.

First the amplitude of the radius oscillation is
required to he small; in particular, {R,/R,| < 1 must
be satisfied. This is also required to avoid the follow-
ing instability in the bubble dynamics. For pressure
oscillations exceeding a threshold value, the bubbles
larger than a critical size are known to grow to a large
size and then collapse violently (Flynn(1964)). This
will not occur if the ratio of the maximum size of the
bubble to the equilibrium bubble radius is less than
2.0 (Flynn (1964)). Moreover, the effect of damping
is also reduced for large bubbles. These restrictions
place an upper limit on the excitation for the present
analyses. In practice, {R,/R,| < 1 is expected to dic-
tate the maximum applicable excitation for which the
theory remains applicable.

The range of void fraction, for which present the-
ory may be applied, is also bounded by an upper and
a lower limit. The lower limit of the void fraction is
determined by maximum bubble separation required
under continuum assumption as well as requirement
of maximum permissible amplitude of radius oscilla-
tion, |Rn/R,|. The upper limit on void fraction is

determined by the requirement of local pressure dis-
turbance to be negligible in comparison to the global
pressure oscillation (d’Agostino and Brennen (1988)).

The phenomena of rectified diffusion resuits in
slow growth of the equilibrium size of a bubble (Hsieh
and Plesset (1961)). Thus, the theory can be applied
to the bubbly layers subject to steady state oscillation
for long periods only if the equilibrium size, R, is
tracked and the values appropriate to a particular time
are employed.

7. SOME PRACTICAL OBSERVATIONS

Though limited to small amplitude oscillations
and thus to a small excitation, the qualitative phenom-
ena uncovered here are valuable to bear in mind when
interpreting some of the practical observations of the
response of bubbly mixtures. In particular, harmonic
cascading should be present in many practical situ-
ations. Measurements of spectra reported by Mellen
(1954) and Blake (1986) appear to contain peaks which

may be due to harmonic cascading. The resuits of
Arakeri and Shanmuganathan (1985) do not exhibit
harmonic cascading. However, that may be due to
lack of variation in the size of bubbles generated by
electrolysis. It may be important to keep this in mind
while designing experiments for evaluating interactive
effects in bubbly mixtures. It is particularly impor-
tant to note that most of the spectra reported in the
literature have been made using half octave frequency
resolution. Clearly, a finer spectra resolution in the

spectra measurement is required in order to unambigu-
ously resolve harmonic cascading.

8. SUMMARY AND CONCLUSIONS

In this work we have studied the nonfinear effects
which can occur when a plane wall bounding a bubbly
liquid oscillates in a direction normal to itself.

The phenomena of harmonic cascading is seen
to take place in a bubbly mixture containing bubbles
of different sizes. Harmonic cascading occurs when a
low frequency excitation applied to the layer at a fre-
quency, wy, results in a large amplitude of oscillation at
the frequency of 2wy due to presence of a large number
of bubbles with natural frequency of 2wy. The ratio
of the amplitude of the second harmonic to the am-
plitude of the first harmonic defines the extent of har-
monic cascading. This ratio increases with an increase
in the number of small bubbles relative to the number
of large bubbles. It is noteworthy that the phenom-
ena of harmonic cascading can only be modelled by a
nonlinear model because the linearized models do not
allow for such harmonic generation.

Larger values of the void fraction cause a re-
duction in the amplitude of pressure oscillation in all
cases. This may imply reduced acoustic noise in the
bubbly mixtures (observed experimentally by Arakeri
and Shanmuganathan (1985)) and damage potential
in cavitating flows. Furthermore, the larger number
of bubbles present at large void fractions may cause

stronger dissipation and a reduced amplitude of oscil-
lation.
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