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ABSTRACT

This paper presents an analytical investigation of the effects
that vapor/gas bubbles can have on the fluid-induced
rotordynamic forces in a liquid-filled annulus between a
cylindrical rotor and a surrounding cylindrical stator. It is
demonstrated that such cavitation (vaporous or gaseous) can
have important consequences in altering the rotordynamic
characteristics of devices such as long journal bearings or long
squeeze-film dampers.

A linearized analysis which includes bubble dynamic
effects is used to evaluate the rotordynamic effects caused by a
small amplitude whirl motion of the rotor in both the high and
low Reynolds number regimes of fluid motion. In the former
case the Euler equations for a bubbly mixture are employed
while, in the latter, a modified Reynolds lubrication equation is
used. These are combined with a Rayleigh-Plesset analysis of
the bubble dynamics which includes various bubble damping
effects. It is shown that, in certain parametric regimes, the
normal and tangential fluid-induced rotordynamic forces acting
on the rotor can deviate substantially from their classical forms
in single-phase flow.

1. INTRODUCTION

The occurrence of cavitation in bearings, its form and
contents are strongly dependent on the flow parameters and
operating conditions (Dowson and Taylor 1979; Heshmat,
1991). At low angular shaft speeds a localized cavitating zone
has been observed to rotate synchronously with the pressure
wave (Jacobson and Hamrock 1983, Sun and Brewe 1991). In
other circumstances, the liquid in the entire gap appears to
transition to a homogeneous two-phase mixture as in the
experiments of Walton et al. (1986) and Zeidan and Vance
(1988) on squeeze-film dampers. In particular, Walton and his
coworkers identified different regimes of operation as a
function of the shaft angular speed. At lower angular speeds the
cavitating zone rotated with the pressure wave. An increase in
the angular speed led to the creation of smaller and smaller
bubbles capable of surviving the high pressure region of the
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bearing and invariably leading to the formation of a foamy
mixture of oil and air. A number of models for the prediction of
the performance of squeeze-film dampers with bubbles in the
lubricant have been examined by Feng and Hahn (1987).
Contrasting results were obtained, depending on the
compressible fluid model used.

The influence of cavitation on whirl instabilities and
rotordynamic forces in bearings and seals is a matter of major
concern to researchers and designers alike (Childs 1993). Of
particular importance is the development of self-sustaining
lateral motions (whirl) of the rotating shaft under the action of
destabilizing forces (Jery et al. 1985; Franz et al. 1989,
Brennen 1994). For example, in high power density
turbopumps, whirl motions can be responsible for very serious
problems, ranging from long term fatigue damage to sudden
failure of the machine.

The purpose of the present research is to explore the
changes in the rotordynamic characteristics of bearings or
squeeze film dampers, due to the presence of a dispersed gas in
the lubricant. Parenthetically we note that in the related field of
cavitating inducers the presence of a bubbly cavitating flow can
substantially alter the rotordynamic forces (d'Auria et al. 1995).

The unsteady flow in the annulus is studied using the
same linear perturbation approach used in previous analyses of
the dynamics of bubbly liquids (d’Agostino and Brennen 1983,
1988, 1989; d’Agostino, Brennen and Acosta 1988; Kumar and
Brennen 1993). In spite of the intrinsic limitations of the
linear approximation and the simplifying assumptions
introduced in order to obtain a closed form solution, the present
analysis identifies some of the basic features of the dynamics of
a bubbly flow in the annulus between two cylinders.

2. DYNAMICS OF A BUBBLY FLOW
SURROUNDING A WHIRLING CYLINDER

Consider the flow in an annulus between two
cylinders, as sketched in Figure 1. The inner cylinder or "rotor"
(rotating reference frame O’,r’,9"), of radius a, rotates with
angular speed, 2, and performs a circular whirl motion of
frequency, @, and assigned eccentricity, €.



Figure 1. Schematic illustrating rotor whirl and rotation.

The annulus (absolute reference frame O,r,3) contains a liquid
with uniformly dispersed spherical bubbles. A key parameter of
the fluid is the population of bubbles, B, per unit liquid volume
which, neglecting relative motion and the mass of liquid
vaporized, will remain constant. We address the problem of
finding the fluid-induced rotordynamic forces acting on the
rotor.

2.1. High Reynolds Number Approximation

Basic Equations

Consider an inviscid liquid containining a population of
spherical bubbles of radius, R. The continuity, momentum and
Rayleigh-Plesset equations for the bubbly mixture, neglecting
relative motion between the two phases and assuming that no
bubbles are created or destroyed, can be written as (d’Agostino
and Brennen, 1988):
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where D [Dt=9[dt+u-V indicates the Lagrangian time
derivative following the liquid, T=4aR*f3 is the volume of
the bubbles, p is the pressure, p, is the liquid density, u, is
the liquid viscosity, ¢, is the speed of sound in the liquid, and
a is the void fraction, related to the bubble population, B, by
o =Pt/(1+B7). In the last equation, dots denote Lagrangian
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time derivatives following the bubbles, and p,(t) is the liquid
préssure at the bubblé surface; related to the bubble internsl
pressure p, (assumed uniform and consisting of vapor and non-
condensable gas partial pressures) by:

28 R
Pa)=PeO+ 2+, @

where S is the surface tension of the bubble interface. Clearly,
for the closure of the problem, the above equations must be
supplemented by the mechanical and thermal equations of state
and by the energy conservation equations for the two phases
with the relevant boundary and matching conditions
(d’Agostino and Brennen, 1988).

Linearization and Perturbation Flow

It is convenient to analyze the flow in a Lagrangian frame,
r;,¥,, moving with the fluid, and to define @, = Q, ~® as the
frequency of excitation in this Lagrangian frame where €, is
some representative angular velocity of the mean flow which,
for very small clearances can be approximated as 2, =£2/2.
Having defined an unperturbed equilibrium flow {denoted by
subscript o) one can then examine linearized perturbations of
frequency w;. This yields the following Helmholtz equation
(d’Agostino and Brennen 1988):

Vip+ k¥ (w,)p=0 6)

where p is the complex amplitude of the pressure fluctuation,
P, so that ﬁ:Re{}‘;e—i-,,f}, where Re{ } denotes the real part.
From the momentum equation (2), the velocity and pressure
perturbations are related by iw,p,(1-a)e=Vp. It transpires
that the free-space wave number, k, is determined by the
dispersion relation:

o 2
—_ (‘)=—1-( e ) ®
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Here c,(w,) is the complex and dispersive (frequency
dependent) speed of propagation of harmonic disturbances of
angular frequency @, in the free bubbly mixture, and @,(@,)
and A(w,) are the effective natural frequency and damping
coefficient of an individual bubble when excited at frequency
o, (Plesset and Prosperetti 1977). Also:

3p, 2§ W’ R? ,
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where @,, is the natural frequency of oscillation of a single
bubble at isothérmal conditions in an unbounded liquid with
pressure p, and c,, is the low-frequency sound speed in a free
bubbly flow with incompressible liquid (@; — 0 and ¢ -~ ).
Notice that the propagation speed and wave number depend on
the radial coordinate through the mean pressure p,, thereby
making the Helmholtz equation quasi-linear.

By separation of variables the solution for the pressure
perturbation is readily expressed in terms of the Bessél



functions J; and Y, and their derivatives (d'Auria et al. 1995):
p-p, =Im[igbw,’p, (1- @)G(r, 0, )exp{i( ¥ - ax)}]

where Im{ } denotes the imaginary part and the function
G(r, coL) has the following form:

1 J, (k)Y (kb)Y (kr)Ji(kb)

kb J:(ka)Y;(kb)—Y!(ka)J:(kb)’ k=(k(@,))"

G(r,(u,_):

The contribution of the pressure perturbation to the fluid-
induced rotordynamic forces can then be computed as will be
described below.

2.2. The Low Reynolds Number Approximation

The Reynolds Lubrication Equation for a Bubbly
Mixture

We now turn attention to the other limit of low Reynolds
number flow in the annulus. The appropriate Reynolds
lubrication equation for a single phase flow (Sherman 1990) is:

v.[(ﬂii)vp} =12£‘f-(gti)+ 6V-(phU) @®)

The local spacing between the rotor and stator is denoted by k&,
p is the pressure in the annulus and U is the relative speed
between the two surfaces. In the present context the fluid
density, p=p,(1—a), and the void fraction, a, will vary in
space and time, the void fraction being given by the bubble
radius which is, in turn, given by the Rayleigh-Plesset
equation.

As in the previous analyses we examine the linearized
perturbation solution for this system of equations denoting the
complex amplitude function by the hat accent. Then the
Rayleigh-Plesset equation yields:

R=1p ©
where ‘
n= 1
PR, (0} - 0] —iw, 24)

Solving the linearized Reynolds equation for the pressure
perturbation, ﬁ:Re{fzexp[i(wt—ﬁ)] , we obtain:

WA A
K-

12i

exp{i(ax— )} (10)

where k is the previously defined wave number and
Re, =w,#p, [u, is the Reynolds number based on the
Lagrangian frequency, @,. In the derivation of the Reynolds
equation it is assumed that Re, <<1, namely that viscous
forces dominate the phenomenon. In the absence of a dispersed
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phase in the liquid (@ =k=0), the usual linearized expression
for the pressure perturbation in a journal bearing is recovered
(Pinkus and Sternlicht 1961).

The Reynolds Lubrication Equation for a Bubbly
Mixture including Inertial Effects

We can include small inertial effects in the low Reynolds
number analysis by following the approach of Sherman (1990).
The continuity and momentum equations for the lubricant can
be written as follows:

‘-;%Qw-(phu):o

u=U —%{Vp +p[%:‘-+(u-v)u:|}

The above equations are then linearized following the procedure
described above. Solving for the pressure perturbation yields:

. p ea’w}(1-Re, 12i) /K]

kzaz(l_&)_&
12i 12

p=-R exp{i(we-9)}} (11)

Notice that equation (10) can be recovered from equation (11)
when Re, <<1, that is when inertial effects are neglected when
compared to viscous effects. Again notice that the deviations
from the linearized solution of the Reynolds lubrication
equation for a single phase flow (Brennen 1994) are given by
the terms in the wave number k. We shall also present results
for this modified low Reynolds number analysis.

3. ROTORDYNAMIC FORCES

The fluid-induced rotordynamic forces per unit length of the
rotor are obtained by means of the following relations
(Brennen 1994):

Ix =—ancos(a)t— ods , f,= ansin(at-z?)dz? (12)

and it is convenient to define nondimensional forces per umit
length as follows:

fx=Ffulmep®s® , f;=f,[nep®p?

4. RESULTS AND DISCUSSION
The following results are obtained for the case of a rotor

whirling in an ideal fluid having viscosity in the range
1 =0.005—0.05 Ns/m?.
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Figure 2. Inviscid Formulation. £"=1.5-10". Normal and
tangential rotordynamic forces per unit length, £, and f;,asa
function of the whirl ratio, @/, for a@=0.005, a=0.01,
o =0.015, and single-phase flow. In all cases R*=10" and
h;=7.5-10". u=0.005 Ns/m>.

The nondimensional parameters for this flow are the mean void
fraction, @, the mean bubble radius, R’ = Rf(b-a), the mean
clearance h, =(b—a)/a, and the angular veloclty expressed by
the Reynolds number, defined as Re= . J12, (Muster and
Sternlicht 1965), in the viscous formulatlon, and by
2'=Qfw,, in the inviscid formulation. First consider the
inviscid or high Reynolds number formulation of the problem.
In this case Figures 2 and 3 show the effect of the whirl ratio,
/<2, on the normal and tangential forces per unit length, f;
and f;, for different values of the void fraction and for two
different values of Q°. As the void fraction increases,
appreciable deviations from the quadratic behavior of the non-
cavitating flow (@ =0) can be observed. At higher rotor speed,
£2°, sign inversions of the normal force, f,, are also
possible. Notice that the inviscid formulation results in
extremely high peaks in the forces.
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Figure 3. Inviscid Formulation. Q" =3-10". Normal and
tangential rotordynamic forces per unit length, f and f;,asa
function of the whirl ratio, @/Q, for ¢=0.005, a=0.01,
a=0.015, and single-phase flow. In all cases R*=10" and
h, =7.5-10®, ut=0.005 Ns/m*.

The presence of a dispersed gaseous phase in the liquid
also results in a non-zero tangential force, f;, even in the
inviscid formulation.

Now consider the Reynolds lubrication solution.
Contrary to the inviscid formulation, which was dominated by
inertial effects, viscous forces are now dominant. Figures 4 and
5 show the behavior of the normal and tangential forces per
unit length, f and f;, as a function of the whirl ratio, w/f2,
for two values of the Reynolds number, Re, and for different
values of the void fraction. In the absence of bubbles this
model would predict zero normal force but the presence of the
dispersed phase results in a non-zero normal force. It can be
observed that the normal force increases with the void fraction.
Notice that the presence of bubbles in the liquid results in a
value of the normal force having the same order of magnitude as
the tangential force.
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Figure 4. Reynolds Approximation, Re=0.05. Normal and
tangential rotordynamic forces per unit length, fy and f;,asa
function of the whirl ratio, w/Q2, for @=0.005, a=0.01,
a=0.015, and single-phase flow. In all cases R*=10"" and
K =7.5-10", p=0.05 Ns/m*.

Its qualitative behavior is substantially unaffected by a
variation in the Reynolds number, Re. The tangential force,
fr, decreases with the void fraction, in the negative whirl
region. This effect gets stronger as Re increases. The
magnitudes of both fy and f, decrease with Re.

Finally consider the Reynolds equation for the bubbly
mixture with the addition of inertial effects. Figures 6 and 7
show the normal and tangential force per unit length, f}, and
fr» for sufficiently high values of Re so that the behavior of
inertial effects can be observed. Notice that at lower values of
Re (Fig. 6). the behavior of the normal force, fy, is
qualitatively similar to that obtained from the solution of the
Reymnolds lubrication equation without inertial effects (see, for
example, Fig. 4). As Re increases (Fig. 7), substantial inertial
effects are evident. Notice that the computed behavior is
consistent with that observed in the inviscid formulation, thus
confirming physical trends obtained with a completely
different mathematical model.
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Figure 5. Reynolds Approximation, Re=0.1. Normal and
tangential rotordynamic forces per umit length, f and f;,asa
function of the whirl ratio, @/, for ¢=0.005, a=0.01,
@=0.015, and single-phase flow. In all cases R'=10" and
h=7.5-10, p=0.05 Ns/m*.

Obviously, the strong peaks of the forces in the inviscid
formulation (see Figure 3) are now damped by viscous effects.
Similar remarks are in order when observing the behavior of
the tangential forces, f,. Inertial effects clearly dominate the
tangential forces and those effects are significantly altered by
the bubbles.

In summary, the presence of a dispersed phase in the liquid film
can induce substantial modifications to the rotordynamic forces
on the rotor. The magnitude and nature of these modifications
are strongly dependent on the void fraction and on the
Reynolds number.

5. CONCLUSIONS

The purpose of this paper has been to explore the changes in
the rotordynamic characteristics of bearings or squeeze film
dampers, due to the presence of a dispersed gas in the lubricant.
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Figure 6. Reynolds Approximation with Inertial Effects,
Re=5.5. Normal and tangential rotordynamic forces per unit
length, fy and f7, as a function of the whirl ratio, @/S2, for
0=0.005, =0.01, & =0.015, and single-phase flow. In all
cases R'=10" and h; =7.5-10", 1£=0.005 Ns/m?.

The results of this study reveal a number of substantial effects
on the fluid-induced rotordynamic forces in a liquid-filled
annulus between a cylindrical rotor and a surrounding
cylindrical stator as a comsequence of the strong coupling
between the local dynamics of the bubbles and the global
behavior of the flow.

The propagation of the whirl-induced disturbances within the
annulus is significantly modified by the large reduction in the
sonic speed and the specific geometry of the flow. As a
consequence of these modifications, the rotordynamic fluid
forces on the whirling shaft have a complex dependence on the
whirl frequency. The high and low Reynolds number
approximations, based on quite different mathematical models
yield qualitatively consistent behaviors.

The present exploratory analysis has focused on the
effect of the whirl ratio and void fraction on the fluid-induced
forces. Results show that such forces are strongly dependent on
both of these parameters; the Reynolds number (and its related
variables) still remains to be systematically investigated.
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Figure 7. Reynolds Approximation with Inertial Effects,
Re=15. Normal and tangential rotordynamic forces per unit
length, f, and f;, as a function of the whirl ratio, w/$2, for
a=0.005, =0.01, ®=0.015, and single-phase flow. In all
cases R° =107 and k] =7.5-10, i =0.005 Ns/m?.
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The present theory is based upon fairly restrictive
assumptions and, therefore, is not expected to provide a
quantitative description of unsteady bubbly flows in bearings.
Nonetheless we hope that it will contribute to a better physical
understanding of rotordynamic phenomena in bearings and
squeeze film dampers.
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