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This paper investigates the linearized dynamics of three-dimensional bubbly cavitat-
ing flows in helical inducers, The purpose is to understand the impact of the bubble
response on the radial and tangential rotordynamic forces exerted by the fluid on
the rotor and stator stages of whirling turbomachines under cavitating conditlons.
The flow in the inducer anmulus is modeled as a homogeneous inviscid mixture,
containing vapor bubbles with a small amount of noncondensable gas. The effects
of several contributions to the damping of the bubble dynamics are included in the
ntodel. The governing equations of the inducer flow are written in ‘'body-fitted"’
orthonermal helical Lagrangian coordinates, linearized for small-amplitude pertur-
bations about the mean flow, and solved by modal decomposition. The whirl excitation
generates finite-speed propagation and resonance phenomena in the two-phase flow
within the inducer. These, in turn, lead to a complex dependence of the lateral
rotordynamic fluld forces on the excitation frequency, the void fraction, the average
size of the cavitation bubbles, and the turbopump operating conditions (including,
rotational speed, geometry, flow coefficient and cavitation number). Under cavitating
conditions the dynamic response of the bubbles induces major deviations from the
noncavitating flow solutions, especially when the noncendensable gas content of the
bubbles is small and thermal effects on the bubble dynamics are negligible. Then,”
the quadratic dependence of rotordynamic fluid forces on the whirl speed, typical of
cavitation-free operation, is replaced by a more complex behavior characterized by
the presence of different regimes where, depending on the whirl frequency, the fluid
Jorces have either a stabilizing or a destabilizing effect on the inducer motion. Results

are presented to illustrate the influence of the relevant flow parameters.

1 Introduction

The combined effects of destabilizing rotordynamic fluid
forces and cavitation represent the main fluid dynamic phenom-
ena that adversely affect the dynamic stability and performance
of high power density turbopumps (Brennen, 1994). This can
lead to very serious problems ranging from fatigue failure to
sudden destructive damage of the machine (Jery et al., 1985;
Franz et al., 1990). Rotordynamic fluid forces under cavitaling
conditions have long been known to play an important role in
promoting the development of self-sustaining lateral motions
(whirl) of the impeller (Rosenmann, 1965). Recent experi-
ments carried out in the Rotor Force Test Facility at the Califor-
nia Institute of Technology by Franz et al. (1990) and Bhatta-
charyya (1994) showed that cavitation significantly affects the
rotordynamic fluid forces on axial flow inducers. In general,
cavitation has been found to have a destabilizing effect on the
whirl motion. In the present context, it is important to note that
cavitation replaces the characteristic quadratic behavior of the
noncavitating rotordynamic fluid forces with a more complex
dependence on the whirl speed, thereby undermining the tradi-
tional expansion of the rotordynamic fluid forces in terms of
stiffness, damping and inertia matrices. Bhattarcharyya (1994)
tentatively correlated these changes to the development of re-
verse (possibly oscillatory) flow at lower flow coefficients, im-
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plicitly postulating some form of interaction between cavitation,
backflow and whirl motion.

The present research aims at oblaining some fundamental
understanding of the basic fluid dynamic phenuomena responsi-
ble for the observed behavior of the rotordynamic fluid forces
in whirling and cavitating inducers, In particular, the main pur-
pose of this study consists of investigating to what extent this
behavior results from the dynamic response of the bubbles in
the cavitating flow through the inducer under the excitation
provided by the whirl motion. The flow is studied using the
linear perturbation approach used by the authors in their previ-
ous dynamic analyses of bubbly liquids (d’ Agostino and Bren-
nen, 1983, 1988, 1989; d’ Agostino, Brennen and Acosta, 1988;
Kumar and Brennen, 1993; d’Auria, d’Agostino and Brennen,
1994, 1996), extending earlier two-dimensional results
(&’ Auria, d’Agostino and Brennen, 1995) to account for the
preseace of the inducer blades and the occurrence of significant
tangential components of the rotordynamic fluid forces, By in-
troducing suitable simplifications, this approach leads to a fully
three-dimensional boundary value problem for a linear Helm-
holtz equation in the complex amplitude of the pressure pertur-
bation. Solution to this equation can be efficiently obtained by
separation of variables. Despite its intrinsic limitations, the re-
sults of the theory are consistent with the general features of the
available experitnental data. Hence, it appears that the present
analysis correctly captures some of the fundamental fluid dy-
namic phenomena in whirling inducers under cavitating condi-
tions and can usefully contribute to the understanding of the
rotordynamic fluid forces and instabilities in a number of im-
portant turbomachinery applications.
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Fig. 1 Schematic of the flow configuration and inducer geometry

¥, r

F
XL V—-wt+ ¢
9 Fa

E wt

X

whirl
orbit

Fig. 2 Schematic of whirl motion, coordinates and rotordynamic forces

2 Linearized Dynamics of a Bubbly Flow in a
Whirling Impeller

We address the problem of the flow of an incompressible
liquid of velocity u, pressure p, and density, g, in a helical
inducer rotating with velocity, 2, and whirling on a circular
orbit of small eccentricity, ¢, at angular speed, w. We define an
absolute (inertial) system of cylindrical coordinates (r, ¥, z),
fixed on the axis of the duct surrounding the inducer, and rela-
tive cylindrical coordinates, (r’, ¥', 2*), fixed in the impeller,
as illustrated in Figs. 1 and 2. Hence, to the first order in the
eccentricity, the coordinate transtormation is:

r=r"—c¢cos (9 — wt),

19’=19-—Qr+§sin(19—wt) and z' =z

A number of simplifying assumptions are introduced in order
to obtain a soluble set of equations that still reflects the dynam-
ics of a whirling inducer in a bubbly mixture. The relative
motion of the two phases, whose dynamic role is insignificant in
the present linearized approximation (d’ Agostino and Brennen,
1989), is neglected. Viscous effects are also neglected, except
in the bubble dynamics where they contribute to the damping.
As shown in Fig, 1, an infinite helical inducer is considered,
with N radial blades, zero blade thickness, hub radius ry, tip
radius rr, tip blade angle Ay, and constant pitch:

P = 2nrptan By = 27r' tan B

The mean flow conditions are specified by the flow coeffi-
cient, ¢, and the cavitation number, o, assuming fully-guided
forced-vortex flow with axial velocity w, = ¢Qrp, angular ve-
locity Q, = Q1 — ¢ cot B.r), zero radial velocity u,, and
uniform mean pressure p, = py, + op2°r#/2 (neglecting cen-
trifugal effects), where py, is the vapor pressure of the liquid.

Cavitation is modeled by a uniform distribution of small

. spherical bubbles of unperturbed radius, R,, and void fraction,

« < 1, The dynamics of vapor-gas bubbles is mode¢led as pro-
posed by Nigmatulin et al. (1981), assuming uniform internal
pressure, equal gas and vapor temperatures, and linear subsonic
bubble oscillations. For assigned values of the pressure, temper-
ature, and surface tension of the surrounding liquid it is possible
to determine the amount of non-condensable gas stabilizing a
bubble of given radius (d’Auria et al., 1997). The effects of
compressibility, inertia, and energy dissipation due to the vis-

_cosity of the liquid and the transfer of heat and mass between

the two phases are included in the model, In this model, the

-vapor-gas bubbles, when excited at frequency w,, behave as

second-order harmonic oscillators:

Y

4

(—w} — w2\ + wiR = -
pLRa

(n
where R and j are the complex amplitudes of the bubble radius
and liquid pressure perturbations: _
R=R-R,=Re(Rexp(—iwt)} and
p=p—p,=Re{p exp(—in) }.

Assuming that the gas and vapor densities are negligible when
compared to the liquid density and solving the energy equation
at R = R,, the damping coefficient X = A(w,) and the bubble
natural frequency wy = wy(w,) are oObtained as:

¢ = flow coefficient
w = frequency, whirl angular speed
2 = rotational speed

. Nomenclature
a = sound speed t = time
b = boundary ecuation u = velocity -vector
€ = unit vector u, v, w = velocity components
E = bubble thermodynamic function x, ¥, z = Carlesian coordinates
F = force :

[ = imaginary unit

J = blade index

J = Bessel function of the first kind
k = wave number, thermal conductivity
! = hub excitation mode index

m = blade excitation mode index

n = cross-flow helical coordinate

N = number of blades

p = pressure

P = blade axial pitch

r = radial coordinate

R = bubble radius

s = streamwise helical coordinate

4 = eigenvalue

p = density

@ = angle
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Y = mass fraction, Bessel function
of the second kind

a = void fraction

[ = blade angle

v = specific heat ratio

e = whirl eccentricity

9 = azimuthal coordinate

A\ = bubble damping coefficient

v = kinematic viscosity

o = cavitation number
T = bubble volume

Subscripts and Superscripts
B = bubble, blade

G = gas
H = hub
I = inducer

L = liquid, Lagrangian
M = bubbly mixture
p = pressure

R = radial

T = tangential, blade tip
v = volume

V = vapor

V G = vapor-gas mixture
o = unperturbed or reference value
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Fig. 3 “Cold bubble.” Radius response, [Apo/R.B1, of a 1 mm radius
gas-vapor bubble In water at p, = 5-10% Pa, T, = 293 K, as a function
of the excitation frequency, w;, for different values of the bubble vapor
content: ¥y = 0 (noncondensable gas bubble), Yy = 0.5, ¥ = 0.7,
Yy = 085, and Y, = 0.9 {from d'Auria et al., 1997).

A = 3":” Im {2ty 4—‘/2'—‘ (2)
pLRSw E(w,) R;
3w, Yro 28
3= Re -~ N
ve Pl.Rg {E(UJL) PLRE: 3

which are similar to the expressions of Chapman and Plesset
(1972) and Prosperetti (1984, 1991). Here yy; is the specific
heat ratio of the vapor-gas mixture inside the bubble, v, and §
are the kinematic viscosity and the surface tension of the liquid,
and pg, = p, + 2S/R, i3 the bubble internal pressure, which is
the sumn of the partial pressure of the vapor, py,, and of the
non-condensable gus, pg,. The quantity £ = E(w,) accounts
for the bubble compressibility, interfacial phase changes, heat
transfer, mass diffusion, and inertial effects (Nigmatulin et al.,
1981).

It is important to note that the dynamic behavior of vapor-
gas bubbles changes dramatically when the temperature is such
that itterfacial heat transfer limits the bubble dynamics (Bren-

wnen, 1995). This is illustrated in Figs. 3 and 4, where the
response of bubbles with different vapor content is plotted as
a function of the excitation frequency for p, = 5000 and 40,000
Pa, respectively corresponding to temperatures of 20° and 70°
Celsius. In both cases the normalized amplitude of the bubble

response increases rapidly with the vapor content. However, |

vapor-gas bubbles at 20°C are much more compliant than those
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Fig. 4 “Warm bubble.” Radlus response, |Ap,/R.p|, of a 1 mmn radius
gas-vapor bubble in water at p, = 4:-10* Pa, T, = 343 K, as a function
of the excitation frequency, w,, for different values of the bubble vapor
content: ¥y = 0 (noncondensable gas bubble), Yy = 0.4, ¥y = 0.7,
Yy = 0.8, and Yy = 0.9 {(from d'Auria et al,, 1997).
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Fig.5 Schematic of the transformation from the cylindrical coordinates
r, 9, z to the orthogonal helical coordinates r;, s, n,

at 70°C. This has important consequences for the forces acting
on the inducer.

The petturbation velocities must satisfy the kinematic condi-
tions on the hub, D{r’ — ry)/ Dt = O, on the outer casing, D(r
— re)tDe = 0, and on the blade:

nf. .z .
-D—;{'l? +‘;;C0ll3r—-19j}=0

where 9] = 2a(j — 1)/N identifies the angular position of the
jthblade (j = 1, 2,...N). It is convenient to analyze the flow .
in body-fitted Lagrangian helical coordinates:

-~ (.t
sL=L—$—”—c052[3—

— Wt
2 5ipn? B,
2r

TL=r,

N N
n, o= ~2; (7 - Q1) + -}-5 (z — w.t)

moving with the mean {low at axial velocity, w,, and angular
speed, ,,, and normalized so that s, and #;, are incremented by 1
for one rotation about the axis (see Fig. 5). Then, the linearized
kinematic conditions for the Lagrangian velocity perturbations
(d, ¥, w) on the solid surfaces are found to be;

. 27 .
- = ew,, sin (er.vL + -IVnL sin? 8 — wyt

onthe hub rp=ry
=0 onthecasing r,=rp
and: .
Puwy, cos 27 R
W= e —#——-—g— cos | 2@s, + =— n, sin®* B — w,_t)
27er N
on the blades n,=1,2,... N

" where w, = w — @, is the frequency of the bubble excitation

in the Lagrangian frame. Finally, appropriate boundary condi-
tions at the inlet and exit of the inducer are needed. Here, for
simplicity, we impose periodic conditions f(s.) = (s, + 1),
consistent with the original assumption that the inducer is long
in the axial direction.

Generalizing the derivation of d'Agostino and Brennen
(1988), linearization of the fluid dynamic equations of the bub-
bly mixture in rotating coordinates for time-harmonic fluctua-
tions with frequency w;, and irrotational absolute velocity pertur-
bations yields the following Helmholtz equation for the pressure
field:
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Vi + kw)p =0 4)

where the free-space wave number, &, is determined using the
principal branch of the complex square root from the dispersion

reiation:
W ko
isz)\

! = —u———kz(w") = —l.— ..________—._2
Ao \wh — wi -

2
ﬂfn(wl.) wi

Here ay,;(w,) is the complex (dissipative) and dispersive (fie-
quency dependent) speed of propagation of harmonic distur-
bances of angular frequency, w;, in the free bubbly mixture,
and an, is the low-frequency sound speed, given by:

wi R}
3a(l ~ o)

2
Ay =

where wi, = wi(0) is the natural frequency of oscillation of a
single bubble at isothermal conditions (w;, — 0) in an unbounded
liquid. Assuming vniform mean pressure in the inducer, k is
constant and, neglecting Coriolis forces (£2, = 0), to this order
of approximation, the complex velocity and pressure perturba-
tions are related, as usual, by iwp (1 ~ a)lt = V§,

With the above boundary conditions, the homogeneous
Helmholtz equation for the pressure represenis a well-posed
complex boundary value problem for p. If the blade angle 8 =
B(r) is approximated by a constant value 3, at some suitable
mean radius r,, the separable solution {Lebedev, 1965) in the
blade channel j — | = n, = jis:

+
p = 2, aRu(r.) cos [2m(n,
im0

+w

+ E Rlim(rL){cmj cos [)u'm(nL

m=0

“j + ])]el(ZML-—wLI)

=Jj+ DI

= Cuj1 €08 [pa(n, — j)])e/Fraen

whete;
/ 2
ag = ep (1 ~ a)wir,,f exp(i v sin® ﬁ")dnL
-1

a = 2xlep, (1 — a)wiry

i
X f exp(i %-:;{ ng sin? B,,) cos [{m(n, — j + 1)1dn,
j-1

for 1#+0

IS 2
f exp (i Fﬂj sin? ﬁo) Rpu(ro)dry
eNp (1 ~ ayw} ™™
27, Sin p,

Cmi = N3
L

n, PYoos? B,

Ram(’t_)dfl.

In these equations R, (r.) and Rp,,.(r.) are the modal solutions
corresponding to the hub and blade excitation, given in termg
of the Bessel functions of the first and second kind and order
v = cos 3, by:

___1___ JABr )Y :»(Bl"'l‘) ~ ¥ B )J.(Byry)
Biru J(Bry)Y L(Biry) — Y L(Birw)JL(Byry)

Ru(n) =

Ryn(re) = J(Bur)Y L (Burr) — YA B )1 L(Burr)
where B, are the (infinite and positive) zeros of the equation:
JL(Bru)Y L(Bry) — Y (Bry)J . (Bry) =0

and By and p,, are the principal square roots of:
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5

PN+
B} = k*(w,) — P eosT B and
PZ
= T ) -

N?

In the presence of bubble dynamic damping, the series for g in
Eq. (5) converges rapidly and only the first few terms are
needed in the computations.

In the special case of no bubble dynamic dampmg, k? is real
and the boundary value problem for g is self-adjoint with real
elgcnva)ucs 2. If, in particular, k*r# < cos? f,, then all eigen-
values p2, are negative. Given the funclional dependence of the
solution, this condition and the dispersion relation identify the
cut-off frequency:

w‘[=w*'—Qo=w&,/(l+

beyond which no wave-like propagation of the blade excitation
takes place in the n,-direction. From the above equations it also
appears that resonance occurs in response to the hub and blade
excitation when B, = B,, and p,, = I, respectively, This leads
to an infinite set of natural frequencies:

3a(l — a)rd\'?
R? cos? ﬁ:) (6)

=y — (20

o) (1

for [ > 0, m > 0. Notice that, consistent with the results of
previous dynamic analyses of bubbly flows (d’Agostino and
Brennen, 1983, 1988, 1989; d’Agostino et al., 1988; d’Auvria,
d’ Agostino and Brennen, 1994, 1995, 1996), w# and wy,, never
exceed the resonance frequency wp, of an individual bubble,
and become much lower when a *‘cloud interaction’ parameter,
B, becomes significantly greater than unity. In the present case,
B = aL?/R* where L = ry.

The rotordynamic fluid force per unit length on the inducer
is:

Wigm

3a(l — a)/R? )"2 N
Bl + *w?N*/P? cos? 4,

1

;-G-FPL_QT_ {(p - Pa)ds

(8)

where §, is the surface of the inducer (hub and blade surfaces)
for one interval 0 = J = 2.

Upon integration, the radial and tangential components, Fp
and F;, of the rotordynamic force on the inducer are more
compactly represented in complex form by:

F=F,— iFy )]
Due to the linear nature of the solution, it is possible (o synthe-
size the rotordynamic forces by examining the separate contri-
butions from the hub and blade motion. With the notation of
Eq. (9), the rotordynamic force on the hub generated by the
hub motion is:

FOID o RUHHY RO

1 N o

- Z y wPry

WCPPLQ r'[jﬂl 120 N

alRy(re} ;- (10)

where:
! . ,
;= expl —i —A—,- n sin® 8,1 cos {Iw(ny — j + V)]dn,
-1 '

Slmtlarly, the rotordynamlc force on the hub generated by the
blade motion is: j

DECEMBER 1998, Vol 120 / 701



1

FUB) - gy _ ——
h wePp SrE

o HB) _
iFY® = -

N« WP"”
X 2 Z Rﬂm(rﬂ)(cm.iAm.i - CmJ—IBmJ) (ll)

J=1 m=9

where;
1 L2m L, ,
AmJ = exp| —i —A-,— ny, sin® 8, | cos [pu(n, - j + 1}}dn,
-1
i J2r L , .
B.; = exp| —~i -A—,- ng sin? A, ) cos [pm(iy — §)1dn,
-1

The complex representation of the rotordyhamic force on the
blades generated by the hub motion is:

BH) __ pr(BH) S(BHY _ __1_,___
FO0 = PR — (PP = wePp SVr}
N 4@
{Z 2 PR} Pﬂl f Rm(rL)e—;(z-rm)u»l).aln’ﬁ,dn
J=11=0 2 "
N Pa
- (_1)' Z Zi If Ri(rp)e” i@ M) aln? B”er} (12)
j=1 (=0

and, finally, the rotordynamic force on the blades generated by
the blade metion is:

1
F(BB) = F BBy "F(BH) = e
k T wePp Q2ri
N += P
X {Z z i (Cm./ - cm.j"'l cos I—"m)
=l ;m=Q 2

T,
T _ —Pysin?
xf R,g,,,e H(2r/N) () - D) sin B“er
7]

N 4o

-y 3t

j=1 m=0

(Cm,i CO8 by — cm,}'—l)
r
rH .

Then, the rotordynamic forces on the inducer are simply synthe-
sized as:

F = Fy— iy = F" 4 FUID 4 R 4 FOB - (14)

The modes Ry, due to the hub motion, are analogous to the
earlier two-dimensional flow solution (d’Auria et al. 1995),
except for relatively minor modifications introduced by the heli-
cal nature of the flow. These mostly contribute to the radial
.compunent of the rotordynamic force. On the other hand, the
modes Ry, due to the blade motion are essentially three-dimen-
sional and generate significant contributions to the tangential
forces.

The entire flow has therefore been determined in terms of
the material properties of the two phases, the geometry of the
impeller, the nature of the excitation, and the assigned quantities
¢, 0, a, and R,.

3 Results and Discussion

The calculated rotordynamic forces acting on the inducer as
a consequence of the whirl motion are strongly dependent on
the propagation of pressure disturbances through the blade chan-
nels. The general features of this propagation (behavior in space
and time, dependence on the flow paramieters, resonances and
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Fig. 6 Experimentally measured radial rotordynamic force on the test
inducer as a function of the whirl speed ratio w/{} undér cavitating condi-
tions at ¢ = 0.049 and ¢ = 0,106 {adapted from Bhattacharyya, 1994)

cut-off frequencies, etc.) have already been examined (d’Auria
et al., 1995) and will not be reviewed here in detail.

The rotordynamic fluid forces predicied by the present model
will be compared with the experimental results obtained by
Bhattacharyya (1994) for a helical inducer (rr = 5.06 cm, ry/
rr = 04, Br = 9°, ¢ = 0.254 mm) operating in water at ) =
3000 rpm with flow coefficients of ¢ = 0.049 and ¢ = 0.074
(not corrected for hub blockage) and different values of the
cavitation number, o.

Figures 6 and 7 show some typical experimental data at a
flow coefficient, ¢ = 0.049, and a cavitation number ¢ = 0.106.
Notice that the forces do not vary quadratically with the whirl
frequency, w, and that their behavior is characterized by multi-
ple zero crossings. The radial force (Fig. 6) is essentially nega-
tive for /0 > —0.2, and has a minimum at w/§) = 0.2
Similar behavior was observed for other cavitation numbers
(Bhattacharya, 1994). In the tangential forces (Fig. 7), the
most interesting feature is the strong positive (destabilizing)
peak at w/$2 =2 0.2, This peak was present in all of the experi-
ments of Bhattacharyya (1994); it increased in magnitude as
the cavitation number, o, increased and the flow coefficient, ¢,
decreased.

Typical results for the radial and tangential rotordynamic
forces predicted by the present theory for the same inducer at
@ = 0.049, and o = 0.106 are displayed in Fig. 8 as a function
of the whirl speed ratio w/§2. Despite the differences between

2
]
1} "
]
FT 1 '
. )
0 . . "
»
.IAAALI PR R B PP JURPUII DU SO S Y
06 04 0.2 0.0 02 04 . 06

w [2

Fig. 7 Expetimentally measured tangential roterdynamic force on the
test inducar as a function of the whirl speed ratio «/ under cavitating

conditions at ¢ = 0.049 and ¢ = 0.106 (adapted from Bhattacharyya,
1994)
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Fig. 8 Radial and tangential rotordynamic forces on the test inducer as
a function of the whirl speed ratlo «/£) under cavitating conditions at
b =0049, T, = 293 K, w = 0.005, R/rr = 0.01,p, = 2265 Pa,and Yy =
0.875

theory and experiment (notice, for example, that the magnitude
of the forces is off by one order of magnitude), the main qualita-
tive features of the forces are correctly reproduced. Note that,
consistent with experimental results, the radial force, Fg, is
essentially negative for w/Q0 > -0.3. In addition, the zero
crossing for positive whirl ratios and the minimum at w/Q =
0.2 have been reproduced by the computations, More important,
in view of its implications for rotordynamic stability, Fig. 8
shows (hal the strong positive peak in the tangential force and
its location (w/§} = 0.2) are also reproduced by the theory.
Figure 9 presents resolts for various void fractions, As the void
fraction increases, the magnitude of the peak in the tangential
force increases. This is physically consistent with the experi-
mental observations of Bhauacharyya (1994), who observed
the same increase as the cavitation number, o, decreased. Figure
10 presents results for various flow coefficients and demon-
strates that a similar effect occurs as ¢ decreases.

These results are strongly influenced by bubble dynamics
effects. The corresponding value of the cloud interaction param-
eter 3a(1 — a)r3/R? (as defined by d’Agostino and Brennen,
1989) is much larger than unity, thus indicating that extensive
bubble dynamic and resonant phenotnena are likely to occur in
the inducer flow,

Finally, we turn our attention to the influence of thermal
effects on the rotordynamic forces. Figure 11 shows the behav-
jor of the wngential force for different values of the temperature
in the lignid. It 1nay be observed that, as the temperatute in the
flow increases, the peak decreases in magnitude and ¢ventually
disappears. This behavior results from the different bubble re-

-0.4 -0.2 0.2 0.4 0.6

Fig. 8 Tangential rotordynamic force on the test inducer as a function
of the whirl speed ratio w/{} under cavilating conditions at ¢ = 0.049,
T, = 293 K, A/ry = 0.01, p, = 2255 Pa, for three different values of the
woid fraction, «
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0.4r o ¢=0074 1
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Fig. 10 Tangential rotordynamic force on the test inducer as a function
of the whirl speed ratio /(! under cavitating conditions at & = 0.083,
To = 293 K, R/ry = 0.01, p, = 2255 Pa, for two different values of the
flow coefficient, ¢

sponse at different temperatures, as exemplified by Figs. 3 and
4.

A few brief remarks on the discrepancies between the present
theory and experimental results are appropriate. First, the mag-
nitude of the rotordynamic forces is systematically underesti-
mated. A plausible cause for this discrgpancy is the variation
of cavitation in the radial direction in the blade channels. Also
the (rather unrealistic) assumptions that all bubbles have the
same radius and therefore the same resonant dynamic behavior
results in more localized peaks than those observed. Finally,
the present theory necessarily neglects the secondary flows that
are inevitably present in cavitating inducers (Brennen, 1994),

4 Conclusions

The results of this study show that bubble dynamics cause
major modifications of the rotordynamic forces on cavitating
inducers.

The propagation of the whirl-induced disturbances within the
inducer is significantly modified by the large reduction of the
sonic speed in the bubbly cavitating flow. The spectral response
of the rotordynamic fluid forces is strongly correlated (o the
cloud interaction parameter, 3a(l — a)r}/R%, and the relative
magnitude of the excitation and bubble resonance frequencies.
Maost of the paper focuses on cavitation that is uninhibited by
thermal effects though we also demonstrate the damping effects
introduced when thermal effects become important.

The computations show that the rotordynamic fluid forces on

. the inducer in bubbly cavitating flows no longer vary quadrati-

cally with the whirl frequency, as in noncavitating conditions.
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Fig. 11 Tangential rotordynamic force on the test inducer as a function
of the whirl speed ratio, w/{}, under cavitating conditions at ¢» = 0.049,
Rg/ry = 0.007, p, = 35000 Pa, and three different temperature levels
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The theory qualitatively reproduces the main characteristics of
the rotordynamic forces (though there are significant quantita-
tive discrepancies). In particular, the occurrence of a strong
destabilizing peak in the tangential force is correctly predicted,
including the frequency at which it occurs and the evolution of
the magnitude with cavitation number and flow coefficient.
These results provide the first real insight into the complex
physical phenomena observed experimentally.
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