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The flow displays various regimes with radically different wave propagation charac-
teristics. The dynamic effects due 1o the bubble response may radically alter the fluid
behavior depending on the void fraction of the bubbly mixture, the mean bubble size,
the pipe diameter, the angular speed of the turbomachine and the mean flow Mach
number. This simple linearized analysis illustrates the importance of the complex
interactions of the dynamics of the bubbles with the average flow, and provides
information on the propagation and growth of the turbopump-induced disturbances

in the feed lines operating with bubbly or cavitating liquids. Examples are presented
to illustrate the influence of the relevant flow parameters. Finally, the limitations of
the theory are outlined.

1 Introduction

Unsteady phenomena in liquid/gaseous mixtures in ducts are
relevant to a number of technological applications (Brennen,
1994). Typical in this respect are modern cryogenic liquid pro-
pellant rockets in which the propellant storage pressure is close
to the saturation value. This inevitably increases the possibility
of cavitation in the propellant feed turbopumps, which often
extends into the supply lines producing a bubbly two-phase
mixture in the inlet line. This can lead to the onset of operational
instabilities: of the turbopump similar to the rotating stall and
surge phenomena commonly observed in compressors (Bren-
nen, 1994).

Extensive efforts have been made to include the effects of
bubble dynamics, as well as liquid compressibility and relative
motion, in the analysis of dispersed bubbly flow mixtures (van
Wijngaarden, 1964, 1968, 1972; Stewart and Wendroff, 1984 ).
Of particular relevance here are the studies of the dynamics
of clusters of bubbles by Chahine (1982a, 1982b), Pylkkinen
(1986), Omta (1987), 4’ Agostino and Brennen (1983, 1988,
1989), Kumar and Brennen (1990), Chahine et al. (1991),
Mgrch (1980, 1981, 1982), and Hansson et al. (1981). These
investigations uniformly indicate that, even at relatively low
void fractions, the complex interaction of a large number of
bubbles with the pressure field drastically modifies the propaga-
tion of disturbances in the bubbly mixture and the spectrum of
the internal oscillations of the flow (d’Agostino and Brennen,
1988, 1989).

The present paper is an extension of previous research efforts
on the dynamics of bubbly and cavitating flows (d’Agostino
and Brennen, 1983, 1988, 1989; d’ Agostino et al., 1988; d’ Auria
et al., 1994) all of which were initiated by the paper by d’ Agos-
tino and Brennen (1983) in which the expression for the natyral
frequency of a cloud of bubbles was first derived. Here, a linear
perturbation approach is applied to the more complex case of
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the three-dimensional unsteady flow of a bubbly mixture in a
cylindrical duct subject to a periodic pressure excitation at one
of the ends. Different wave propagation characteristics are ob-
served which correspond to the various flow regimes previously
defined (d’Agostino et al., 1988). The bubble dynamic effects
strongly depend on the void fraction of the bubbly mixture, the
mean bubble size, the pipe diameter, the angular speed of the
turbomachine and the mean flow Mach number. Despite the
inherent limitations of the linear approximation, this analysis
illustrates some of the dynamic properties and fundamental phe-
nomena of real bubbly liquids and contributes to the understand-
ing of the flow instabilities occurring in several important engi-
neering applications.

2 Basic Equations and Linearization

The basic equations employed are identical to those pre-
viously used by d’Agostino et al. (1983, 1988, 1989) and
d’Auria et al. (1994). Relative motion between the liquid and
the bubbles has a negligible effect on the results for this kind
of flows (d’Agostino and Brennen, 1988) and will not be in-
cluded here. Then, if u is the velocity of the mixture, with
pressure p, unperturbed density p, speed of sound ¢, and bubble
concentration 8 per unit liquid volume, the continuity equation
for the mixture, neglecting the mass of the bubbles, becomes:

Veu=—L D6 1 Dp (1)

where D/Dt = 8/0t + u- V is the Lagrangian time derivative,
and 7 = 47R?*/3 is the volume of the bubbles, assumed spherical
with radius R. The void fraction, a = gr/(1 + A7), is assumed
to be very small compared with unity. It is also assumed that
no bubbles are created or destroyed so that 3 is a constant in
the bubbly fluid. Neglecting body forces and viscous effects in
the large-scale flow (viscous effects are included in the bubble
dynamics), the momentum equation for the liquid becomes:

p__Du _
1487 Dt
The Bubble radius is assumed given by the Rayleigh-Plesset

—Vp (2)
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equation (Plesset and Prosperetti, 1977; Knapp et al., 1970)
modified as indicated by Keller et al. (see Prosperetti, 1984)
to account for dissipation effects in the bubble dynamics (in-
cluding liquid compressibility ):

2 2
| - LDR\ D'R 3 (DRY(,
¢ Dt Dt 2\ Dt

=<1+,1%> pa(t) = p(t + Rlc) R dps(1)

c Dt P pc dt
Here pg(t) is the liquid pressure at the bubble surface, related
to the bubble internal pressure pp (assumed uniform) by:

28 1 DR
t) = D+ —+ 4y - —
pe(t) = pr(?) R HRDt

_1DR
3¢ Dt

(3)

where pp(#) is the sum of the liquid vapor pressure and the
pressure of a fixed mass of noncondensable gas, and S is the
surface tension of the liquid. Clearly, for the closure of the
problem, the above equations must be supplemented by the
mechanical and thermal equations of state and by the energy
conservation equations for the two phases and the relevant
boundary conditions.

The governing equations are now linearized by assuming
decomposition into steady flow components (denoted by the
subscript 0) and small, time-harmonic complex fluctuations (in-
dicated by the tilde) of frequency, w. Thus, for instance:

p — p,=Re{p} where p=pe™,

and so on for the other flow variables. In the most general case
w is complex and the fluctuations consist of damped or amplified
oscillations with amplification rate given by Im(w). For the
sake of simplicity we first consider the case of zero mean flow
(u, = 0). Linearization of the momentum and energy equations
for a bubble containing a perfect gas of uniform properties leads
to a harmonic oscillator equation for each individual bubble
(Prosperetti, 1984, 1977):

. R\ p
(—w? — W2\ + wB)R = —(1 +iw —") P
c/ PR,

where wp = wp(w) is the bubble natural frequency and the
damping coefficient, A = A(w), is given by the sum of three
terms accounting for the viscous, acoustical, and thermal contri-
butions to dissipation (Chapman and Plesset, 1972; d’ Agostino
and Brennen, 1988).

Elimination of @, 8, and R from the linearized equations
yields the following Helmholtz equation for p:

/‘dllctwall
0 o © o |o.

u,
= |

discharge cross-section

1040° o0 ©
inletcmss-section1
x=0

1 bubble radius R

\bnbblymixmm =L

Fig. 1 Schematic of a bubbly flow in a cylindrical duct

V2 + k(w)p =0 4

with the free-space wave number k determined by the dispersion
relation:

1 Bw)

2

A(w)  w

2 : 1 - 2
i (wlz;,,(l +2w1§,/c)> 4 2a) 3)
Cho \ Wi — wW° — w2\

c

Here ¢y (w) is the complex and dispersive (frequency depen-
dent) speed of propagation of an harmonic disturbance of angu-
lar frequency w in the free bubbly mixture, while:

25 ) __whER

3ps
2 _ 2P0 _ d 2, = —Wrle
oR: M T30 - a)

WBo pRg

are, respectively, the natural frequency of oscillation of a single
bubble at isothermal conditions in an unbounded liquid (Plesset
and Prosperetti, 1977; Knapp et al. 1970) and the low-frequency
sound speed in a free bubbly flow with incompressible liquid
(w— 0 and ¢ = »).

3 Dynamics of a Bubbly Flow in a Cylindrical Duct

Now examine the three-dimensional, unsteady perturbation
of a bubbly mixture in a cylindrical duct of length L and radius
a, with rigid walls and arbitrary pressure excitation, at the inlet
cross section, x = 0, as shown in Fig. 1. We shall see that the
case of finite mean flow (u, # 0) can readily be obtained by
an extension of the zero mean flow solution (u, = 0) and we
thereby begin with the latter. We examine the simple case of a
finite length duct, 0 = x = L. As an example, consider the case
of a duct connected to a constant pressure reservoir, so that
Ple=1 = 0. The other relevant boundary conditions are given by
,],—a = 0 together with the regularity of the solution on the
centerline and its periodicity in the azimuthal direction. By

Nomenclature
_ a = duct radius u = fluid velocity vector Subscripts
¢ = speed of sound, Fourier coefficient u = axial velocity B = bubble
{ = imaginary unit x = axial coordinate L = Lagrangian

J = Bessel function of the first kind

Zmn = nth root of J,(z)

I = axial mode number

k = wave number
L = duct length
= Mach number

N = number of blades

P = pressure
P& = liquid pressure at bubble surface
= bubble radjus

r-=sradial coordinate

§ = surface tension

t = time

596 / Vol. 118, SEPTEMBER. 1996

«a = void fraction

3 = bubble concentration per unit lig-
uid volume

v = specific heat ratio

\ = damping coefficient

u = liquid viscosity

9 = angular coordinate

p = liquid density

7 = bubble volume

) = rotor angular speed

w = frequency

m = order of Bessel function J
R = order of J/,(z) roots

o0 = mean flow

s = Fourier index

x = axial

Superscripts

(

~ = perturbation quantity

A = complex amplitude of
perturbation

* = complex conjugate

) = differentiation
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standard methods (Lebedev, 1965), the separable solution (nor-
malized, for convenience, at x = 0) for the finite length duct is
found to be:

*imy—iwt

sin k(L — x)

6
sin k, L (6)

ﬁm,n(w) ~ Jm(z,,,,,,r/a)e

(or its complex conjugate), where z,., is the nth non-negative

root of J.(z) = 0, and the axial wave number is: k(w) =
Vk*(w) — z2,/a® (principal branch). For a semi-infinite duct
the radiation condition at x = 0 replaces the condition at x =
L, and, with earlier notations, the corresponding solution is:

)

We consider, in particular, the solution for the idealized exci-
tation generated by a turbomachine rotor with N blades and
angular speed, €2, located at the inlet cross-section (x = 0).
The pressure excitation is assumed 277/ N-periodic in the rotating
angular coordinate ¥’ =¥ — €t and can therefore be decom-
posed as:

i(xmi—~ wl+kxx)

ﬁm,n(w) ~ Jm(zm,,.r/a)e

© o

p(r9 ’!95 09 t) — Do = 2 Z CsN,thsN(ztsN,nr/a)eiSN(ﬂ_Qt)

s=—00 =0

where s is the harmonic index of the Fourier decomposition, m
= *sN = 0 is the azimuthal mode number and w = *sNQ =
0 is the blade excitation frequency, with the upper and lower
signs for s = 0 and s < 0, respectively. The coefficients:

N a TN
Cop = ——zf rdrf p(r, 8, HdY
ma 0 —xIN

/N

N J' rJeaw(Zesnar/a)dr f p(f’ 9, e "Ngy
0 V7N

=7,

7l'a2(1 - szNZ/Z?_PsN,n)J'Z:sN(ZiSN.n)

for s,n+0,0

isNY

CsN,n =

are readily obtained from the orthogonality properties of ¢~
and J.jy(zesnqr/a) on the duct cross-section. Consistent with
the linearization, the solution for the assigned pressure excita-
tion p(r, ¥, t) may be expressed by the series:

ﬁsN,n ( SN Q )
CsN,p

ﬁfsN,n( _SNQ)

0 o

p(r’ﬂ:x’t)_pr): 2

s==c p=0

with the upper conjugate solution valid for s = 0 and the lower
valid for s < 0. The remaining flow variables are then readily
obtained from the linearized governing equations.

The above treatment is easily extended to the case of non-
zero mean flow velocity (u, # 0) by means of the Galilean
transformation x = x; + u,t between the absolute (Eulerian)
frame and the Lagrangian frame (subscript L) moving with the
bubbly mixture. In this frame the unperturbed fluid is at rest
and the general solution for a finite length duct has the form:

sin kx(L - xL)
sin k. L

ximd, —iwt (8)

ﬁm.n(wL) ~ Jm(zm,an/a)e

where w; = w — u.k, is the Lagrangian frequency experienced
by the bubbles in their trajectory and k, = k,(w.). Substituting
the transformed coordinates x; = x — u,t, r, = r and 9, = o
we can confirm that the solution f,, ,(w) for a stationary fiuid
given by equations (6) and (7) remains valid in the absolute
frame provided that the excitation frequency is re-defined as w
= w, + u.k,. Therefore, for any assigned value of the Eulerian
frequency, w, the axial wave number k, is the (generally com-
plex) solution of the equation k, = k.(w;) with Lagrangian
frequency wy = W — Uoky-

The entire flow has therefore been determined in terms of
the material properties of the two phases, the geometry of the
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Fig.2 Real part, Re{k.a), and imaginary part, Im(k,2), of the normalized
damped axiai wave number as a function of the square of the reduced
frequency, w/wg,. The results shown are for the fundamental radial
mode of the first azimuthal harmonic (m = 1,n =0, Z,,, = 215 = 1.8412)
and for 3a(1 — a)a®/R% = 1.

duct, the nature of the excitation, and the quantities, R,, p,, W,,
and a.

4 Results and Discussion

The results presented are intended to illustrate the most sig-
nificant features and phenomena implicit in the above solution.
We choose a duct of radius ¢ = 0.15 m and length L = 1 m,
containing air bubbles (R, = 0.001 m, vy = 14, xs = 0.0002
m?/s) in water (p = 1000 kg/m?, y4 = 0.001 Ns/m?, § =
0.0728 N/m, ¢ = 1485 m/s) at atmospheric pressure (p, = 10°
Pa). In addition, we must specify the void fraction, &. Note
that the bubble interaction parameter, 3a(1 — a)L*/R2, which
could be much larger or smaller than unity, appears in all of
these bubbly flow analyses. The dynamic response of the flow
can be very different depending on 3a(1 — a)L?*/R3. The mean
flow the Mach number M, = u,/cy, also occurs as a parameter
in the present solutions.

We first consider the general features of the propagation of
disturbances of real frequency w in the absence of mean flow.
Note that the solution for a semi-infinite duct is oscillatory in
4, in ¢, and, in complex sense (damped or amplified), also in
x, while its behavior in the radial direction is expressed by
Bessel functions of integer order m, scaled by the factor z,, ./
a in order to satisfy the kinematic boundary condition at the
duct wall. In particular, the solution for m = n = 0 corresponds
to plane axial waves. Wave propagation along the duct is regu-
lated by the axial wave number, k, = k,(w). In the undamped
case k2 is real (positive, zero, or negative) and the axial modes
are either purely harmonic or exponential in space, with wave-
length and amplification rate respectively determined by the
real and imaginary parts of k,. In the presence of dissipation &,
is neither real nor purely imaginary (see Fig. 2 for the sample
case, m = 1 and n = 0) and the axial modes consist of harmonic
oscillations with amplitude changirig in the axial direction. No-
tice that k, varies with w and is generally different from the
free-space wave number k because of the presence of the duct
boundaries (except for the simple case of plane axial waves

-where Zn., = Zoo vanishes). Thus, for any particular bubbly

mixture, the axial modes will depend on the oscillation fre-
quency and the duct geometry. ‘

The behavior of k, as a function of the frequency w is most
readily illustrated in the absence of damping (when the argu-
ment of the square root is real). Then the axial wave number
is either real or purely imaginary depending on the sign of
k¥ (w) — z2./a?, with a first regular transition at the cutioff
frequency: o

_ 2/ p2
ot = o [ (14 2D
Zmn :
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Fig-3 Normalized cut-off frequency, w2 0/ 2., as a function of the bub-
ble interaction parameter, 3a{1 — a)a?/R2, for the fundamental radial
mode (n = 0) of the lowest azimuthal harmonics (m = 1, 2, 3)

and a second, singular transition at the natural frequency, wa,,
of an individual bubble in an infinite liquid (bubble resonance
condition ), where k*(w) has a simple pole. Notice that the cut-
off frequencies are never greater than wp, and that they increase
with the radial mode number, #, for any given azimuthal harmonic
m.. In addition, the cut-off frequencies decrease with the bubble
interaction parameter 3a(1 — a)a®/R? as shown in Fig. 3.

In the present problem the perturbations decay exponentially
with attenuation rate Im(k,a) when their frequency w is either
lower than w,,, or greater than wg,. On the other hand, they
propagate harmonically with wave length 27/Re(k,) for fre-
quencies in the range w,, = w = ws,. These three regimes are
similar to the subsonic, supersonic and super-resonant regimes
of flow identified by d’Agostino et al. (1988). As a result
of the higher cut-off frequencies for the higher radial modes,
appreciable wave-like propagation of m-lobed azimuthal excita-
tion sources occurs when their frequency falls between the cut-
off frequency w,, o of the fundamental radial mode (n = 0) and
. the bubble resonance frequency w = wp,.

When applied to the perturbation generated by a turboma-
chine with N blades and angular speed (2, from earlier expres-
sions of k2, appreciable propagation of the sth harmonic distur-
bance will therefore occur when:

Mg = S0 (10)

|sN|

where z|.vjo/|sN| is the cut-off value of the blade tip Mach
number M = Qa/cyu(|sNQ|). The values of z o/ [sN| are
always slightly supersonic and approach unity as the azimuthal
mode number sN tends to infinity. Values for sN = 1, 2, 3, 4,
and 5 are, respectively, 1.36, 1.24, 1.18, 1.15, and 1.14.

In more familiar terms, we have determined that effective
propagation of the disturbances generated by a turbomachine
operating with bubbly flows is limited to the excitation from

supersonic rotors not exceeding the bubble resonance condition -

| SN§Y| = wp,. This phenomenon is in line with well-established
results for compressible nondispersive barotropic fluids (Tyler
and Sofrin, 1962; Benzakein, 1972) and may have important
implications for the onset and stability of rotating stall and
cavitation in the suction lines of pumping systems operating
With bubbly or cavitating flows. Note that, since the sonic speed
In a bubbly mixture can be very small, it is not implausible to
have a supersonic condition in a quite conventional pump.
Th? presence of a second region of exponential decay of the
solution beyond the bubble natural frequency (termed super-
- resomant condition by d’Agostino et al., 1988) is the direct
congequence of the dominance of the inertial forces, which
prevent the bubbles from effectively responding to the excita-
tion. Therefore super-resonant flows tend to behave in an essen-
tially incompressible way, not dissimilar to subsonic flows.
From the relevant expression for p note that free oscillations
(€mn = 0) of bubbly fiows in finite-length ducts can only occur
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Fig. 4 Normalized amplitude of the pressure oscillations, |Bmoe(w)|/
|Pmo{0)[, as a function of the square of the reduced frequency, w/ws.,
for the fundamental radial mode (n = 0) of the lowest azimuthal harmon-
ics (m = 0, 1, 2, 3) in a semi-infinite duct with 3a(1 — a)a?/R2 = 1

when sin &.L = 0, a condition that, together with the dispersion
relation, determines the natural frequencies w,,, and mode
shapes p,, ;. In the absence of damping:

3a(l — a)a’/R;
=/ (1+205250E) an
s l
Ponid = J(Zmar [ @)e =™ “mat sin % (12)

where [ is a positive integer. Notice that the natural frequencies
W,y always lie between the cut-off frequencies w,,, and wpg,.
They also increase with the axial mode number /, and converge
to wp, as [ = +. Just like the cut-off frequencies, the natural
frequencies decrease with the increase in the parameter 3a(1
— a)a*/R% and are substantially smaller than wg, when it is of
order unity or larger.

Now let us consider the effect of damping. The inclusion of
damping (see Fig. 2) makes the axial wave number k, (and
therefore also the cut-off frequencies w,,,) complex and elimi-
nates the singularity at w = wpg,, thereby blurring the transitions
between the three propagation regimes. In addition, the higher
frequencies are more severely damped than the lower frequen-
cies so that the lower modes will predominate in any applica-
tion. Except for these aspects, the general propagation features
of the solution remain essentially unchanged for moderately
damped flows like the present sample case of air bubbles in
water. The rest of the results presented include damping (Fig.
4 onward).

The relative amplitudes of the pressure and bubble radius
oscillations in a semi-infinite duct are shown in Figs. 4 and 5
as a function of frequency for the fundamental radial mode- (n
= () of the lowest azimuthal harmonics (m = 0, 1, 2, 3) with

30.0
250
) 200
l’jﬁ’l 150

10.0

5.0 |

0.0 : K :
0.75 1 1.25 1.5
w* [,

0 025 0.5

Fig. 5 Normalized amplitude of the bubble radius oscillations,
| Bmo(@)|/| Bmol0) |, @s a function of the square of the reduced frequency,
@/ wa,, for the fundamental radial mode (n = 0) of the lowest azimuthal
harmonics (m = 0, 1, 2, 3) in a semiinfinite duct with 3a(1 — a)a®/R2
=1
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Fig. 6 Normalized amplitude of the pressure oscillations, |fne(w)|/
1Pmo{0)|, as a function of the square of the reduced frequency, «/wg,,
for the fundamental radial mode (n = 0) of the lowest azimuthal harmon-
ics {(m = 0, 1, 2, 3) in a finite-length duct with 3a(1 — a)a®/R% = 1

3a(l — a)a®/R: = 1, (corresponding to a void fraction o =
1.5 X 1077 for the assumed values of the duct and bubble radii ).
The corresponding results for a finite-length duct are shown in
Figs. 6 and 7. For all azimuthal harmonics the response of the
bubble radius is maximum near the bubble resonance frequency,
wp,. Despite the rather large value of the bubble interaction
parameter 3a(1 ~ a)a®/R?2, appreciable oscillations of the pres-
sure and bubble radius are only observed for the zeroth and
first azimuthal harmonics in the frequency range from w,, o (W o
= 0 for plane axial waves) to wjg,. The solution for the finite-
length duct (Figs. 6 and 7) also shows clear evidence of reso-
nant oscillations (amplitude peaks) of the zeroth and first
azimuthal modes (m = 0, 1) at the corresponding natural fre-
quencies, due to reflection of the flow disturbances by the down-
stream boundary condition. Additional computations have
shown that the higher azimuthal harmonics start displaying ap-
preciable resonant oscillations when the length of the duct is
decreased. The same trend has been observed when increasing
the duct radius for a given duct length. Thus the aspect ratio,
L/a, plays a key role in the dynamics of a bubbly flow in a
cylindrical duct.

.Next we briefly discuss the extension of previous results to
the case of nonzero mean flow velocity (u, #= 0) by means of
a few simple re-interpretations. In the first place, as shown in
Section 3, the presence of a constant mean flow velocity u,
results in a complex value of the axial wave number even in
non-dissipative flows (as illustrated in Figs. 8 and 9) but does
not alter the formal expression for the pressure perturbation,
given by Egs. (6) and (7). This implies that the analysis for
the zero mean flow case can be easily extended to the case of
nonzero mean flow provided that the () excitation frequency
is redefined as w = wy, + u,k,. Moreover the fact that the axial
wave number is now given by k, = k,(w,) and its imaginary
part, Im(%,), never vanishes (even in the absence of dissipation)

30

4

25

20
|§m.o (m)l

F—”o © 15

10

Fig. 7 Normalized amplitude of the bubble radius oscillations,
|Rmol®)|/| Rmo(0)], as a function of the square of the reduced frequency,
w/ wg,, for the fundamental radial mode (n = 0) of the lowest azimuthal
harmonics (m = 0, 1, 2, 3) in a finite-length duct with 3a(1 — @)a®/R>
=1
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Fig. 8 Real part, Re(k,a), of the normalized axial wavenumber for the
fundamental radial mode of the first azimuthal harmonic (m=1,n =0,
@ = @19 = 1.8412) as a function of the square of the reduced frequency,
w/wg,, in the absence of damping for M, = 0.1, 0.2, 0.4 and for 3a(1 —
a)a?/R: =1

2.4
2.2

Im{k,a} 2.0
1.8
16 L . . . . .

1] 0.5 1 1.5 2 2.5
o’/ min
Fig. 9 Imaginary part, im(k,a), of the normalized axial wavenumber for

the fundamental radial mede of the first azimuthal harmonic (m =1, n
=0, ap, = ayp = 1.8412) as a function of the square of the reduced
frequency, w/wsg,, in the absence of damping with M, = 0.1, 0.2, 0.4 and
for 3a(1 — @)a?/R2 = 1

implies a redefinition of the cut-off frequency: the condition for
appreciable propagation of purely harmonic disturbances of real
frequency w through the bubbly mixture (which in the case of
zero mean flow was given by Im(%,) = 0) is now replaced by
the condition that Im(%,) be a minimum. In other words, in the
presence of mean flow, the cut-off frequency is given by the
value of w corresponding to the minimum of Im(k,), as deter-
mined by the equation:

b= [WBo (W~ uk)® Zon
* " 4l72 T2 — 2 2
Civo Who — (W — uk;) a
The dependence of the cut-off frequency on the Mach number,
M, = u,/cu,, for the fundamental radial mode and the lowest

azimuthal harmonic is shown in Fig. 10. Notice the rapid de-
crease in the cut-off frequency for all azimuthal modes as the

(13)

0 0.1 0.2 03 0.4 05 °
M, , :

Fig-10 Normalized cut-off frequency w3/ w3, as a function of the flow
Mach number M, = u,/cy, for the fundamental radial mode (n = 0}, the
lower azimuthal harmonics (m = 1, 2, 3) and 3a(1 - a)a?/R2 = 1
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flow Mach number approaches unity. This feature is also charac-
teristic of compressible flow solutions (Benzakein, 1972)."

5 Limitations and Sensitivities

Restrictions to the validity of the present bubbly flow model
result from the introduction of the continuum hypothesis, the use
of the linear approximation, and the neglect of local interactions
between the bubbles. The continuum approach requires the bub-
ble radius, R,, to be much smaller than any of the macroscopic
length scales of the flow, here a/z,,, a/m and 1/|k.| in the
radial, azimuthal, and axial directions. This condition is increas-
ingly restrictive for higher and higher harmonics, and therefore
only a limited number of Fourier-Bessel components can be
realistically included in the solution.

For the linear perturbation approach to hold, the excitation
amplitude must not exceed some linear range, especially near
resonance. This condition probably represents the most stringent
restriction on the present analysis.

The error associated with the neglect of local bubble interac-
tions can be neglected provided that & '* < |w}/w?® — 1] (L A-
gostino and Brennen, 1988). Far from bubble resonance, this
condition is generally satisfied in low void fraction flows.

6 Conclusions

This study reveals a number of important effects occurring
in bubbly and cavitating flows in cylindrical ducts as a conse-
quence of the strong coupling between the local dynamics of
the bubbles and the global behavior of the flow. The propagation
of disturbances along the duct is modified by the large reduction
of the sonic speed, which becomes both complex (dissipative)
and dispersive (frequency dependent). Additional modifica-
tions are introduced by the boundaries, which determine the
excitation modes and their cut-off frequencies, and, in finite
length ducts, the natural frequencies and mode shapes. The cut-

"off and natural frequencies never exceed the resonance fre-
quency of individual bubbles, and are very much smaller when
the parameter 3a(1 — a)a®/R?% is of order unity or larger.
Appreciable wave-like propagation of each excitation mode
along the duct is limited to the frequency range between cut-
off and the bubble resonance condition, and, except for plane
waves, is characteristic of supersonic (but subresonant) flows,
as defined by d’Agostino et al. (1988). In finite-length ducts,
the same frequency range also contains the infinite set of natural
frequencies of the resonant modes. The different propagation
properties of subsonic, supersonic and super-resonant flows are
due to the relative importance of pressure and inertial forces in
the bubble dynamics at different excitation frequencies, as al-
ready outlined in previous papers (d’Agostino and Brennen,
1988).

In duct flows subject to excitation by a turbomachine, only
the perturbations from supersonic rotors propagate effectively
and are potentially capable of becoming self-sustaining when
effectively reflected by the downstream boundary condition.
Given the low sonic speed of bubbly mixtures, the cut-off condi-
tions can readily be exceeded in high-speed turbopumps. This
phenomenon is therefore potentially relevant to surge-like auto-
oscillations and rotating cavitation instabilities in pumping sys-
tems operating with bubbly flows.

Because of the damping in the bubble dynamics the spectral
response of the flow is therefore dominated by the lowest reso-
nant frequencies which depend on the bubble interaction param-
eter, 3a(1 — a)a?/R2. The increase of this parameter causes
a substantial reduction in the bubble response peaks owing to
the greater compliance of the flow, and a decrease in the corre-
sponding frequencies results.

The length-fo-radius ratio of the duct also plays an important
role in the d_ynamics of this kind of flow. Higher modes display
stronger oscillations as the aspect ratio L/a of the duct increases
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and the peak frequencies are strongly shifted towards lower
values of w/wg,.

Finally, rather drastic modifications of the dynamic behavior
of the bubbly mixture also occur when the mean flow velocity
of the bubbly mixture becomes comparable to the low-fre-
quency sonic speed. As in more conventional compressible
flows, the most important effect of the mean flow arises from
the rapid reduction of the cut-off frequencies of all fundamental
modes as the Mach number approaches unity.

The present theory has been derived under fairly restrictive
linearization assumptions and, therefore, is not expected to pro-
vide a quantitative description of unsteady bubbly flows in cy-
lindrical ducts except in the acoustical limit. Bubble radius
perturbations are often large in practical applications where the
void fraction can be assumed to be small. Therefore the most
serious limitation of the present theory is inherent in the linear-
ization of the bubble dynamics.
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