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INTRODUCTION

The purpose of this paper is to present a new model for
ciliary propulsion intended to rectify certain deficiencies in the
existing theoretical models. The envelope model has been devel-
oped by several authors including Taylor (1951), Reynolds (1965),
Tuck (1968), Blake (1971a, b, c) and Brennen (1974); it employs
the concept of representing the ciliary propulsion by a waving
material sheet enveloping the tips of the cilia. The principal
limitations of this approach, as discussed in the review by Blake
and Sleigh (1974), are due to the impermeability and no-slip con-
ditions imposed on the flow at the envelope sheet (an assumption
not fully supported by physical observations) and the mathematical
necessity of a small amplitude analysis.

In a different approach, Blake (1972) introduced the sub-
layer model for eviuating the flow within as well as outside the
cilia layer by regarding each cilium as an individual slender body
attached to an infinite flat plate in a regular array. The flow
equations and the no-slip condition at the plate are satisfied by a
distribution of Stokes flow force singularities along each cilium.
The strength of these singularities is determined by considering
the relative velocity between an individual cilium element and an
"interaction velocity' which is taken to be the parallel steady flow
which the rest of the ciliary array is supposed to create, The re-
sulting complicated integral equations are then solved numerically
for the mean velocity profile. As pointed out by Wu (1973) and
Brennen (1974), the primary deficiency in the sub-layer model is
caused by neglecting the oscillatory component of the "interaction
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velocity''. From a physical standpoint, since the velocity of the
cilia is typically 2 to 3 times the velocity of the mean flow they
produce (Sleigh and Aijello (1972)), one might expect the magnitude
of the oscillatory velocities to be considerable. Therefore the
velocity that each cilium ''sees'’ at any instant during its beat cycle
is likely to be quite different from the parallel mean flow alone.

In the traction-layer model developed in this paper, the
discrete forces of the cilia ensemble are replaced by an equivalent
continuum distribution of an unsteady body force within the cilia
layer, and in this discrete-to-continuum force conversion the
oscillatory velocities as well as the mean flow are taken into ac-
count. Expanding upon the prototype model of Wu (1973), a solu-
tion to the fundamental fluid mechanical equations satisfying the
appropriate boundary conditions is obtained in terms of an un-
steady body force field. This field, which depends upon the move-
ment of the cilia and the '"interaction velocity', is meant to be
equivalent to the combined effect of the cilia ensemble in generating
the resultant flow field. The "interaction velocity', upon which
the force field depends, is determined from the instantaneous
velocity of the local fluid. The final velocity field is then obtained
by a simple and direct numerical iteration of the given solution.

Since in typical organisms the thickness of cilia layer is
small compared with the body dimensions, the geometry of the
model may be taken as an infinite, flat layer of distributed body
force and the cilia are assumed to exhibit planar beat patterns.

It has been further demonstrated that flow field solutions for in-
finite models may be profitably employed as local approximations
for finite organisms (see Blake (1973) and Brennen (1974)). Both
symplectic and antiplectic metachrony are considered, the exten-
sion to other types of metachrony being evident from the discussion.

DESCRIPTION OF THE MODEL

We consider a hypothetical planar organism of infinite
extent whose cilia are distributed in a regular array of spacing a
in the X direction and b inthe Z direction in a Cartesian co-
ordinate system fixed in the organism (see Figure 1). Each cilium
is assumed to perform the same periodic beat pattern in an XY
plane, with a constant phase difference between adjacent rows of
cilia, such that the metachronal wave propagates in the positive
X direction.

As already explained, the central concept of this model is
to replace the discrete forces of the cilia ensemble by an equiva-
lent continuum distribution of an unsteady body force field F(X, Y, t).
The vector function ¥ (X, Y,t) specifies the instantaneous force
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Figure 1. Illustration of the coordinate system and regular array
of cilia. The spacing in the X direction is a, while in the Z
direction it is b.

acting on a unit element of fluid centered at position (X,Y,Z) and
at time t, the fluid element being of unit depth in the Z direction.

For metachronal waves, F is a periodic function of
¢(X,t) = kX-wt, where w is the angular frequency of the ciliary
beat and k = 2w/N, N being the metachronal wavelength. There-
fore ¥ can be expanded in a Fourier series of the form

0
_ N ni¢
E(X,Y,t) = E_(Y) t) RelF_e"'"], (2. 1)
n=1
where Re stands for the real part, i = V-1, and the Fourier co-
efficients ¥ (n2> 1) may be complex functions of Y. Further,

since the cilia are of finite length L, F will vanish above the
cilia layer or equivalently

F(X,Y,t)=0 for Y > YL(kX - wt) (2.2)

~where Y = YL(kX - wt) is the thickness of the cilia layer, which
depends on ¢(X,t). The Fourier coefficients F, corresponding
to the distribution (2. 1) will therefore vanish for Y > L,

F (Y)=0 for Y> L, n>o. 2. 3)
L
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SOLUTION OF THE FLUID MECHANICAL PROBLEM

The Navier-Stokes equations for the flow of an incompres-
sible Newtonian fluid in two dimensions may be written as

P

2
x = F +pvV U = p (U_+UUy +VUy) (3.1)

Py

2
G +pvVoV - p (V +UVy +VVy) (3.2)

where P is the pressure, U and V are the X and Y compo-
nents of velocity respectively, ¥ and G are the X and Y com-
ponents of body force F, p is the density, and v the kinematic
viscosity. Here and in the sequel, X,Y, and t in subscript de-
note differentiation. The continuity equation, Uy + Vy = 0, will
be satisfied by a stream function ¥ defined by U = Iy and

V = -¥s. If we non-dimensionalize all variables using k-1, w"l,
and ka-lw‘l as the reference length, time, and mass scales
respectively, the equations of motion in non-dimensional variables
(lower case) become

2
=f+V - R + - 3.3
Py by o(qu’T llJy\lJXy LPXllJyy) (3.3)
, A
Py =8 - VU TR M, Ul - by ) (3. 4)
where T = wt, and R_ = w/vke is the oscillatory Reynolds number

which is taken to be much less than unity as is generally the case.
The x and y components of equation 2.1, after non-dimensionali-
zation, become

o0
£,(y) +z Relf (y)e™ (7] (3.5)

n=1

f(x, v, t)

0

g (y) +z Relg (y) ™) (3. 6)

n=1

g(x,vy,t)

This suggests that we seek solutions for y and p of the form

2]

Yooy, ) =y l) + ) Rely(y)e

n=1

ni(x-7)] (3.7)
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o0
ni(x-~7)
p(x,y,7) = p_(y) + ) Relp_(y)e ]. (3. 8)
n=1
Substituting equations (3. 5)-(3. 8) into equations (3. 3) and (3. 4),
and equating the appropriate Fourier coefficients, we obtain,
after some simplication,
00
Wy)ygy = o + R, {172 ) Tmlny @) 11, G.9)
n=1
0
- 2, 3
(Po)y = €6 - Ro{l/zz (% 0,10} (3. 10)
n=1
W) ~2n°@) +niy =w +OR), nxl (3. 11)
n'yyyy n'yy n" 'n I '
-1t +@) -n°W) ) +OR ), nxl (3. 12)
Ph " nit'n n'yyy n'y o'’ = :

where Im refers to the imaginary part, an overbar signifies the
complex conjugate, and Th = nign - (fn)y n=>1).

The boundary conditions with respect to the reference
frame fixed in the organism are as follows. First we impose the
no-slip condition at the wall, which requires all the Fourier com-
ponents of velocity to vanish there, that is

(¢o)y(0) = NJn)y(O) =y (o) = o, nz1l). (3.13)

Second, since we are considering an organism which is propelling
itself at a constant finite speed, we require that the mean velocity
remain bounded while the "AC" components of velocity vanish as
y . Hence

(o) ) <o, @) @) =4 (®) =0 (a>1). (3.14)

Integrating equations (3.9) and (3. 10) and applying the
boundary conditions (3. 13) and (3. 14) along with the condition
(2. 3) yields for the mean velocity and pressure
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. vkL
u0 - (Lpo)y - S Ylfo(yl)dyl Ty J fo(yl)dyl
o y
(3. 15)
% y
+Ro{1/zz Im[\g. ann@n)ydyl]}
n=1 I}
y 0
2 -
Py = poo+S goyy)dyq - RO{I/ZZ n“y b}, (3. 16) -
(o) n:l

where p, is an arbitrary constant. Note that as a result of equa-
tion (2.3), the zeroth order terms (in R ) of u, and p, are con-
stant for y = kY > kL., The first order ferms come from the
coupling of the "AC" velocities in the nonlinear inertial terms of
the fundamental equations. The solution to equation (3. 11) subject
to equations (3.13), (3.14) and (2.3) is

g, = ;11—2 [a_()e™ +p_(y)e™] +OR_), where  (3.17)
y
an(y) = S (y-yl--1/n)e-nyl'irﬂdy1 (3.18)
kL
y
B0 = § oy #1/me™in ay,
o]
(3.19)
kL

-ny

+

_ S (y+y1 Znyy1+l/n)e 111'ndy1 .
o

The harmonic x and velocities, = Rel (U, ) n1 x-T) ] and
y Yn n/y®

Vo = -Rel nlkpnenl(X‘T)] ,n>1, decay like e-1y, The dimensional
velocities U, and V, are obtalned by simply multiplying up
and v, by c = w/k, the wave speed. The solution for the har-

monic pressure coefficients may be determined from equations
{3.12) and (3. 17) directly.

Finally we observe that for the cilia layer to be self-
propelling the condition of zero mean longitudinal force acting on
the organism can be expressed by
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L

-BE‘-’(O—)-V F (y,d 3.20

M aY _d OY]. Ylf (- )
(o]

where p = pv is the dynamic viscosity coefficient; the mean
shearing force exerted by the fluid on the wall balances the mean
force per unit area of the organism's surface due to the reaction
of the fluid to the ciliary body force field. It is of interest to note
that the present solution, given by equations (3. 15)-(3. 19), auto-
matically satisfies condition (3.20) required for self-propulsion
when the mean force E_O(y) of the ciliary layer is regarded as
known. This is in effect a consequence of the boundary condition
imposed at infinity, as Taylor (1951) pointed out. To an observer
in a frame fixed with the fluid at infinity (the lab frame), the or-
ganism is moving with a constant velocity and hence, by conser-
vation of momentum, must have zero net force acting on it.

FORCE EXERTED BY A CILIUM

In the preceding section the solution to the fluid mechanical
problem was given as if the body force field F were known a
priori. Since in practice this is not the case, we need to develop
a means of determining F. As an initial step in this regard, we

consider the force exerted on the fluid by a single cilium.

In order to calculate the viscous force exerted by an elon-
gated cylindrical body moving through a viscous fluid, it is con-
venient to utilize the simple approximations of slender-body
resistive theory. If the tangential and normal velocities relative
to the local fluid of a cylindrical body element of length ds are
Vg and V, respectively, the tangential force exerted by the body
element on the viscous fluid will be dIg = C ;V_ds with a similar
expression for the normal force dF, = C,V,ds, where Cg and
C, are the corresponding resistive force coefficients.

The expressions for the force coefficients have received
considerable attention by several authors. The original expres-
sions given by Gray and Hancock (1955) were for an infinitely long
circular cylinder moving in an unbounded fluid. Cox (1970) de-
veloped slightly modified coefficients to account for other simple
shapes. Recent work by Katz and Blake (1974) have yielded im-
proved coefficients for slender bodies undergoing small amplitude
normal motions near a wall. For the purposes of the present
investigation, however, initially, the force coefficients developed
by Chwang and Wu (1975) for a very thin ellipsoid of semi-major
axis 1L, and semi-minor axis r, are used. These are defined
by
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_ 4 21
“afTmmirgrE ™ ST y-3 (4. 1)

If we describe the motion of a single cilium with base fixed
at the origin by a parametric position vector E(s,t) specifying
the position of the element ds of the cilium identified by the arc
length s attime t, then the force exerted by the element ds on
the fluid is given by

dF = C IvE, - +(1-vE € -1) - & ds, 4.2)

where U 1is the local fluid velocity, which is inter-related to F_
and y= C,/Cg. Inthe formula above 9£/8t provides the veloc1ty
of motion of the cilium element at s and 9£/0s signifies the unit
vector tangential to the longitudinal curve of the cilium centroid.
We are thus left with the task of evaluating F. and then converting
it to the body force field,

DETERMINATION OF THE BODY FORCE FIELD

In order to apply the resistive theory in determining the
body force field F, two difficulties must be overcome. Equation
(4.2) describes the force exerted by an element as a function of
its arc length s. It is convenient to convert this Lagrangian de-~
scription of the force to Eulerian coordinates (i.e. to express the
force as a function of X and Y). In addition, the force exerted
by an element depends upon the local fluid velocity, which is ini-
tially unknown. Both of these features suggest a numerical itera-
tion approach.

While a detailed description of the numerical approach is
beyond the scope of this paper, a brief account of the scheme will
be given. From equation (2. 1) it follows that

A N
F =1/>\S F(X,Y,t )dX, F :Z/XS F(X,Y,t ye~BiP g%
[¢] o n o

° ° (5. 1)
nxz1)

This implies that if the body force field were known over one wave-
length for some (arbitrary) fixed time t_, then all the force co-
efficients could be determined. In order to accomplish this for

a given ciliary beat pattern, an analytical representation for

é(s t) can be determined using a finite Fourier series-least
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square procedure. (For the details of this procedure see Blake
(1972)). Thus the movement of a single cilium is given by

N
Q(s,t) =1/2 ao(s) +Za (s)cos nuwt + bn(s)sinnw‘c, (5.2)
n=1-n
M m M m
where in(s) = nzzllémns s En(s) = nZZEI]_Smns , with A n and
Bn being constant vectors.

Once £(s,t) is determined, an initial body force field can
be established via a ''pigeon-hole'algorithm. Using equation (5.2),
the cilia are numerically distributed over one wavelength at a
fixed time t_ and each cilium is broken up into a finite number of
segments. The Eulerian location of and the force exerted by each
segment are then determined and stored (i.e. '"pigeon-holed').
The force is evaluated using equation (4. 2) initially with U, the
local fluid velocity, equal to zero. The zpproximation is made
that the force exerted by each segment is located at the midpoint
of that segment, so that the force field can be represented by the
expression

J
F(X,Y,to) = 1/bZ£J.6(X—XJ.)6(Y-YJ.), (5. 3)
=1

where f. is the force exerted by the j-th ciliary segment whose
midpoint] is located at (X;, Y.) and J is the total number of seg-~
ments in one wavelength.” The factor 1/b is to account for aver-
aging in the Z direction.

Calculations of the body force field can then be carried out
by iteration. Equation (5.3) is used in equation (5. 1) to determine
the Fourier force coefficients F, (n> o), These toefficients,
after non-dimensionalization, are then used in equations (3. 15)
and (3.17) to determine a new local velocity field U. This velocity
field is used anew in the pigeon-hole algorithm to determine a new
FX,Y,t.}) by computing new f.'s. The iterative process is thus
repeatecci) until the ij's, and hetce the velocity field U, converges.

RESULTS

Preliminary calculations have been carried out on data
obtained for Opalina ranarum and Paramecium multimicronucleatum.
Although these two organisms have been observed to have some-
what three dimensional beat patterns, they were chosen because
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of the availability of the necessary data and for comparison with
previous theoretical work. The raw planar beat patterns were
taken from Sleigh (1968) and Figure 2 shows the results of the
Fourier series - least squares procedure (see equation (5.2)})

with M = N = 3 for Opalina and M =N =4 for Paramecium.

The metachrony of Opalina is symplectic, while Paramecium was
regarded as exhibiting antiplectic metachrony, although it recently
has been reported to be dexioplectic (Machemer (1972)).

In order to display the harmonic X-velocity components,
it is convenient to write them in the form

Un = anos(n¢> + 6n), (n> 1), where 6.1)
Q =cly, |, and (6.2)
6 =tan”![ tm, ) /Re( )] (6.3)

For a given value of Y, Q. is the amplitude of the nth harmonic
X-velocity component, while 6 is the phase of the motion. This
phase is such that U_ is at a maximum and in the same direction
as the mean flow when ¢ = (2#r - Gn)/n, while U, is at a maxi-
mum and opposes the mean flow when ¢ = [ (24-1)7 - 6n] /n, where
£ is an integer.

In performing the computations, besides the basic beat
pattern, it was necessary to specify the three dimensionless para-
meters ka, kb, and kL. The values of the parameters were
chosen to be consistent with the consensus of experimental obser-
vations (see e. g. Blake and Sleigh (1974) and Brennen (1974)).
The values used for ka and kb were 0.63 and 0. 13 for Opalina
and 0. 80 and 1. 60 for Paramecium. Two values of the amplitude
parameters kL, to which the computations were the most sensi-
tive, were used for each organism, these being 1.25 and 2, 50 for
Opalina and 3. 00 and 6. 00 for Paramecium. Because of the ap-
parent rapid decay of the higher harmonics and for computational
efficiency, only the first harmonic was retained in computing the
local velocity field U in three cases, however, the second har-
monic was included for Paramecium with kL = 3. 00,

Figures 3 and 4 show the velocity profiles for U, the
mean fluid velocity parallel to the wall, for Opalina and Paramecium
respectively. Also plotted are the profiles given by Blake (1972)
(dashed curve). The velocities at infinity, U®/c, which corre-
spond to the velocities of propulsion, are seen to agree quite well
with the observed values of 0. 5-1.5 for Opalina and 1-4 for
Paramecium (Brennen (1974)). Blake's calculations were made
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Figure 3. Mean velocity profiles for Opalina with ka = 0, 63 and
kb = 0.13, Dashed curve is from Blake (1972) for which (ka)(kb) =
0. 04.

with the quantity (ka)(kb) equal to 0. 04 for Opalina and 0, 00025
for Paramecium (both far below the reported values) so that a
direct comparison is difficult. While Blake's results indicate a
slight backflow for only the antiplectic case, the present study
indicates a backflow in the lower half of the cilia layer for both
Opalina and Paramecium (for kL = 6).
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Figure 4. Mean velocity profiles for Paramecium with ka = 0. 80
and kb = 1.60. Dashed curve is from Blake (1972) for which
(ka)(kb) = 0. 00025.

Figure 5 shows the amplitude of the first harmonic velocity
component U; for Opalina. The largest oscillatory velocities
appear to occur at Y/L = 6 and are more than twice the mean
flow in magnitude. In Figure 6 the amplitudes of U; for kL
equal 3 and 6 and Up for kL equal 3 are shown for Paramecium.
The largest oscillatory velocities occur in the upper part of the
cilia layer and are about the same magnitude as the mean flow.
Note that for kL =3 the amplitude of Uj is half that of U,.
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Figure 5. Amplitude profile for the first harmonic X-velocity
component for Opalina with ka = 0.63 and kb = 0. 13.

The corresponding 6's for Figures 5 and 6 are shown
in Figures 7 and 8 respectively. The origin and the value of t4
(see the previous section) were chosen so that ¢ = 0 corresponds
to a metachronal wave peak under which the cilia are in the effec-
tive stroke. This is illustrated in Figure 2 which can be regarded
as a snapshot of the cilia at t = t,» For Opalina at Y/L =0.5
and ¢ =0, U;/Q; = cos(6]) equals approximately 1 for kL = 1,25
and 0 for kL =2.5. This means that U; is somewhat in the
same direction as the mean flow in the vicinity of the cilia
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Figure 6. Amplitude profiles for nth harmonic X-velocity com-
ponents for Paramecium with ka = 0.80 and kb = 1. 60.

performing the effective stroke. However, above Y/L = 0.5

U1 progressively tends to oppose the mean flow. For Paramecium
however, at Y/L = 0.5 and ¢ = 0, Ul/Q1 equals -1 for both

kL values. Thus, inthis case, Uj tends to oppose the mean

flow in the vicinity of the effective stroke. It is also seen that

U, ({for kL = 3) is in the same direction as the mean flow near
the effective stroke (¢ =0) for much of the cilia layer.
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Figure 7. Variation of 67, the phase of the first harmonic X-
velocity component, with Y /L for Opalina. .

SUMMARY

The main features of the model developed in this paper are
that it allows for the large amplitude motion of cilia and takes in-
to account the oscillatory aspects of the flow. When applied to
Opalina and Paramecium, a good agreement is found between theo-
retically predicted and experimentally observed velocities of
propulsion. The amplitude of the oscillatory velocities is found
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Figure 8. Variation of 0,, the phase of the nth harmonic X-
velocity component, with "Y/L for Paramecium.

to be of the same order of magnitude as the mean flow within the
cilia layer and to decay exponentially outside the cilia layer.

ACKNOWLEDGMENT

This work was jointly sponsored by the National Science
Foundation and by the Office of Naval Research,



270 S.R. KELLER, T.Y. WU, AND C. BRENNEN
REFERENCES

Blake, J.R. 1971a A spherical envelope approach to ciliary pro-
pulsion. J. Fluid Mech. 46, 199-208.

Blake, J.R. 1971b Infinite models for ciliary propulsion. J. Fluid
Mech. 49, 209-222.

Blake, J.R. 1971c Self-propulsion due to oscillations on the sur-
face of a cylinder at low Reynolds number. Bull. Aust. Math.
Soc. 5, 255-264.

Blake, J.R. 1972 A model for the micro-structure in ciliated
organisms. J. Fluid Mech. 55, 1-23.

Blake, J.R. 1973 A finite model for ciliated micro-organisms.
J. Biomech. 6, 133-140.

Blake, J.R. and Sleigh, M. A. 1974 Mechanics of ciliary loco-
motion. Biol. Rev. 49, 85-125.

Brennen, C. 1974 An oscillating-boundary-layer theory for.ciliary
propulsion. J. Fluid Mech. 65, 799-824.

Chwang, A.T. and Wu, T.Y. 1975 Hydrodynamics of the low-
Reynold-number flows. Part 2. The singularity method for
Stokes flows. J. Fluid Mech. 67, 787-815.

Cox, R.G. 1970 The motion of long slender bodies in a viscous
fluid. Part 1. General theory. J. Fluid Mech. 44, 791-810.

Gray, J. and Hancock, G.J. 1955 The propulsion of sea~-urchin
spermatozoa. J. exp. Biol. 32, 802-814.

Katz, D.F. and Blake, J.R. 1974 Flagellar motions near a wall.
Proceedings of the Symposium on Swimming and Flying in
Nature, Pasadena, California, July 8-12,

Machemer, H, 1972 Ciliary activity and origin of metachrony in
Paramecium: Effects of increased viscosity. J. exp. Biol.
57, 239-259.

Reynolds, A.J. 1965 The swimming of minute organisms.
J. Fluid Mech. 23, 241-260,

Sleigh, M. A. 1968 Patterns of ciliary beating. Symp. Soc. exp.
Biol. 22, 131-150.

Sleigh, M. A, and Aiello, E. 1972 The movement of water by cilia.
Acta. Protozool. 11, 265-277.



TRACTION-LAYER MODEL 271

Taylor, G.I. 1951 Analysis of swimming microscopic organisms.
Proc. R, Soc. Lond. A. 209, 447-461.

Tuck, E.O. 1968 A note on a swimming problem. J. Fluid Mech.
31, 305-308.

Wu, T.Y. 1973 Fluid mechanics of ciliary propulsion. Proceed-
ings of the Tenth Anniversary Meeting of the Society of Engi-
neering Science. (in press).





