Nonlinear effects in the dynamics of clouds of bubbles
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This paper presents a spectral analysis of the response of a fluid containing bubbles to the
motions of a wall oscillating normal to itself. First, a Fourier analysis of the Rayleigh—Plesset
equation is used to obtain an approximate solution for the nonlinear effects in the oscillation of
a single bubble in an infinite fluid. This is used in the approximate solution of the oscillating
wall problem, and the resulting expressions are evaluated numerically in order to examine the
nonlinear effects. Harmonic generation results from the nonlinearity. It is observed that the
bubble natural frequency remains the dominant natural frequency in the volume oscillations of
the bubbles near the wall. On the other hand, the pressure perturbations near the wall are
dominated by the first and second harmonics present at twice the natural frequency while the
pressure perturbation at the natural frequency of the bubble is inhibited. The response at the
forcing frequency and its harmonics is explored along with the variation with amplitude of wall
oscillation, void fraction, and viscous and surface tension effects. Splitting and cancellation of
frequencies of maximum and minimum response due to enhanced nonlinear effects are also

observed.

PACS numbers: 43.30.Nb, 43.25.Yw

LIST OF SYMBOLS

i imaginary number

k polytropic constant for gas expansion and contrac-
tion

Jj, m,n  index integer

P pressure in liquid flow field

P, pressure of permanent gas in the bubble at undis-
turbed condition

P, complex amplitude of pressure oscillation at fre-
quency né

P, reference pressure in the liquid

P, vapor pressure inside the bubble

P, pressure at infinity

R radius of the bubble

R, radius of the bubble in reference condition

R, complex amplitude of radius oscillation at frequen-
cy né

S surface tension of the liquid

t time

T Lagrangian time

INTRODUCTION

The objective of this work is to gain an understanding of
the interactions between individual bubbles in bubbly flows.
The dynamics of bubbles can be quite nonlinear. In a bubble
cloud, these nonlinear bubble dynamics produce nonlinear
interactive effects. At the most basic level, this interaction
comes about because the response of the bubble to pressure
changes results in volume changes which in turn cause accel-
erating velocity fields that effect the pressure. Our approach
is to understand mechanisms in cavitating flows by studying
analytically amenable model problems. The present paper
attempts to construct a nonlinear analysis of one such model
problem.
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u velocity in the liquid flow field

x Eulerian space coordinate normal to the wall

X Lagrangian space coordinate normal to the wall

X, - complex amplitude of wall oscillation at frequency
né

a, volume fraction of bubbly mixture at reference con-
dition

I increment in the frequency

¥ ratio of specific heats

v kinematic viscosity

@, natural frequency of the bubble (rad/s)

P forcing frequency for pressure or wall oscillation
(rad/s)
real part of complex quantity

T volume of the bubble

Th complex amplitude of the bubble volume oscillation
at frequency né

To volume of the bubble at undisturbed condition

P density of the liquid

£o density of the vapor in the bubble

First, we provide a brief review of previous research in
simulating dynamics of bubble clouds and place our work in
perspective. The nonlinear dynamics in the growth and col-
lapse of a single bubble have been studied for a long time
[e.g., Plesset and Prosperetti (1977)]. Among the first to
focus on the dynamics of bubble clusters was van Wijngaar-
den (1964) who analyzed the collapse of a large number of
bubbles next to a flat wall and found considerable increase in
the pressure at the wall as a result of the interactive effects.
Morch (1980, 1982) considered the collapse of a spherical
bubble cloud characterized by a cloud radius and uniform
volume fraction. He assumed that the pressure increase
would lead to shock formation at the cloud boundary and
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that the shock would propagate inward completely annihi-

lating bubbles in its path. This model did not include individ-
val bubble dynamics and predicted infinite pressure and infi-
nite collapse velocities as the radius approached zero. In a
subsequent paper, Hansson ez al. (1982) constructed a mod-
el using a continuum mechanics approach and used the Ray-
leigh—Plesset equation to model the bubble dynamics. In
particular, the response of a bubble cloud to a vibrating horn
and the cavitating flow in an accelerating water column were
considered. Chahine (1982) developed a method using
matched asymptotic expansions. This model assumes in-
stantaneous transmission of ambient conditions to the bub-
bles and thus neglects the compressibility of the bubble
cloud. This is a major weakness in the model because com-
pressibility of the clould will not be negligible for moderate
to high void fractions. It was found that because of interac-
tive effects in the cloud, the larger the number of bubbles in
‘the cloud, the more delayed and violent is the implosion and
thus the higher are the pressures generated. Chahine (1982)
also developed a model using a continuum mechanics ap-
proach and first-order gradient theory.

Recently Omta (1987) has carried out analytical solu-
tions for small amplitude oscillations and numerical solu-
tions for large amplitudes. The interior of the bubble was
considered nonuniform. Frequency spectra for the bubble
cloud were obtained. The natural frequencies of the cloud
were found to depend upon void fraction and not upon the
bubble size, a feature that seems particularly true at the low-
est cloud natural frequency. d’Agostino et al. (1988) solved
for the linearized dynamics of the flow of bubbly mixture
over slender surfaces. d’Agostino and Brennen (1988) cal-
culated natural frequencies of the bubble cloud. and solved
the linearized dynamics of spherical bubble clouds. Other
than Omta’s work very little has been done on: the nonlinear
solutions of the dynamics of bubble clouds. The objective of
present work is to develop a methodology for handling non-
linear terms and to obtain nonlinear solutions by studying
the dynamics of a bubbly liquid next to a flat wall that oscil-
lates normal to its own plane.

I. NONLINEAR SOLUTION OF THE RAYLEIGH-
PLESSET EQUATION

There exists a substantial body of literature on the non-
linear dynamics of a single bubble in an infinite fluid; this has
been reviewed by Plesset and Prosperetti (1977). In the
present context, it is appropriate to note that Eller and Flynn
(1969) solved the problem of subharmonics of order one-
half using a perturbation procedure and that Prosperetti
(1974) generated nonlinear analytical solutions for subhar-
monics and harmonics of various orders using perturbation
method.

In the present work, it is necessary to construct the very
simplest nonlinear solution of the Rayleigh—Plesset equation
for a single bubble. Later, this will be used as a building block
for the problem of many bubbles interacting in a flow. The
bubble is assumed to be spherical and to contain water vapor
and residual permanent gas. The bubble interior is assumed
to be uniform with constant vapor pressure, P,. The perma-
nent gas in the bubble is assumed to behave polytropically
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with an index & between 1 and ¥ (Plesset and Hsieh, 1960).
The liquid compressibility is only included in the radiation
damping, and this is done by including it in the effective
viscosity used for the bubble dynamics (Devin, Plesset and
Prosperetti, 1959; 1977). With these assumptions, the Ray-
leigh—Plesset equation describing the bubble dynamics be-
comes

DR, 3(DRY | v DR, 25
Dt? Dt R Dt  pR
P,—P_(tr) Py (R,\3*
=__—+;‘°(__0_) . (1)
p p \R

In the present solution, a Fourier series expansion is used
and terms up to second order are retained in order to exam-
ine these corrections to the nonlinear solution. The bubble
radius R (¢) and the pressure at infinity P, (¢) are expanded
in the form,

N
R=Ry+ ¥ R(R,e"), (2)

n=1

N
Pwp(t) =P+ Y R(P,e™), (3
n=1

where P, and R, are complex quantities and the frequencies
nd, n =1 to N, represent a discretization of the frequency
domain. These expansions are substituted into Eq. (1) and
all terms of third or higher order in R, /R, are neglected in
order to extract the simplest nonlinear effects. Finally, coef-
ficients of ¢” %’ on both sides of the simplified equation are
equated to yield the following relation for P, and R,,:

P, R, ! R,_,;
=A—"+ (n )—————’
R2 Ro JZI Bl / R, R,
N—n ¢ RliJrj
+ 3 Balnd) 2= — (4)
ji=1 0 Ro

where the overbar denotes complex conjugate and the bub-
ble natural frequency w, is given by

w, = (3kPy/pR§ — 28 /pR )2, (5)
and A, ,(ny), and 3,(n,j) are defined as
202
A=(”57—1—i£‘3___4” ) (6)
b’ w, w,R}
. 3k+1  3k—1
Bi(nyj) = o S
4 2 pwiR}
+— L5 (n— )(n+i
2 / 2
.2 .
+i ”2 2w, (M
o, R} w,
and
. 3k S
Bonp =2 ey 2
2 pws R}
1 & 2v n5
+—— W= =) +i——— (8)
2 wj R G a’b

Using a Newton—Raphson scheme, Eq. (4) is solved iterati-
vely for R, /R, given P, , the fluid properties and individual
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TABLEI. Fluid and bubble parameters for the examples presented. These
data are for water at 20°C.

R() Pg() 5 N
Dataset  (um) (Pa) k v/o,R} S/paiR}
1 20 14 680 1 0.01 0.10
I 20 106 326 1 0.0118

0.0023

bubble characteristics. It is clear that if there is a single forc-
ing frequency, o, then the only nonzero components of the
bubble oscillation, R,,, will occur at harmonics of forcing
frequency. It is also seen that the response R, /R, decays
with increase in the order of the harmonic and is negligible
(amplitude < 10~2°) at harmonics of order higher than 50.
Thus calculating the response up to 50 harmonics was con-
sidered sufficient. It is also clear from the Egs. (7) and (8)
that B,(n,) and 5,(ny) are functions of né/w, and j/n.
Furthermore, note from Eq. (4) that for a single forcing
frequency, the only coefficients 3, (n,) and 5,(n,j) that en-
ter the calculations are those for which j and » take values
corresponding to harmonics of the forcing frequency. Con-
sequently, the only values of n6/w, and j/n that enter the
calculations are those which are ratios between a forcing
frequency harmonic and the natural frequency of the bubble
or two forcing frequency harmonics. Hence despite the ex-
plicit appearance of §, the results of the calculation are inde-
pendent of this parameter used in descritizing the frequency
domain. Finally, note also that the pressure perturbations,
P, occur in (4) only in linear form and thus can be large
without introducing error into the solution. However, the
analysis is valid only for |R, | R,| € 1. This defines the extent
of the weak nonlinear effects that are examined here and
indirectly, implies an upper limit on the magnitude of P, /
o3R3.

For illustrative purposes, we select the values of the pa-
rameters v/, R § and S /pw} R } listed as data set I in Table
I. The values are for typical cavitating conditions in the
ocean or in a water tunnel. We chose to consider a single
bubble subjected to an oscillating pressure at infinity con-
taining a single frequency, w, with an amplitude |P, |/
@y R§. First of all, results obtained from Eq. (4) are com-
pared to a numerical integration of the Rayleigh—Plesset
equation that uses a fourth order Runge-Kutta scheme. In
Figs. 1 and 2, the radius-time behavior obtained from our
analysis and the numerical integration of the Rayleigh—Ples-
set equation are compared. The ratio @, /w, is 3 and values
of P, /w} R § for Figs. 1 and 2 are 0.04 and 0.08, respectively.
It can be seen that present approximate analysis works very
well for weak nonlinear effects or small values of P, /o R 2.
The agreement between the numerical integration and the
present solution is less satisfactory for higher values of P, /
w3 R, as shown in Fig. 2. A comparison of the spectra of
[1 —R(#)/R,] is made in Fig. 3 for the case in which the
P,/w, /R and o, /o, values are 0.08 and 6, respectively. It
can be seen that the present approximate solution agrees well
with the numerical integration for frequencies at which the
magnitude is significant. Note that the radius oscillations
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FIG. 1. Radius, R(7)/R, plotted against the dimensionless time, 7 = w, ¢
for a single bubble. The parameters P, /w;R§ = 0.04, »,/w, = 3.0 and
va,R§ and S /pwi R ] are as in dataset L. ( )is the numerical solu-
tion and (- - -) is the approximate analytical solution.

occur at harmonics of the frequency of the pressure oscilla-
tion, w,. Figure 4 shows the frequency response of a single
bubble subjected to a pressure oscillation with 2, /w2 R 2
value of 0.02. For this purpose, the value of forcing frequen-
cy, y is varied from w,, /100 to 2w, and the magnitudes of
harmonics of different orders are plotted against the reduced
frequency, nd/w, . The lines labeled [1] are the magnitudes
of the response at the fundamental forcing frequency, w - SO
that, in this case, the abscissa represents @;/w,. The lines
labeled [2] represent the magnitudes of the response at twice
the forcing frequency; and in this case abscissa, the repre-
sents 2w./w,. And so on for the lines labeled [3]-[5],
which represent the response at the third, fourth, and fifth
harmonics of the forcing frequency. All the harmonics are
plotted against the actual reduced frequency, w/w,, at
which they occur. In this figure, we have presented the re-
sults for harmonics up to fifth order. In viewing these results,
it should be recognized that those harmonics with magni-
tudes below a certain level are of dubious significance since
higher-order nonlinearities could markedly alter those re-
sults. It can be seen that w,, is the dominant frequency in the
radius oscillation as would be expected from the linear anal-
ysis.

Radius, R(T}/R,

09K -

08 { 1 1
h -

Time, T = wst
FIG. 2. Radius, R(7)/R, plotted against the dimensionless time, 7 = w, ¢
for a single bubble. The parameters P,/w}R} = 0.08, 0,/w, = 3.0 and
v/w,R% and S/pwl R} are asin data set 1. ( )is the numerical solu-
tion and (- - -) is the approximate analytical solution.

S. Kumar and C. E. Brennen: Bubble cloud nonlinearities 709



1000

Fourier Amplitude
e
= -

001 |

0.001 L 1
00 05 10 15 20

Frequency Ratio, "6/wy

FIG. 3. Comparison of the spectra of [1 — R(7)/R,] obtained for a single
bubble from numerical integration of the Rayleigh-Plesset equation
( ) and the present approximate (- --) analysis. The parameters
P,/wy,R} =008, ®,/w, = 6.0and v/o,R] and S /pw}, R} are as in data
set I

More accurate nonlinear solutions than the one de-
scribed above, e.g., Prosperetti (1974), exist and have been
reported in the literature. The value of present solution lies
in its simplicity and the feasibility of incorporating it in anal-
ysis of the collective response of a cloud of bubbles.

1. NONLINEAR FLAT WALL SOLUTION

The specific problem addressed in this paper is shown
schematically in Fig. 5. Liquid containing bubbles is bound-
ed by a flat wall that oscillates in a direction normal to itself
at a given frequency, ;. The resulting flow is assumed to be
function of x and ¢ only. The assumptions behind the contin-
vum model are the same as those described by d’ Agostino et
al. (1988). The continuity equation is given by

du ¢ Dr

ax (1497 Dt’
where 7 is the population of bubbles per unit liquid volume, a
quantity that is both uniform and constant since (a) the
relative motion between the bubbles and the liquid is neglect-
ed [d’Agostino and Brennen (1989)], (b) the liquid is as-
sumed incompressible, and (c¢) the volume of liquid in-

€)

[*] : Order of Harmonic

Radius Coefficient, [Rul/ o

L i I L L 1 e K
00 05 10 15 20 25 30 35 40 45 50 55 60
Frequency Ratio, né/us,

FIG. 4. The frequency response of a single bubble; | R, | R, is plotted against
the frequency ratio, né/w, for the first five harmonics. The parameters
P,/o}R§ =0.02, and v/w,R} and S /pol R } are as in data set 1.
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FIG. 5. Schematic of the oscillating wall problem.

volved in condensation or evaporation is neglected. The
corresponding momentum equation is

Du

P Dr

The solution to the problem represented by Egs. (9), (10),

and (1) is obtained in Lagrangian coordinates, X and T for
which the above equations become

g (10)
ox

du or ox
1 — = 11
470 % =" a1 ax (b
and ’
du dx 1 dp
—— = (1 —=£ 12
9T X ( +?77')p X (12)

Consistent with the structure of the solution sought, the rela-
tionship between the Lagrangian and the Eulerian coordi-
nates, X and x, is written in the form,

N
x=X+ Y R[X,(X)e"T], (13)

=1
and the bubble volume, 7, and pressure, P, are expressed by
the expansions,

N
T=To+ Y R[7,(XH)e"T],

n=1

(14)

and

P N ,
—=P+ T RP, (X)),
P

n=1

(15)

The expansions (13)-(15) are substituted into Eq. (11),
and coefficients of ¢"°7 are equated to obtain

dX, Ty n— 1 (2j — ;dX,_ .
d‘Xn =a0-7_—+(10 z (2]2 n) .7.-1_ -
0 ji=1 n To dX
N-—n -
(n+2)
a ——
+ Ojgl 2n

x(T”“ 4, —idX”“). (16)

75 dX 1, dX
Similar substitution into the momentum equation [Eq.
(12)] leads to
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P .
ap, = (1 — ay)n’6X,

dX‘
1 "_1( 262 dX;
- 1— — 65X,
+ 5 j; (1 —ay)(n—)) i
. dpP. .
a2 2t
7o dX
- ) dy —
(n+ )1 —agX;, , 7)(_1'-
N—n —dX
- + /282 (1 — ay) X, —-
+ 2 j;l .] 0 j dX
_aoi dPn+j _aO Tj‘*’” df’j
7o dX 7o, dX

Note that in the linear approximation, Eqs. (16) and (17)
become

dXx, T,
ax 7 (18)
0
and
dP
dX"' = (1 — a,)n*6’X,,. (19)

It is consistent with the level of approximation to substitute
these first-order expressions into the quadratic terms in Egs.
(16) and (17), which then become

n—1 -
%= aoT—';+ a? j; (212; n) :_; Tnd | 0(ad)
, (20)
and
Py _ (1 — ag)n*8%X, + 0(cd). (21)
dx

The simple algebraic relation between the bubble radius and
the bubble volume leads to

2_3Rn +-_3__n*1Rj Rnfj 3N4”R#jRn+j

7'0— R 2_,":1_R_0 R() jglR_o R()

(22)

and using this in (20) and (21), one obtains the following
equation:

d*(P,/0R3)
a'(x/RO)2

2R
=3a,(1 — ao)(n—6) R—" + [ (X),

@y 0
(23)
where f,,, (X) is given by

S (X) =3a,(1 — a,) (né/w,)?

n—1 (_1—+ 3a0(2j—n))__RiRn—j
j=1 2 2n

R() R()
YRR

j=1 Ro R()
_ (24)

At this point in the solution, we have obtained one rela-
tion, Eq. (23), connecting the pressure coefficients, P, to
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the radius coefficients, R,,. We now introduce the Rayleigh—
Plesset equation that will provide a second such relation.
More specifically, we use Eq. (4), which may be written as

(P,/o3R3) = A(R,/Ry) + [, (X), (25)
where
n—1 R R i
w2 (X) = (ny) =+ —
S j;l Bi(ny R, R,
N-—n F‘ R i
+ Bay(nyj) —L —*L, (26)
,; 2 R TR,

where f3,(n,j) and f3,(n,j) are given by Egs. (7) and (8).
For convenience, we define, 4,,, such that

A2 =3a,(1 —ay) (nb/w,)*/A 27)

Now the linear terms‘involving the radius coefficients, R, /
R, can be eliminated from the simultaneous Egs. (23) and
(25) to yield the following differential equation for the pres-
sure coefficients P, :

d*(P,/oiR}) P,
S =3 (e = fa ) £ DD

Dp L g
(28)
The solution of this equation has the form,
P,/wiR} =AS,e” "™ 4 £, (X), (29)

where from Eqgs. (25) and (29), we have
R,/Ry=S,e "% L [f(X) —f (X)]/A, (30)
and using Eqgs. (28) and (29),
d’f.,
d(x/Ry)>

Having obtained the form of the solution (30) and noting
that the linear component of this solution can be written as

R,/R,=S,e ™%, (32)

we can proceed to evaluate £, (X) and f,, (X) from Egs.
(24) and (26) by noting that it is consistent with the level of
approximation to use the expressions (32) in the quadratic
terms. Then Eq. (31) can be solved exactly, the solution
taking the form

=A2[fs (X) —fo (X)] + /0 (X). (31)

n—1

3 BynSS, e Vi

L@ =", ) . (33)
+ Z Bi(nj) :S_'J-S,1+je7(’11+’1:r+j)X/Ru
i=1
where
12
(ny) = n
ﬁ3 ’ (/1]_*—/111—1')2—13,
Al .
X[ {z+3a0[(2_] n)/2n]}] .
—Bi(ny)
and
Batn ) = [A2AK + 4,00 = A3}] [A—=Bo(m D).
35)

Using Eqgs. (19), (29), and (33), we get the following equa-
tion:
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X, (0 ! .
An n( )=Sn+z ﬂs(nz])S]S _;

3a, Ry i=1
N—n .
+ S Ben) 58,5 (36)
=1
where
o /1n(/1j +/1n—j)
Bs(nyj) = (/1]- +/1,,_j)2—/1,21
1 (2j —n) /31(11:1'))
—4+3 — 37
X(z T, A GD
and
ACA +A ., ;
B()(nzi) — _"( J + "+]) (1 __BZ(”:])) (38)
(/1] +/1n+j)2—/131 A

This completes the solution because for given fluid and bub-
ble properties, the values of A, are known through the defin-
ition (27). Then, for given X, , the values of S, are given by
Eq. (36). Hence, R, /R, is known from Eq. (32). Thus us-
ing Eqs. (29) and (33), P,/ R 2 can be calculated.

llIl. RESULTS AND DISCUSSION

For a given wall oscillation amplitude to undisturbed
bubble radius ratio, X, (0)/R, and given bubble properties
the Eq. (36) can be solved for S, (or R, /R, at the wall)
using a Newton-Raphson scheme. Then P,/w, R} at the
wall can be calculated using Eqs. (29) and (33).

Equation (36) is similar in structure to the Eq. (4).
Thus for wall motion at a single frequency, @, the only non-
zero response occurs at the harmonics of ;. For the same
reasons as given earlier in the context of Eq. (4), the solu-
tions to the Eq. (36) are independent of the interval of de-
scritization, 8. Also, both P,/w; R 5 and R, /R, appear only
at harmonics of the frequency of the wall oscillation, w,.
Thus the software may be written so as to evaluate only the
response of nonzero amplitude, i.e., at the harmonics. Calcu-
lation of the harmonics up to order 50 was found to be suffi-
cient, harmonics of higher order being negligible. For the
purpose of demonstrating the nonlinear effects, we choose to
vary the wall oscillation frequency from w,, /100 to 2w, and
the resulting magnitudes of the harmonics P,/w?R 3 and
R, /R, at the wall are plotted as functions of the reduced
frequency né/w,. Data for the two sets of values listed in
Table I will be presented. A convenient reference case will
consist of data set I plus a void fraction, «,, of 0.02 and an
amplitude of wall oscillation, X, (0)/R,, of 0.03. Data set I1
will be used to examine the effect of varying the viscous and
surface tension parameters. The effect on the results of vary-
ing agand X, (0)/R, will also be examined.

Results for the reference case are presented in Fig. 6 in
exactly the same way as the earlier results were presented in
Fig. 4. We reiterate that data below a certain magnitude will
be substantially effected by higher-order nonlinearities. The
first point to note is that the response rapidly decays at high-
er harmonics. For the purpose of discussion of the results a
frequency at which the response is a maximum will be called
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FIG. 6. The frequency response of the bubbly cloud; |R,|/R, and
|P,|/@} R} are plotted against the frequency ratio, n8/w,, for the first five

harmonics. The parameters X, (0)/R, = 0.03, ¢, = 0.02 and v/w, R ; and
S/pwiR} are as in data set I.

an enhancement frequency and a frequency at which the
response is a minimum will be called a suppresion frequency.
From Fig. 6, it can be seen that the dominant enhancement
frequency for bubble radius oscillations at the wall is @, .
Furthemore, harmonics of all orders have a suppression fre-
quency of approximately 3w, though the reasons for this are
not clear. It can also be seen that the higher harmonics of
radius oscillations have other enhancement and suppression
frequencies.

In contrast to the radius oscillations, all of the harmon-
ics of the pressure have suppression frequencies close to w, .
The suppression in fundamental harmonic at @, is also pre-
dicted by the linear solution. It can be seen that the dominant
second harmonic occurs at approximately 2@, and the
dominant third harmonic at approximately 3w, . The funda-
mental harmonic in the pressure oscillation reaches a mini-
mum at approximately @, and then increases linearly with
frequency. Thus the pressure response is dominated by a
combination of the fundamental frequency and the second
harmonic. In particular, the dominant pressure oscillation
occurs at 2w,. This high-pressure response at the second
harmonic is one of the main results that emerges from this
nonlinear analysis. It can be visualized as follows. When the
wall is oscillated close to w,,, the bubble volume response is
sufficiently large to cause significant accelerations in the flu-
id. Thus high pressure fluctuations can be expected. How-
ever these occur primarily at 2w, .

The effect of changing the viscous and the surface ten-
sion parameters while all other parameters remain un-
changed is illustrated in Fig. 7. This contains a comparison
between the results for the data set II and the earlier results
for the data set I. Higher viscous and surface tension param-
eters tend to inhibit bubble oscillations. Hence, the response
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curves for the data set II exhibit sharper peaks and troughs.
Otherwise, the basic form of the response is very similar for
the two sets of data with only minor differences in enhance-
ment and suppression-frequencies due to differences in the
fevels of nonlinearity. Two additional features of the results
presented in Fig. 7 deserve special attention. First, note that
the stronger nonlinearity present at the enhancement fre-
quency for. the data set 11 has resulted in splitting into two
adjacent enhancement frequencies. This is exemplified in
Fig. 7 by the response in the radius oscillation at the funda-
mental frequency. It also occurs.in the second, third, and
fifth- harmonics of pressure. A different kind of frequency
splitting accurs where a suppression frequency splits into a
suppression frequency and an enhancement frequency. This
can be seen in the fundamental component of pressure oscil-
lation near the frequency ratio of unity.

Next, the effect of varying the void fraction is demon-
strated in Fig. 8§ where data for void fraction values of 0.003,
0.020, and 0.100 are compared. Note that the main features
of the results, namely the enhancement and suppression fre-
quencies remain almost the same. However, the nonlinear
response Is enhanced as the void fraction is reduced. This
dependence can be predicted from the linear solution in
which both radius and pressure are given by terms multi-
plied by the factor [(1 — @,)/3a,}'?. For the small void
fractions considered here, the denominator dominates this
factor and implies larger effects at smaller void fractions.
Also with the increased level of nonlinearity, the frequency
splitting phenomena, described earlier, are observed. Also,
the first enhancement frequency in the radius oscillations
increases slightly with increased level of nonlinearity. Simi-
larly, the first suppression frequency for pressure oscilla-
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tions decreases slightly with increased level of nonlinearity.
This also occurs in the higher harmonics.

Finally, the effect of changing the amplitude of the wall
motion X, (0)/R, while keeping void fraction constant at
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F1G. 9. The effect of change in the amplitude of wall oscillation, X, (0)/R,,
on the fundamental harmonic; 'R /R, and |P, |/w} R} for the fundamen-
tal harmonic are plotted against the frequency ratio, , /w,. The param-
eters a, = 0.02 and v/w,R] and S/pw, R values are as in data set 1.
X, (0)/R, values of 0.01, 0.03, and 0.06 are used.
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0.02 is shown in Fig. 9. Values of 0.01, 0.03, and 0.06 for
X, (0)/R, are used. Obviously the nonlinear effects become
stronger for higher values of X, (0)/R,. Splitting of some
enhancement and suppression frequencies is observed. In
addition, cancellation of neighboring suppression and en-
hancement frequency can be observed for the fourth har-
monic in the radius and pressure oscillations.

IV. CONCLUSIONS

In this paper, we have examined some of the nonlinear
effects that can occur when a plane wall bounding a bubbly
liquid oscillates in a direction normal to the plane of the wall.
Specifically, we have examined the response in terms of the
bubble radius and pressure oscillations at the wall. The prin-
cipal results are as follows: Radius oscillations are dominat-
ed by the fundamental response at the bubble natural fre-
quency. On the other hand, the pressure oscillations at the
wall are suppressed near the bubble natural frequency for
harmonics of all orders. The pressure oscillations are domi-
nated by the fundamental and the second harmonic re-
sponses, primarily at frequencies of approximately 2w, . It is
observed that nonlinear effects increase not only with wall
amplitude but also as a result of a decrease in the surface
tension and viscous parameters or a decrease in the void
fraction. Characteristic suppression and enhancement fre-
quencies depend upon the level of nonlinearity. Also, in-
creased nonlinearity is manifested in the form of splitting
and cancellation of enhancement and suppression frequen-
cies.
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