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ABSTRACT

The present work investigates the dynamics of
idealized bubbly and cavitating flows in whirling helical
inducers, with the purpose of understanding the impact of
the bubble response on the rotordynamic forces exerted by
the fluid on the turbomachine under cavitating conditions.
Inertial, damping, and compressibility effects in the
dynamics of the bubbles are included. The effect of the
whirl excitation on the two-phase flow is dependent on the
wave propagation speed and the bubble resonance behavior
in the bubbly mixture. These, in turn, lead to rotordynamic
forces which are complicated functions of the whirl
frequency and depend on the void fraction of the bubbles
and on the mean flow properties. Under cavitating
conditions the dynamic response of the bubbles induces
major deviations from the non-cavitating flow solutions.
The quadratic dependence of rotordynamic fluid forces on
the whirl speed, which is typical of cavitation-free
operation is significantly modified. Results are presented to
illustrate the influence of the various flow parameters.

INTRODUCTION

Rotordynamic instabilities and cavitation represent
one of the most severe limitations to the performance of
turbopumps (Brennen 1994), especially in high power
density applications where they can be responsible for very
serious problems, ranging from long term fatigue damage
to sudden failure of the machine (Jery et al. 1985; Franz et
al. 1989). The most critical rotordynamic instability in
turbopumps is the development of self-sustaining lateral
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motions (whirl) of the impeller under the action of
destabilizing forces. These forces can be of mechanical
origin (internal damping and hysteresis of the rotating
parts, stiffness anisotropies, dynamic unbalance, direct
contact of the static and rotating parts, system
nonlinearities, etc.), or of fluid dynamic origin (flow
asymmetries, cavitation, journal bearing or seal forces,
leakage and recirculation flows, rotor/stator interactions,
non-stationary phenomena):

Because of their greater complexity, rotordynamic
fluid forces under cavitating conditions have so far received
less attention in the open literature, despite their potential
for promoting rotordynamic instabilities of high
performance turbopumps (Rosenmann, 1965). Recently,
forced vibration experiments carried out by Franz (1989)
and Bhattacharyya (1994) have demonstrated that cavitation
affects the rotordynamic forces on axial flow inducers
artificially whirled on a circular orbit with assigned
eccentricity and constant whirl speed. The occurrence of
cavitation has been found to have, in general, a
destabilizing effect on the whirl motion and to reduce the
steady lateral forces on the rotor. More importantly in the
context of the present work, cavitation alters the behavior
of the rotordynamic fluid forces as a function of the whirl
speed by replacing the characteristic quadratic dependence
typical of cavitation-free operation with a more complex
function of frequency. Consequently, the traditional
quadratic expansion of the rotordynamic fluid forces in
terms of stiffness, damping and inertia matrices seems to
be no longer justified for cavitating turbopumps.

The purpose of this research is to obtain some
fundamental insight into the fluid dynamic phenomena
responsible for the observed behavior of the rotordynamic



fluid forces in whirling impellers operating under cavitating
conditions. Bhattacharyya (1994) correlated the changes in
the rotordynamic fluid forces with the development of
reverse (possibly oscillatory) flow in cavitating inducers at
lower flow coefficients. This implies some interaction
between cavitation, backflow and whirl motion of the
inducer, the details of which are not clear.

The purpose of the present study is to investigate
the extent to which the behavior of the rotordynamic forces
under cavitating conditions could be a consequence of the
dynamic response of the bubbly mixture in the blade
passages.

This whirling helical flow is studied using the
same linear perturbation approach of previous dynamic
analyses of bubbly liquids (d’ Agostino and Brennen 1983,
1988, 1989; d’ Agostino, Brennen and Acosta 1988; Kumar
and Brennen 1993). In spite of the intrinsic limitations of
the linear approximation and the simplifying assumptions
introduced in order to obtain a closed form solution, some
of the observed features of the rotordynamic forces are
consistent with available experimental results.

LINEARIZED DYNAMICS OF A BUBBLY
FLOW IN A WHIRLING IMPELLER

We address the problem of the flow of a bubbly
liquid of velocity, u, pressure, p, density, p, speed of
sound, ¢, void fraction, & <<1, in a simple. helical
inducer rotating with velocity (2, and whirling on a
circular orbit with small eccentricity, &, at a frequency
@ . We define cylindrical coordinates r’,#¥’,z’, fixed in the
impeller and rotating and whirling with it (z’ is the
impeller axis), and an inertial cylindrical coordinate system,
r,v,z, fixed on the axis of the surrounding duct, as
illustrated in Figures 1 and 2. A number of simplifying
assumptions are introduced in order to obtain a soluble set
of equations that still reflect the dynamics of a whirling
inducer in a bubbly mixture. The relative motion of the
two phases is neglected, as are viscous effects (except in
the dynamics of the bubbles where they give important
damping contributions). A simple helical inducer with
radial blades is considered as shown in Figure 1, with zero
blade thickness, hub radius, r,, tip radius, rp, axial
length, L, small tip blade angle, f,, constant pitch,
P =2nr, tan B;, axial blading length, L,, and blade cant
angle, ¥ =0, in the meridional plane. The suction flow
conditions (subscript s) are given by the flow coefficient,
¢, the uniform axial velocity, w, =¢Qr,, and the
pressure, p,.

For the present purposes we approximate the mean
flow within the inducer as comprising a simple forced
vortex with axial velocity ‘
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Figure 1. Schematic of the flow and inducer geometry.

The cavitating bubbles are modeled by assuming a
homogeneous distribution of small bubbles of unperturbed
radius, R, with void fraction, & <<1. Relative motion
between the bubbles and the fluid is neglected.

During ‘its transit through the inducer the bubbly
mixture rotationally accelerates from its initial state at the
blade inlet to the uniform angular velocity

Q,(2) ="7° =g(1- _(‘2”

cotf ; )

rr

The pressure varies in the inducer with the radius, r,
according to the equation:

P, =P+ yp(wi - wi)+ 2 plQ - (2-2,)' ]
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Figure 2. Schematic of whirl motion and rotordynamic
forces.



The unperturbed flow inside the inducer is therefore fully
specified by the suction conditions, the flow rotation, £2,,
and the assumed value of the void fraction.

Kinematic conditions of the form Db/Dt =0 are
assigned to the flow velocity on the hub (b=r"-r, =0),
on the outer casing (b = r—r; =0), and on the blade

rl Z’
¥ ——cotf tany+—cotf - =0
Iy rr

b=

where 9 identifies the orientation of the blade (Figure 1).

It is convenient to analyze the flow in a
Lagrangian frame, r;,?,,z,, moving with the fluid, in
which the unperturbed flow is at rest and the perturbation
velocity components are indicated by u,v,w. Expressing b
in terms of r,,?¥,,z, and implementing the material
derivatives, the linearized boundary conditions are found to
be:

u=ew, sin(V, - w,t) onthehub r =r,

u=0 onthecasing r =r;
and, exploiting the fact that in most inducers y =0 and
tan B, <<1, the blade boundary condition is fully
linearized to yield (with error of order tan 8, ):

w=0 on z, =constant

where @, = w—-Q, is the frequency of the boundary
excitation in the Lagrangian frame.

Linearization of the fluid dynamic equations of the
bubbly mixture for time-harmonic perturbations of
frequency, @,, yields the following Helmholtz equation
(d’ Agostino and Brennen 1988):

Vp+k*(w,)p=0

where p is the complex amplitude of the pressure
fluctuation, such that p = pe™®” in the inducer flow and
the velocity and pressure perturbations are related by
iw, p(1- o)t = Vp. The free-space wave number, &, is
determined by the dispersion relation:

1 _F(o) L[

(o) o

-

CZ

w;,(1+io, R, /c) N
i\ 0l -} —iw, 27
Here cM(wL) is the complex and dispersive (frequency
dependent) speed of propagation of harmonic disturbances
of angular frequency, @,, in the free bubbly mixture, and
wy(w,) and l(a)j

damping coefficient of an individual bubble when excited at
frequency @, (Prosperetti 1977, 1984). Also:

are the effective natural frequency and -
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where @;, is the natural frequency of oscillation of a
single bubble at isothermal conditions in an unbounded
liquid with pressure p, and surface tension S (Plesset and
Prosperetti 1977, Knapp et al. 1970) and c,,, is the low-
frequency sound speed in a free bubbly flow with
incompressible liquid (@, —» 0 and ¢ — ). Notice that
the propagation speed and wave number depend on the
radial coordinate through the mean pressure p,, thereby
making the Helmholtz equation quasi-linear.

The Helmholtz equation for the pressure, together
with the above kinematic conditions and the appropriate
inlet and exit conditions, represent, in theory, a quasi-linear
boundary value problem for p. However, further
simplifications are necessary in order to obtain a closed
form solution. To fully linearize the problem, the wave
number k is computed for a reference value p, of the
inducer pressure p, at some suitable mean radius, say
7 =(r§+r,2,)/2. By separation of variables (Lebedev
1965), the solution for the pressure perturbation, expressed
in the absolute coordinates, is readily found to be:

p(r,8,8)-p,(r)= Im[isrTmsz(l - a)G(r, a)L)ei("'"')]
where the function G( r,o ,_) has the following form:

_1_ Jl(k")Yf(krT) - Yl(kr)Jl'(krT)
Tk )Y{(kry) = Y{(kry )T} (kry)

G(r,a)L)=

with
k=k(w,)

where J,, Y,, J|,and Y] are the normal Bessel functions
and their derivatives. Notice that the flow dynamics does
not have a simple quadratic dependence on the excitation
frequency, except in the incompressible limit where:

rjrp+ryfr

k—0
1-r7/ry

and G(r, a)L) -

so that G is independent of @, , as expected.
To evaluate the fluid induced forces per unit length
on the inducer and the casing we define:

2T
J' [p—pa+(r—r’)%] e r,do
d rery

0 r

f(’) =

2.2
nepQry



J.(p p,, _er.dv
(C) T
nepSdr:

where e/ is the unit vector in the direction of »’. Upon
integration, the radial and tangential components of the
rotordynamic forces, f, and f;, are more compactly
represented in complex form by:

f(l) = fl(el) —if(l) =

=_{[1 %L (1- a)“’L :’Tf G( ,,,w,,)}

2
fO=52 i = L-G(rr, @)

~ The entire flow has therefore been determined in
terms of the material properties of the two phases, the
geometry of the impeller, the nature of the excitation, and
the assigned quantities: ¢, o and R, [r;.

RESULTS AND DISCUSSION

The present calculated results for the rotordynamic
. forces will be compared with the experimental results for a
helical inducer obtained by Bhattacharyya (1994). The
inducer was operated in water (p=1000 kg/m?,
c=1485 m/s, u=0.001 Ns/m*, §=0.0728 N/m)
with no prerotation (£, =0) at .Q 3,000 rpm, and a
flow coefficient ¢ =0.074. The two-phase flow in the
inducer is assumed to contain air bubbles,
(X6 =0.0002 m*/s, y=1.4) at mean pressure p,, with
the void fraction o specified by assigning the parameter
3a(l-a)ri/R:.

The propagation of disturbances through the
annulus has been examined in detail, because of their
central role in determining the rotordynamic fluid forces on
the inducer and the casing. Not surprisingly, the general
features of linear propagation in the inducer flow are
qualitatively similar to those of previous analyses of the
dynamics of bubbly flows in other geometric
configurations (d’ Agostino and Brennen 1983, 1988, 1989;
d’ Agostino, Brennen and Acosta 1988; Kumar and Brennen
1993). The solution depends on the radial coordinate, r,
through a linear combination of first order Bessel functions
(properly weighted to satisfy the boundary conditions at the
inner and outer radii) and on the excitation frequency,
@, =w—S2,, through the wave number k= k(a)L), as
illustrated in Flgures 3 and 4 for a typical value of the
parameter 3o(l-a)ri/R>=100. Quite similar
parameters, also involving the void fraction and the square
of the ratio of a macroscopic dimension of the flow to the
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Figure 3. Real part of the normalized radial wave number,
I as a function of the square of the reduced frequency,
2 |wk,, for 3a(l—a)ri/R? =100, and with (o) and
w1thout (a ) damping.

bubble size, appear in all other previous analyses of the
dynamics of bubbly flows.

Notice from Figures 3 and 4 that the relative
importance of the real and imaginary parts of k is reversed
when @, /Wy, crosses unity. Consequently, in view of the
properties of Bessel functions, appreciable wave-like
propagation only occurs at low excitation frequencies,
below @,,, while above @, the flow disturbances are
rapidly attenuated in the bubbly mixture. Owing to the
dependence of @y, on the bubble size and ambient
pressure, this tramsition is usuvally unimportant in
laboratory experiments on cavitating inducers operating in
water at relatively low speed. However, it could be relevant
to full-scale high performance turbopumps, where the
excitation frequency is higher due to the much larger
rotational speeds.

Free oscillations of the flow can only occur if

J,’(er)Yl’(krT)—Y{(er)Jl’(krT)=O, and we denote the
roots of this equation by k,r,=f,, n=12,3,.... The
roots clearly depend on the hub/tip radius ratio r,, /7, , and
are known to be real, distinct, non-negative, and diverging
for large values of n. The first few roots 3, are reported in
Table 1 for some representative values of ry [r;.
In the absence of damping, the condition for free
oscillations, together with the dispersion relation, defines
an infinite set of natural frequencies (and mode shapes) for
the two-phase flow in the inducer :

o =(0-Q,) =w,2,,,/(1

3o(l-a)r/R? )
ﬂz
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Figure 4. Imaginary part of the normalized radial wave
number, kr;, as a function of the square of the reduced
frequency, o’ /w?,, for 31— a)ry/R? =100, and with
(o) and without (a) damping.

Hence, the natural frequencies never exceed the bubble
resonance frequency, ®;,, they increase with the mode
number, and converge to @,, for large values of n. They
also decrease with 3a(1— o)r2/R?, as illustrated in Figure
5 for the lowest modes, and become significantly smaller
than @, when 3a(l—a)r2/R’ is comparable to 2.
Also notice from the above equation that the corresponding
whirl speeds, @,, are shifted by the rotation, Q,, of the
inducer.

ralrs: 0.3 0.4 0.5 0.6
B,: 1582 1.462 1.355 1.262
B,: 5137  5.659 6.565 8.041
B 9308 10.683  12.706 15.801
B.: 13.684 15848 18943  23.6243
B;: 18.116 21.049 25205  31.462

Table 1. Zeros of J,’(ﬁrH/rT)Yl'(,B) - Y{(ﬁry/"r)]f(ﬁ)-

The first few natural mode shapes are shown in
Figure 6 as functions of the radial coordinate for
ryfr; =0.4 and 3a(1-a)ri/R? =100 (o =0.013 for
the test inducer). These are qualitatively representative of
the flow behavior at increasing excitation frequencies, and
clearly show that the response of the flow tends to be
concentrated in the region close to the hub as the excitation
frequency, @, = @ — 2, approaches @p,. On the other
hand, as mentioned before, when the frequency @, > @y,
the flow response becomes predominantly of exponential
type and is rapidly attenuated with distance from the hub.
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Figure 5. Normalized natural frequency, ®?/w},, as a
function of the bubble interaction parameter
301-a)r2/R? for n=1 (e), 2 (0), 3 (m), and 4 (a)
modes.

The normalized radial rotordynamic force per unit length,
£/ mep2*rZ, for the test inducer is displayed in Figure
7 as a function of the frequency ratio, w/£€2, for three
values of the parameter 30(1— o)rs./R? = 100, 200, and
300. The corresponding rotordynamic force per unit length -
in the incompressible fluid case is also shown for
comparison. Notice that the two-phase flow solution
deviates from the quadratic behavior of the incompressible
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Figure 6. Radial mode shapes, G(knr), as functions of
(r=ry)/(ry = ry) for several modes n=1 (o), 2 (0), 3
(m),and 4 (a), ry/r; = 0.4, and 3a(1 - a)r}/R? =100.
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Figure 7. Normalized radial rotordynamic force per unit
length, £, /mepQ?*rk, for the test inducer as a function
of the whirl frequency ratio @w/€Q for the incompressible
flow case (a), and in a bubbly fluid with
30(1—a)rz/R? = 100 (e), 200 (+), and 300 (w). In all
cases ¢ =0.074, R,/r; =0.064.

solution. In particular, for sufficiently high values of
3a(l—a)r2/R?, the radial rotordynamic force becomes
positive at higher values of the whirl frequency ratio.
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Figure 8. Experimentally measured radial rotordynamic
forces for the test inducer as a function of the whirl
frequency ratio, @/£2, under non-cavitating conditions (o)
and with cavitation numbers ¢=0.106 (a), 0.098 (o),
and 0.093 (v). In all cases ¢=0.074. (From
Bhattacharyya, 1994).
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Figure 9. Experimentally measured radial rotordynamic
forces on a 12° inducer as a function of the
nondimensional whirl frequency ratio @/€2 in the non-
cavitating case (o) and with cavitation numbers ¢ =0.050
(1), 0.040 (), and 0.035 (V). In all cases ¢ =0.070.

Notice that the calculated behavior is similar to that
experimentally observed by Bhattacharyya (1994) and
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Figure 10. Radial component.of the normalized
rotordynamic force per unit length, f.©/nepQ’r2, on
the casing as a function of the whirl frequency ratio, w/€2,
for the incompressible flow case (a), and in a bubbly fluid
with 30(1—-a)rZ/R? =100 (), 200 (o), 300 (m). In all
cases ¢ =0.074, R,/r; =0.064.
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Figure 11. Tangential component of the normalized
rotordynamic force per unit length, £, [mep2*r?, on the
test inducer as a function of the whirl frequency ratio,
o/, for the incompressible flow case (a), and in a
bubbly fluid with 30(l—-a)ri/R? =100 (e), 200 (o),
300 (m). In all cases ¢ =0.074, R,/r; =0.064.

similar to those obtained for a 12° inducer tested at Caltech
(see Figures 8 and 9, for comparison).

Figure 10 presents the normalized radial

rotordynamic force per unit length, f,©/nepQ*r2, on
the casing as a function of the whirl frequency ratio, w/<2,
for the incompressible fluid case and for cavitating
conditions given by three values of the parameter
3a(l—a)rZ/R? = 100, 200, and 300. Again, the presence
of cavitation alters the quadratic behavior of the
rotordynamic forces.
The present non-viscous model cannot give significant
results concerning rotordynamic tangential force.
Nevertheless, bubble dynamics effects can be seen even in
the framework of the present approximations. In the
absence of cavitation, the present inviscid formulation
predicts an identically zero tangential force; for cavitating
flows with increasing void fraction deviations from the zero
value of the tangential force occur as illustrated in Figure
11,

CONCLUSIONS

This study reveals that a number of important
effects can occur in the bubbly and cavitating flows in axial
flow inducers as a consequence of the strong coupling
between the local dynamics of the bubbles and the global
behavior of the flow. The propagation of the whirl-induced
disturbances within the annulus is significantly modified
by the large reduction of the sonic speed in the bubbly
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mixture. In the presence of the dissipation associated with
the dynamics of the bubbles, the spectral response of the
flow is essentially dominated by the lowest resonant
modes, while the others are effectively damped. Appreciable
oscillatory propagation is limited to the frequency range
below the bubble resonance condition. At higher
frequencies rapidly decaying propagation of the exponential
type prevails. The influence of bubble dynamic effects is
dependent on the nondimensional parameter
3a(1 -~ cr)r2/R? . The natural frequencies of the flow are
always smaller than the bubble resonance frequency and
their lowest values decrease rapidly when the bubble
interaction parameter 3o/(l1—a)ri/R> exceeds unity.
Moreover, the penetration of the whirl-induced disturbances
into the flow also decreases with the excitation frequency
and the bubble interaction.

As a consequence of these modifications, the
rotordynamic fluid forces on the inducer and its casing in
bubbly and cavitating flows no longer vary quadratically
with the whirl frequency, as in non-cavitating flow.
Rotordynamic fluid forces are also influenced by the flow
rotation in the inducer, which changes the frequency of the
excitation seen by the bubbly mixture. The spectral
response of the rotordynamic fluid forces is strongly
correlated to the bubble interaction parameter and the
relative magnitude of the excitation and bubble resonance
frequencies. Given the void fraction and bubble size typical
of cavitating inducers, the resonant transition is usually
unimportant in low-speed laboratory experiments, but may
play an important role in full-scale turbopumps operating
at much higher speeds.

The present theory invoked major simplifications
and approximations and therefore is not expected to provide
a quantitative description of unsteady bubbly and cavitating
flows in whirling inducers. In this respect, the most crucial
limitation is probably the relatively crude description of the
unperturbed flow through the inducer. The linearization of
the bubble dynamic response is more justified because of
the expected magnitudes of the bubble size and rotor
eccentricity in whirling turbopumps. Another limitation of
the theory consists of the need to assign the value of the
bubble interaction parameter, rather than deduce it from the
mean flow conditions by means of a suitable cavitation
model. However, experimental information on the typical
void fraction and bubble size in cavitating inducers is more
readily obtained than direct measurements of the fluid
forces. Despite these limitations, the present analysis is
qualitatively consistent with experimental results and
reveals some of the fundamental phenomena that play a
crucial role in determining the rotordynamic fluid forces in
cavitating inducers.
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