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Abstract

This paper presents a spectral analysis of the response of
a fluid containing bubbles to the motions of a wall oscillating
normal to itself. First, a fourier series analysis of the Rayleigh—
Plesset equation is used to obtain an approximate solution for
the nonlinear effects in the oscillations of a single bubble. This
is used in the approximate solution of the oscillating wall prob-
lem and the resulting expressions are evaluated 1 numerically in
order to examine the nonlinear effects. The frequency content
of the bubble radius and pressure oscillations near the wall is
examined. Nonlinear effects are seen to increase with increased
amplitude of wall oscillation, reduced void fraction and viscous

and surface tension effects.
1. Introduction

The objective of this work is to gain an understanding
of the interactions between individual bubbles in cavitating
flows. The nonlinear dynamics of the growth and collapse of a
single bubble have been studied for a long time (e.g. Plesset
and Prosperetti (1977)). In a bubble cloud these nonlinear
At

most basic level, this interaction comes about because the

bubble dynamics produce nonlinear interactive effects.

response of the bubble to pressure changes results in volume
changes which in turn cause accelerating velocity fields which

effect the pressure. The present paper attempts to construct

an approximate nonlinear analysis of this phenomenon.
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Among the first to focus on the dynamics of bubble clus-
ters was van Wijngaarden (1964) who analyzed the collapse of
a large number of bubbles next to a flat wall and found con-
siderable increase of pressure at the wall as result of the inter-
active effects. Morch (1980 and 1982), Hansson et al. (1982),
Chahine (1982) and Omta (1987) have worked on other aspects '
of the dynamics of the bubble clouds. d’Agostino et al. (1988)
solved for the linearized dynamics of the flow of bubbly mix-
ture over over slender surfaces. d’Agostino and Brennen (1989)
calculated natural frequencies of the bubble cloud and solved

for linearized dynamics of spherical bubble clouds .

Apart from Omta’s (1987) numerical solutions very lit-
tle work has been done on the nonlinear dynamics of bubble
clouds. The objective of present work is develop a methodol-
ogy for handling nonlinear terms and to obtain the nonlinear
solution in one illustrative case by studying the dynamics of
bubbly liquid next to a flat wall which oscillates normal to its
own plane. Only an abbreviated form of our work is presented
here; details work will be presented elsewhere ( Kumar and
Brennen (1990)).

2. Notation
i imaginary number
k polytropic constant for gas expansion and
contraction
5hn index integer



P pressure in liquid flow field

Py, pressure of permanent gas in the bubble at
undisturbed condition

P, complex amplitude of pressure oscillation at
frequency né

P, reference pressure in the liquid

P, vapor pressure inside the bubble

Py pressure at infinity

R radius of the bubble

R, radius of the bubble in reference condition

R, complex amplitude of radius oscillation at
frequency né

S surface tension of the liquid

t time

T Lagrangian time

u velocity in the liquid flow field

T Eulerian space coordinate normal to the wall

X Lagrangian space coordinate normal to the wall

Xn complex amplitude of wall oscillation at
frequency né

a, volume fraction of bubbly mixture at
reference condition

é increment in the frequency
ratio of specific heats

v kinematic viscosity

wp natural frequency of the bubble in radians/sec

Wy frequency of the wall oscillation in radians/sec

R real part of complex quantity

T volume of the bubble

Tn complex amplitude of the bubble volume
oscillation at frequency nd

To volume of the bubble at undisturbed condition

P density of the liquid

Po density of the vapor in the bubble

3. Nonlinear Solution of the Rayleigh-Plesset Equation

There exists a substantial body of literature on the non-
linear dynamics of single bubbles ( for example Eller and
Flynn (1969), Prosperetti (1974) and Lauterborn (1976)); this
has been reviewed by Plesset and Prosperetti (1977). In the
present work it is necessary to construct the very simplest non-

linear solution of the Rayleigh—Plesset equation for a single

108

bubble. Later this will be used as a building block for the
problem of many bubbles interacting in a flow. The bubble
is assumed to be spherical and to contain water vapor and
residual permanent gas. The bubble interior is assumed to
be uniform with constant vapor pressure, P,. The permanent
gas in the bubble is assumed to behave polytropically with an
index k between 1 and y( Plesset and Hsieh (1960)). The lig-
uid compressibility is only included in the radiation damping
which is accounted for by including it in effective viscosity in
the bubble dynamics in the manner previously described by
Devin (1959). With these assumptions the Rayleigh—Plesset

equation describing the bubble dynamics becomes

R2R  3(DR\ 4vDR 25 PyTy) - Put)
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In the present solution a fourier series expansion method is
used and terms up to second order are retained in order to
examine these corrections to the linear solution. The bubble

radius, R(t) and the pressure at infinity, Pog (t) are expanded

in the form
N
R=R,+) R(Rae™) @)
n=1
and
Poo(t) =P + i se(P einﬁt) (3)
p (<] n=1 n

where P, and R, are complex quantities and né,n =1, N rep-
resents the discretization of the frequency domain. These are
substituted into equation (1) and all terms of third or higher
order in R, /R, are neglected in order to extract the simplest
nonlinear effects. Finally, coefficients of ¢ on both sides
of the simplified equation are equated. This yields following

equation for P, and R,,.

n-1

Py Ry, ~B; Ry j
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where the bubble natural frequency, wy is given by wy
(3kPso/pR,? ~ 25/pR,%)"/* and A, By(n,5) and Bo(n, ;) are



known complex coefficients defined by
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Note that the pressure perturbations, P, occur in above anal-
ysis only in linear form and thus can be large without introduc-
ing error in the solution. However, the analysis is valid only for
R./R, < 1. This defines the extent of the weak nonlinear ef-
fects which are examined here and indirectly implies an upper
limit on the magnitude of P, /w1,2R02. These solutions were
compared with numerical solutions of the complete Rayleigh—
Plesset equation and were found to work well in predicting
the amplitude of R, /R, ( Kumar and Brennen (1990)). Obvi-
ously, more accurate nonlinear solutions than the one described
above exist and have been expounded in the literature. The
value of present solution lies in its simplicity and the feasibility
of incorporating it in an analysis of the collective response of

a cloud of bubbles.
4. Nonlinear flat wall solution

The specific problem addressed in this paper is shown
schematically in Figure 1. Liquid containing bubbles is bounded
by a flat wall which oscillates in a direction normal to itself at
a given frequency, wy. The resulting flow is assumed to be
function only of z and ¢. The approximations and assump-
tions involved in the solution of this problem are the same as
those employed in the earlier work of d’Agostino et al. (1988)
and d’Agostino and Brennen (1989). The bubbles are each
assumed to be governed by the Rayleigh-Plesset equation (1)
involving the local pressure p (z,t) and the mixtureis assumed
to follow space averaged continuity and momentum equations.
The solution to this problem is obtained in Lagrangian coordi-

nates, X and T. Consistent with the structure of the solution
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Figure 1: Schematic of the Oscillating Wall Problem.

sought, the relationship between Lagrangian and Eulerian co-

ordinates, X and z, is written in the form

g=X+ f: R (X,.(X)e""”)

n=1

(8

and the bubble volume, 7, and pressure, P, are expressed by

the expansions

T=T+ f: ® (T,.(X )e""&T)

9
n=1
and
P N
Z-pr+Y® (P, (X)e"7) (10)
n=1

These are substituted into governing equations and coefficients

of ™7 are equated. After simplification we obtain

d? (Pafw3?R,%) n6\* R,
] =00 (1~ ) () e s ) )
where fp1 (X) is defined by
/1 30,(2/ —n)
2 Z_: (5 + 2n ) )
né j=1
fnl (X) = 300 (1 bt ao) (w—) N
R, Ro
(12)

The two equations (4) and (11) which connect P, (X) and
R, (X) may be solved ( see Kumar and Brennen (1989)) to



yield the following implicit relation between the coefficients.

dn Xal0) = =
o B =S, +Zﬂ5 (n,5) 8 Sn—j + z Be (1, §) S;Sn+;
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(13)
where X, (0) /R, is the ratio for the wall amplitude to the
mean bubble radius. Here Ay, 85 (1, 3), Bg (n,j) are defined as

a2 = 30, (1 - ) ("5) /A (14)
1. @=n)
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The radius coefficient functions, R,, (X) /R, are given by

R,

== [@ue Rt () = fa(X)]/A (1)

and the pressure coefficient functions, P, (X)/ws2R,? are

given by
P —
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This completes the solution for a given fluid and given bubble

properties.

5. Results and Discussion

For a given wall amplitude to bubble radius ratio, X, (0)/R,

Table 1: Fluid and Bubble Parameters for the examples A

presented. These data are for water at 20° C

Data Set R, Pyo E v/ wyRs2 S / pw2Ro>
(um)  (Pa)
I 20 14680 1 0.01 0.10
II 20 106326 1 0.0028 0.0118

and given bubble properties the equation (13) is solved for Sy
(or R,/R, at the wall) using a Newton—-Raphson procedure.
Then P, /w;?R,2at the wall is calculated using equation (18).

It is obvious from an examination of the structure of
equations that the results are independent of the way the
frequency domain is discretized, or in other words the pa-
rameter 8. Also, it is seen from the computation that both
P,/wy?R,%and R, /R, appear only at harmonics of the fre-
quency of the wall oscillation, w,;. Thus the software may
be written so as to evaluate only the harmonics of nonzero
amplitude. For the purpose of demonstrating the nonlinear
effects, we choose to vary the wall oscillation frequency from
wp/100 to 2w, and the resulting magnitudes of the harmon-
ics P, /wb2Ra2and R, /R, at the wall are plotted as functions
of the nondimensionalized frequency nd/wy. Data for the two
sets of values of the viscous parameter, »/ wpR,? and the sur-
face tension parameter, S/ pw521?,,3 listed in Table 1 will be
presented. Data set I provides a convenient reference case in
which, in addition the mean void fraction, a, is taken to be
0.02 and the amplitude of wall oscillation, X,(0)/R, is taken
to be 0.03. Data set II is used to examine the effect of vary-
ing the viscous and surface tension parameters. The effects of

varying ¢, and X,,(0)/R, on the results will also be examined.

Results for the reference case are presented in Figure 2.
The lines labelled [1] are the magnitudes of the response at
the fundamental forcing frequency so that, in this case, the
abscissa represents wy /wp. The lines labelled [2] represent the
magnitudes of the response at twice the forcing frequency; and
in this case abscissa, represents 2w,/w;. And so on for the
lines labelled [3], [4] and [5] which represent the response at
the third, fourth and fifth harmonics of the forcing frequency.
For all the lines magnitudes are plotted against the actual re-

duced frequency, w/wp, at which they occur. In this figure we
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Figure 2: The frequency résponse of the bubbly cloud; |Ry|/ R,
and | Py,|/uwp2R,? are plotted a.ga.insig the frequency ratio, né/wp
for the first five harmonics. The parameters: X,,(0)/R, = 0.03,
o= 0.02 and v/wyR,? and S/pwy?R,® are as in data set L

have presented the results for harmonics up to fifth order. In
viewing these results it should be recognised that those har-
monics with magnitudes below a certain level are of dubious
significance since higher order nonlinearities would, in all like-

lihood, markedly alter those results.

The first point to note is that the response rapidly de-
cays at higherA harmonics. For the purpose of discussion of
the results a frequency at which the response is a maximum
will be called an enhancement frequency and a frequency at
which the response is a minimum will be called a suppression
frequency. From the Figure 2, it can be seen that the domi-
nant enhancement frequency for bubble radius oscillations at
the wall is wp. Furthermore, harmonics of all orders have a
suppression frequency of 5ppmxjmately Jwy though the rea-
sons for this are not clear. It can also be seen that the higher
harmonics of radius oscillations have other enhancement and

suppression frequencies.

In contrast to the radius oscillations, all of the harmonics

of the pressure have suppression frequencies close to wy. The
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Figure 3: The effect of variation in 1//:..)1,1%,,2 and S/ pupRo®
on the fundamental harmonic; |R,|/R, and lP,,l/w;,zRo2 for
the fundamental harmonic are plotted against the frequency
ratio, né/wy. Thé parameters: X,(0)/R, = 0.03, do= 0.02 v
and ll/lwbRoz and S/ pwy2R,® are as in data sets I and II.

suppression in the fundamental harmonic at wy, is also pre-
dicted by the linear solution. It can be seen that the dominant
second harmonic occurs at approximately 2wj, and the domi-
nant third ha.nﬁonic at a,pprc;ximately 3wy . The fundamental
in the pressure oscillation reaches a minimum at approximately
wy, and then increases linearly with frequency. Thus the pres-
sure response is dominated by the fundamental and the second
harmonic at 2w;. High pressure response at the second har-
monic is the main result obtained from nonlinear analysis. This
can be explained as follows. When the wall is oscillated close
to wp the bubble volume response is sufficiently large to cause
significant accelerations in the fluid. Thus high pressure fluc-
tuations can be expected. This takes the form of a substantial

pressure oscillation at the second harmonic, 2wy,

The effect of changing the viscous and the surface ten-
sion parameters while all other parameters remain unchanged
is illustrated in Figure 3 which presents a comparison between

the results for the data set II and the earlier results for the
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Figure 4: The effect of change in the void fraction, a, on
the fandamental harmonic; |Rp|/Ro and |Pa|/w;?R,” for the
fundamental harmonic are plotted against the frequency ratio,
" né/wy. The parameters: X,(0)/R, = 0.03 and v]wyR,? and
S/ pwpt R, values are as in data set 1. Values of the void
fraction, a,, of 0.005, 0.020 and 0.100 are used.

data set 1. Higher viscous and surface tension pa.ra.metérs tend
to inhibit the bubble oscillations. Hence the results for the
data set II exhibit sharper peaks axid troughs in the response
curves. Otherwise the basic form of the response is very sim-
ilar for the two sets of data with only minor differences in
enhancement and suppression frequencies due to differences in
the levels of nonlinearity. Two additional features of the re-
sults presented in Figure 3 deserve special attention. First,
note that the stronger nonlinearity present at the enhance-
ment frequency for the data set II has resulted in splitting into
two adjacent enhancement fréquéncies. This is exemplified in
Figure 3 by the response in the radius oscillation at the funda-
mental frequency. It also occurs in the second, third and fifth
harmonics of pressure. A different kind of frequency splitting
occurs where a suppression frequency splits into a suppression
frequency and an enhancement frequency. This can be seen

in the fundamental component of pressure oscillation near the
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Figure 5: The effect of change in the amplitude of wall oscil-
lation, X,(0)/R, on the fundamental harmonic; |Rx)/Ro and
|Pa)/ws? R, for the fundamental harmonic are plotted against
the frequency ratio, né/wp. The parameters: o= 0.02 and

v/wyR,? and §/pwp?R,> values are as in data set L. Xa(0)/R,
values of 0.01, 0.03 and 0.06 are used.

frequency ratio of 1.

Next the effect of varying the void fraction is demon-
strated in Figure 4 where data for void fraction values of 0.005,
0.020 and 0.100 are compared. Note that the main features of
the results, namely the enhancement and suppression frequen-
cies remain almost the same. However, the nonlinear response
is enhanced as the void fraction is reduced. This dependence

can be predicted from the linear solution in which both the
radius and the pressure are given by terms multipliéd by the
factor [(1 — o) /3] 1/2_ The denominator clearly represents
the primary influence of void fraction on the results. With in-
creased level of nonlinearity, the frequency splitting phenom-
ena, described earlier, are observed. Also, the first enhance-
ment frequency in the radius oscillations increases slightly with
an increased level of nonlinearity. Similarly,the first suppres-
sion frequency for pressure oscillations decreases slightly with

an increased level of nonlinearity. This also occursin the higher



harmonics.

Finally, the effect of changing the amplitude of the wall
motion X,(0)/R, for the data set I while keeping the void frac-
tion constant at 0.02 is shown in Figure 5. X,(0)/R, values
of 0.01, 0.03 and 0.06 are used. Obviously the nonlinear ef-
fects become stronger for higher values of X,(0)/R,. Splitting
of some enhancement and suppression frequencies is observed.
In addition cancellation of neighbouring suppression and en-
hancement frequencies can be observed for the fourth harmonic

in the radius and pressure oscillations.

6. Conclusions

In this paper we have examined some of the nonlinear ef-
fects which can occur when a plane bounding a bubbly liquid
oscillates in a direction normal to the plane of the wall. Specif-
ically we have examined the response in terms of the bubble
radius oscillations at the wall and the pressure oscillations at
the wall. The principal results are as follows. Radius oscilla-
tions are dominated by the fundamental response at the bubble
natural frequency. On the other hand pressure oscillations at
the wall are suppressed near the bubble natural frequency for
harmonics of all orders. Pressure oscillations are dominated
by fundamental and second harmonic responses at frequencies
of approximately 2ws. It is seen that nonlinear effects are in-
creased as result of a decrease in the surface tension and viscous
parameters or a decrease in the void fraction. Nonlinear effects
also increase with increase in the amplitude of wall oscillation.
Characteristic suppression and enhancement frequencies can
be identified and depend upon the level of nonlinearity. Also,
increased nonlinearity is manifested in the form of splitting

and cancellation of enhancement and suppression frequencies.
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