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The present work investigates the acoustical absorption and scattering cross sections of
spherical bubble clouds subject to harmonic farfield pressure excitation. Bubble dynamics
effects and energy dissipation due to viscosity, heat transfer, liquid compressibility, and relative
motion of the two phases are included. The equations of motion for the average flow and for
the bubble radius are linearized and a closed-form solution is obtained. Due to the presence of
natural oscillatory modes and frequencies, the acoustical cross sections of the cloud are very
different from those of each individual bubble in the cloud, as well as from the acoustical cross
sections of a single large bubble with the same volume of vapor and gas. In general, the
acoustical properties of any given volume of the dispersed phase depend strongly on the degree
of dispersion because of the complex interactions of the dynamics of the bubbles with the

whole flow.

PACS numbers: 43.30.Ft, 43.30.Gv

INTRODUCTION

 This paper illustrates part of our current research on the
role played by the dynamics of bubble volume changes in the
fluid mechanics of bubbly or cavitating flows and represents
a natural extension of our previous work on the dynamics of
one-dimensional unsteady flows of spherical bubble clouds
subject to farfield pressure perturbations (d’Agostino and
Brennen, 1988). Among the practical objectives of this
study is a better understanding of the global effects of many
bubbles in the dynamics and, specifically, in the acoustical
behavior of bubbly and cavitating flows. Traditionally the
acoustical properties and, in particular, the noise radiation
of these-flows have been analyzed and interpreted on the
basis of single bubble dynamics assuming that the effects of
individual bubbles can be algebraically summed. This as-
sumption, for example, is inherent to virtually all commonly
accepted scaling laws of noise generation in bubbly and cavi-
tating flows; the void fraction and bubble concentration in
the cavitation region never appear as scaling parameters
(Blake, 1986). The interactive effects that the bubble vol-
ume changes can have in many practical cases on the veloc-
ity and pressure distributions (and therefore ultimately on
the magnitude of the bubble response itself) are neglected,
thus eliminating the effects of any large scale internal motion
in the bubbly region of the flow.

The traditional approach may be adequate when the
bubble concentration is extremely low, but it clearly loses
validity when the bubble concentration becomes larger and
the possibility of global motion in the bubbly mixture arises.
As early as in 1969, Erdmann and his co-workers noticed a
surprising and unexplained sharp decrease of the sound
pressure level from traveling bubble cavitation on propeller
hydrofoils when the cavitation number dropped below 80%
of its inception value and cavitation became more extensive.
The optical observations of traveling bubble cavitation on
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Schiebe headforms in water tunnel tests by Marboe et al.,
1986, and the simultaneous sound measurements displayed
the tendency of the noise spectrum to shift towards lower
frequencies than expected from single bubble dynamics con-
siderations. Marboe and his co-workers suggested the occur-
rence of asymmetric bubble collapse as a possible cause of
this phenomenon. In view of our current results, global bub-
ble interaction effects in the cavitation region when a suffi-
cient concentration of bubbles is present are another possible
explanation of the observed reduction of the sound pressure
level and of the downward shift of the noise frequency spec-
trum in heavily cavitating flows. Similar recent experimental
results by Arakeri and Shanmuganathan, 1985, and Billet,
1986, have also helped identify bubble interactions in cavi-
tating flows as a likely source of the observed discrepancies.
The main purpose of this research is to provide some phys-
ical interpretation of the origin of these alterations. Despite
the extensive linearizations inherent in the analysis, we are
confident that the results convey a qualitative understanding
of the dynamic and acoustical properties of real bubbly flows
and represent a useful guidance in the study of such flows
with nonlinear bubble dynamics.

The last few decades have seen extensive research on the
dynamics of bubbly flows (van Wijngaarden, 1968; van
Wijngaarden, 1972; Stewart and Wendroff, 1984). Early
studies based on space-averaged equations for the mixture in
the absence of relative motion between the two phases (Tan-
gren et al., 1949) did not consider bubble dynamic effects.
This approach simply leads to an equivalent compressible
homogeneous medium. In a classic paper, Foldy, 1945, ac-
counted for the dynamics of individual bubbles by treating
them as randomly distributed point scatterers. Assuming
that the system is ergodic, the collective effect of bubble dy-
namic response on the flow is then obtained by taking the
ensemble average over all possible configurations. Later,
more general equivalent flow models of dispersed two-phase
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mixtures, which include the effects of bubble dynamics, lig-
uid compressibility, and relative motion, have been devel-
oped by ensemble, volume (Biesheuvel and van Wijngaar-
den, 1984), or time (Ishii, 1975) averaging of the
conservation equations for each separate phase. These mod-
els have been successfully applied to describe the propaga-

tion of both infinitesimal and finite amplitude one-dimen-

sional disturbances through liquids containing small gas
bubbles (Carstensen and Foldy, 1947; Fox et al., 1955; Mac-
pherson, 1957; Silberman, 1957; Noordzij, 1973; Noordzij
and van Wijngaarden, 1974).

A natural way to account for the effects of bubble dy-
namics and slip velocity between the two phases is to include
the Rayleigh-Plesset and the relative motion equations in
the space-averaged equations. However, because of their
complexity, there are few reported examples of the applica-
tion to specific flow geometries of the space-averaged equa-
tions that include the effects of bubble response. Recently,
Modrch, 1980, 1981, Chahine, 1982a, 1982b, and others have
focused their attention on the dynamics of a cloud or cluster
of cavitating bubbles and have expanded on the work of van
Wijngaarden, 1964. Unfortunately, there appear to be a
number of inconsistencies in this recent work which will re-
quire further study before a coherent body of knowledge on
the dynamics of clouds of bubbles is established. For exam-
ple, the early work of Chahine, 1982a, does not account for
the large scale effects that the bubble volumeé changes have
on the velocity field and, therefore, on the pressure experi-
enced by each individual bubble, though in a later paper,
Chahine, 1982b, does begin to consider these global interac-
tions. On the other hand, Mérch and his co-workers, 1980,
1981, 1982, have visualized the collapse of a cloud of cavitat-
ing bubbles as involving the inward propagation of a shock
wave: it is assumed that the bubbles collapse completely
when they encounter the shock. This implies the virtual ab-
sence of noncondensable gas in the bubbles and the predomi-
nance of vapor. Yet in these circumstances the mixture in the
cloud will not have any real sonic speed. As implied by a
negative left-hand side of Eq. (13), the fluid motion equa-
tions for the mixture would be elliptic not hyperbolic and
hence shock wave solutions seem inappropriate. A discus-
sion of the nature of the characteristics of spherical cavity
clouds is contained in Pylkkédnen, 1986, for various bubbly
flow models containing four, five, and six independent vari-
ables.

In the present program we focused our attention on one-
dimensional steady flows or two-dimensional time-depen-
dent flows. In earlier publications (d’Agostino and Brennen,
1988, d’Agostino et al., 1988) and two previous notes (d’A-
gostino and Brennen, 1983; d’Agostino et a/., 1984) we con-
sidered the two-dimensional steady flow of a bubbly liquid
over wave-shaped surfaces and the undamped linearized dy-
namics of a spherical cloud of bubbles subject to an harmon-
ic pressure field. The results clearly show that the fluid mo-
tion can be critically controlled by bubble dynamic effects.
Specifically, the dominating phenomenon consists of the
combined response of the bubbles to the pressure in the sur-
rounding liquid, which results in volume changes leading to
a global accelerating velocity field. Associated with this ve-
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locity field is a pressure gradient that in turn determines the
pressure encountered by each individual bubble in the mix-
ture. Furthermore, it can be shown that such global interac-
tions usually dominate any local pressure perturbations ex-
perienced by one bubble due to the growth or collapse of a
neighbor (see Sec. IV). In the present work the same ap-
proach is applied to derive the acoustical absorption and
scattering cross sections of a spherical bubble cloud subject

'to harmonic farfield pressure perturbations.

During the preparation of this article, the bubble cloud
flow problem has been independently addressed by Omta,
1987, using a similar approach. Omta linearized the Bie-
sheuvel-van Wijngaarden homogeneous flow equations for
a bubbly mixture (Biesheuvel and van Wijngaarden, 1984)
and derived an analytical solution to the flow in a spherical
bubble cloud. In his work a number of simplifying assump-
tions have been introduced with respect to the present analy-
sis. With a slight inconsistency, Omta neglected viscosity
and liquid compressibility (and therefore their contribu-
tions to damping) in the bubble dynamics, but retained them
when considering the relative motion of the two phases and
the propagation of pressure disturbances in the liquid. Sur-
face tension has also been neglected and relative motion does
not affect the solution explicitly, since in Omta’s derivation
the slip velocity problem is fully decoupled from the cloud
dynamics. Thus thermal damping is, in practice, the only
dissipation mechanism accounted for. On the other hand,
the above effects are included in the present theory and
therefore their relative importance can be easily assessed.
Although viscous and acoustic damping in the bubble dy-
namics and surface tension effects can be important in small
bubbles at high excitation frequencies (as indicated by Ples-
set and Prosperetti, 1977, and confirmed here), the two
treatments lead to virfually the same main conclusions on
the general characteristics of the flow in the bubble cloud.
Despite all its intrinsic limitations, the following linear anal-
ysis indicates some of the fundamental phenomena involved
and represents a useful basis for the study of such flows with
nonlinear bubble dynamics (which we intend to discuss in a
later publication).

I. BASIC EQUATIONS

Following the same approach previously indicated in
our earlier works (d’Agostino and Brennen, 1988; d’Agos-
tino et al., 1988), we address the problem of the simulta-
neous solution of the fluid dynamic equations for the two
phases with the relevant interaction terms. Let p(x,#) be the
liquid pressure, u(x,t) the velocity of the liquid, v(x,#) the
velocity of the bubbles, and w(x,t)
= v(x,t) — u(x,t) the relative velocity of the two phases
(defined as the corresponding quantities in the absence of
local perturbations due to any neighboring bubbles). Then
the liquid, assumed viscous and compressible with viscosity
1, density p, speed of sound ¢ = /dp/dp, and concentration
B(x,t) of bubbles per unit liquid volume, satisfies the conti-
nuity equation in the form:

1 DB 1 D.p

Veu = - ,
14+p8r D, pc> Dt

(D
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where D, /D, t = d /3t + wV indicates the Lagrangian time
derivative following the liquid, 7(x,¢) is the individual bub-
ble volume, and /3 is related to the void fraction by Br = a/
(1 — a). Under the hypothesis that no bubbles are created
nor destroyed, the bubble number continuity equation gives

1 _D,Br) 1 Dyp
14B8r Dt B Dt

Here, D,/D,t = 3 /dt + v-V indicates the Lagrangian time
derivative following the bubbles. Furthermore, if external

Vev=

(2)

body forces are unimportant, the momentum equation for

the liquid phase is
D,u
= — (1 Vp. 3
P D1 (1+pBr)Vp (3

u

Finally, under the additional hypothesis that the bubbles re-
main spherical, it follows that 7 = 4R 3/3, with the bubble
radius R(x,?) determined by the Rayleigh—Plesset equation
(Plesset and Prosperetti, 1977; Knapp et al., 1970). In order
to account for heat and mass transfer, viscous dissipation,
and liquid compressibility effects in the dynamics of the bub-
bles, the Rayleigh—Plesset equation is modified as indicated
by Keller et al. (Prosperetti, 1984):

(1-2) e+ 232 (1-3)

c 3
:(Hg)plz(twp(t R/ RApRD
c/ P pc dt

where py (¢) is the liquid pressure at the bubble surface, re-

lated to the bubble internal pressure p; (assumed uniform)
by

28 R
pp(1) ZPR(t)+?+4,u'E- 3

Here dots denote Lagrangian time derivatives following the
bubbles and S is the surface tension at the bubble interface.
Finally, the momentum balance for the dispersed phase, as
required for the closure of the problem, is given by the rela-
tive motion equation for a spherical bubble of negligible
mass in a viscous liquid with Stokes’ drag:

pr DYy prDu

£ Y 4 6muR(v—u
2 D 2 D OHRO-W
p(V*—u) DUT »
f 20w DT yp—o. 6)
2 Dpg P (

The above equations, together with suitable boundary condi-
tions, represent in theory a complete system of equations for
p(x,t), u(x,t), v(x,t), and 7(x,¢). However, in practice,
their highly nonlinear nature requires further simplifica-
tions for a closed-form solution to be attained even for very
simple flows.

. DYNAMICS OF SPHERICAL BUBBLE CLOUDS

We consider the problem of a one-dimensional flow in a
spherical bubble cloud of radius 4 and void fraction a locat-
ed at x =0 in an unbounded liquid at rest at infinity, as
shown in Fig. 1. Let the perturbation of the farfield pressure
be represented by a one-dimensional plane acoustic wave
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FIG. 1. Schematic of a spherical cloud of bubbles.

P, (t) =poll + € exp i(wt — hx)] of wavenumber 4 = &/
c<1/4,with € €1 and let the subscript 0 indicate the unper-
turbed conditions corresponding to € = 0. Then, assuming,
for simplicity, that all the bubbles have the same equilibrium
radius R, the undisturbed pressure in the liquid is

Po=DPpo — 25/R,,. (7N

Linearization of Egs. (4) and (5) for small changes of the
bubble radius R(#) = Ry[1 + @ exp(iwt) ] under the action
of a periodic pressure perturbation p(1) = po(1 + € exp iw?)
leads to modeling each individual gas bubble as an harmonic
oscillator (Prosperetti, 1984):

( — & + iw2d + 0%,)pe™
= ——e—%(l —i“’R") et (8)
Pio ¢

with internal pressure pg(#) =pgoll — dp exp(int) ],
where

4  &’R, = Pso
Rt R 50 9
Pro 28
w2w=%( ) - T = 10
o =R 25— (10)
6= » 3y0?
010 +3(y—1A_]1—3(y—1)(64, —2)
(1D
sinh 6 + sin &
= nh 8 + sin (12)

cosh @ —cos 8’

and 6 = Ry (2w/y ) is the ratio of the bubble radius to the
bubble thermal diffusion length. The three terms of the effec-
tive damping coefficient A respectively represent the contri-
butions of the viscous, acoustical, and thermal dissipation,
@z, is the effective natural frequency of the oscillator when
excited at frequency w, and Rt (#) /3 can be interpreted as the
effective polytropic exponent of the gas in the bubble, which
respectively tends to 1 and y in the isothermal and isentropic
limits for >0 and ®— + o (Prosperetti, 1984).

We limit our analysis to the case of uniform and relative-
ly low void fraction so that the flow velocities u,v, and w are
small and purely radial, with components u(7,t), v(#,t), and
w(rt). Then Egs. (1), (2), (3), and (6) reduce to
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iz-g—(r u)—(l—ao)ﬁo

8,3 1 dp
1 b L (3
+ ( rao)To 3 pd or (13)
149, , 1 38 1 dp
19 ——— o p 14
r2ar (rw) Bo 9t  pc I (4
or
dw u 1 JR 2 dp
~==0. 16
3t+(pR2+R2 t?t)w p or (10

For the incompressible single phase flow outside the
cloud [r>A4(8) 1],

u(rt) =C()/r?,
3 (17)
p dc(t) ‘

1) =
p(re) pw(t)+ ”

+ 0(C*(n),

where C(r) is of perturbation order in low void fraction
flows. The boundary condition at the cloud surface simply
requires the continuity of p(r,¢) and u(r,t) at the interface
between the cloud and the pure liquid (r~A4, in the linear-
ized approximation). In addition, at the center of the cloud
the flow is required to be regular. -

The solution of these equations in the domain »<A4,, for
the propagation of small spherical disturbances of the form
[exp i(kr + wt)]/ris

J
(1 —ay)/pR2 —i ' i .
R(r,t) =Ry — Rye ‘D‘; = po ( 1 — ioRy/c )s‘“ kr o (18)
W%, — @ + iw2A \cos kA, — a, sin(kdy)/kA,/  kr
11—« sin kr\
P (nt) =py + poe —0 ( ) e,
Por Po cos kA, — ay sin(kAy)/kAg \  kr (19
. Do/ porr ( sin kr) oot
u(rt) =ie cos k¥ — ——— .
cos kA, — ay sin(kAy)7kA, kr ¢ 20
, /por 2(1 —ay) sin kr\
w(rt) =ie ( Po . ) 0 (cos kr — ) e, 21
cos kA, — ag sin(kAdy)/kAy/) 1 + 9v/ioR 2 kr b
1 k? 1—a sin kr\
Blrt =Bo+ o 22 (L 1+ 1) o (k) ome
O o\ T w2/ cos kd, — a, sin(kd,)/kA, kr ¢ (22)
r
Here, k is the principal square root (with noii-iiegative real . Po 28
and imaginary parts) of k 2 given by the dispersion equation Pr(D) =po+€ pR? (‘D nof = R, + feody )
for a bubbly flow (van Wijngaarden, 1980) with bubble dy- ) ;
namic damping, liquid compressibility, and relative motion 1 —iwRy/c e (25)

effects (d’Agostino and Brennen, 1987):

k2 1 {0%(1 —iwRy/c) (1 —a,)?
— =7\ W + 3
w ¢, \0s, —0° + w2l c

X(l + 2a0(l "’a()) )_
1 4 9u/iwpR
where wj, 1is the solution of the implicit equation

Wy =g, (wg) and

ek, = w3 R3/3a,(1 — ap) (24)

is the low-frequency sound speed in homogeneous bubbly
mixtures with incompressible liquid. In the absence of
damping, & reduces to the natural frequency of oscillation
of a single bubble at isothermal conditions in an unbounded
liquid (Plesset and Prosperetti, 1977; Knapp et al., 1970).
Similarly, when surface tension and energy dissipation are
neglected, c,, reduces to the well-known expression of the
low-frequency sound speed for a homogeneous mixture (van
Wijngaarden, 1980). If the bubbles are in stable equilibrium
in their mean or unperturbed state, then R(4)pp >25/R,
and both wy and ¢,, are real.

For comparison, the solution for a single bubble of equi-
librium radius R, subject to the same acoustic field is (Pro-
speretti, 1984)

(23)
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0%, — 0° + w2l

Po ) 11— leO/C eimt
PRy / 0}, — &* + iw2Ad
(26)

where pg (¢) and ug (£) = R(t) are, respectively, the pres-
sure and the velocity of the liquid at the bubble surface.

Now, the average power absorbed by the forced oscilla-
tions of a sphere (whether a cloud or a single bubble) with
unperturbed radius b, during a period T'= 27/ of the ex-
citing acoustic field is

ug (1) =R(t) = — ia)e(

T
W,= —if 4mbop, (Du, (1)dt, (27
T Jo
where p, (¢)t and u,, (¢) are the pressure and the velocity at
the sphere boundary, respectively.
The oscillating sphere also acts as a monopole source
that generates the acoustic field:

. pUwbl
"(rt) =i ———— flwt—hlr—t)] 28
i (1 + ihby)r (28)
u'(rt) =1 b2 ( 4 1 )e,-[a,t-h(r— bo)1 29)
(1 + ihbo)r ihr

Heuce the average power radiated by the sphere is
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T

W, = lim L 4r ’p' (rt)u' (r,t)dt.

r— 4 oo 0

(30)

Normalization of W, and W, with the average power
density €p/pc of the excitation wave gives the following
expressions for the acoustical absorption and scattering
cross sections of an oscillating sphere:

R(P,ORU,) + TF(P)E(U,)

= —4mbs : 31
‘ o €ps/pe G
o= lim 4mr2 REOIRU' M) + FP (DU (1))

r— + €2p(2)/pc 3

(32)

where P,, U,, P'(r), and U’(r), respectively, indicate the
complex amplitudes of p, (¢), u, (2), p’(r,t), and u'(r,t).

The acoustical cross sections of either a bubble cloud or
of a single bubble can then be computed from the above
formulas. Clearly, for a bubble cloud b, = 4, while p, ()
and u,, (t) are given by Egs. (19) and (20) for r = A,. On the
other hand, for a single bubble, b, = R,, with p, (¢) and
u, (t) expressed by Eqgs. (25) and (26), respectively.

lll. RESULTS AND DISCUSSION

In this section we consider the case of air bubbles
(7 = 1.4, yc =0.0002 m*/s) in water (p = 1000 kg/m>,
1 = 0.001 Ns/m?, § = 0.0728 N/m, ¢ = 1485 m/s). Unless
otherwise specified the remaining flow parameters are:
Po=10°Pa, R, = 0.001 m, 4, = 0.1 m, and € = 0.1. In most
cases the parameter w34 3 /c%, = 3a,(1 — ay)A /R is as-
signed and the void fraction «, is determined accordingly.

Free oscillations of the cloud only occur in the absence
of damping when the exciting frequency w experienced by
each bubble is equal to the natural frequency wp of an indi-
vidual bubble in an infinite liquid (bubble resonance condi-
tion) or to one of the natural frequencies of the bubble cloud.
In the limit of low void fraction, the natural frequencies w,,
of the cloud are approximated by the infinite sequence:

o (1 N 3a,(1 —ay)Ad}
! (n—1/2)272%R2

—1
) , n=0,1.2,...

(33)

For large n this sequence converges to the frequency wy
corresponding to the bubble resonance conditions. For small
n the behavior of this sequence depends on the value of
3ay(1 — ag)A§/RE = wyA}/cl,. When this parameter is
of order unity or larger the lowest natural modes can occur
at comparatively low frequency. When the reverse is the case
all the natural modes of the system take place with a frequen-
cy only slightly lower than the bubble resonance frequency.
The above expression (33) corresponds to Eq. (144) of
Omta, 1987, for the natural frequencies of a bubble cloud.
‘Direct comparison of these equations is not possible due to
the different modeling of bubble dynamics in the two cases.
However, it is easily verified that they both reduce, as ex-
pected, to the same expression for @, when 3¢,
X (1 —ay)43/R %> 1, when surface tension and void frac-
tion are small and when the gas in the bubbles behaves isoth-
ermally. In this limiting case the natural frequencies of the
cloud are independent on the bubble radius and vary slowly
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FIG. 2. Normalized amplitude of the bubble radius damped oscillations at
the surface (r = A, solid line) and at the center of the cloud (7 = 0, broken
line) as a function of the square reduced frequency w?/w} for
3a,(1 —ag)A2/RE =7%/4.

with the cloud radius and the void fraction when the total
volume of the gas phase is fixed, as indicated by Omta, 1987.
The occurrence of resonances in the cloud also divides the
flow solution into three different regimes, namely: subreso-
nant (0 <o <®,), transresonant (@, <@ < wp ), and super-
resonant (@ > wg ). As we shall see later, this has significant
consequences on the behavior of the flow.

The relative amplitudes of the bubble radius oscillations
at the center and at the surface of the cloud are shown in Fig.
2 as a function of the normalized square frequency for a
typical case of 3a,(1 — a,)4 5/R ] = m */4. At the bound-
ary of the cloud all resonance peaks except the first are virtu-
ally eliminated by the presence of damping and replaced by a
second much smaller and broader peak around the individ-
ual bubble natural frequency. At the center of the cloud, the
peak corresponding to the second resonant mode (whose
amplitude is larger in the inner regions of the cloud) is still
recognizable, although greatly attenuated. On the other
hand, the peak at the bubble resonance frequency is absent
because it is not associated with any global motion in the
flow and because any external disturbance at the bubble nat-
ural frequency is quickly attenuated by the resonant re-
sponse of the bubbles in the outer regions of the cloud. Also
note that the amplitude of the bubble radius response is larg-
er at the center of the cloud than at the surface. Violent
oscillations of the bubbles near the center of the cloud have
also been obtained by Omta, 1987, in his nonlinear computa-
tions of the cloud response to a sudden change of the external
pressure. The other flow variables behave in a qualitatively
similar manner (d’Agostino and Brennen, 1988). Therefore
the first natural mode of oscillation of the cloud at a frequen-
Cy w=w); represents the most important component of the
cloud response. Its effects also dominate the contributions of
individual bubbles at their own natural frequency. These
conclusions fully agree with the theory and computations of
Omta, 1987. The above results clearly indicate that the
acoustical properties of bubble clouds are not adequately
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described in terms of the independent responses of individ-
ual bubbles, at least as long as the parameter
3a,(1 —ay,)A3/R Y is of order 1 or larger and, therefore,
the first natural frequency of the cloud is significantly
smaller than wy.

The relative amplitudes of the damped bubble radius
oscillations throughout the cloud at various frequencies are
illustrated in Fig. 3 for 3a,(1 — ay)42/R2 = 7 */4. Note
that the bubble response is larger at the center of the cloud
for forcing frequencies below the bubble natural frequency,
while the reverse is the case for superresonant excitation. In
fact, in the subresonant regime the bubbles have ample time
to react and therefore behave in a compliant way, with the
largest motion concentrated in the interior of the cloud. The
pressure change is essentially in phase with the excitation
and the bubble response is almost in phase opposition. On
the other hand, in superresonant flows the bubbles cannot
respond as quickly as the excitation requires because of their
inertia and therefore appear to be “stiffer.” This effect clear-
ly increases with the excitation frequency and therefore the
cloud response, initially concentrated in the outer regions,
becomes more uniform at higher frequencies. The pressure
and the bubble radius changes are almost in phase with the
excitation. Finally, in the transresonant regime the situation
is complicated by the presence of more-articulated internal
motions of the cloud due to the occurrence of resonances.
The phase of the flow parameters with respect to the excita-
tion depends on the dominant oscillation mode in the cloud.
Between the first and the second natural frequencies, for
example, the bubble radius response is essentially in phase
with the excitation, while the pressure is almost in phase
opposition. \

The effects of different void fractions are illustrated in
Figs. 4 and 5, which show the acoustical absorption and scat-
tering cross sections of a bubble cloud as a function of the
normalized square frequency for various values of the pa-
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FIG. 3. Normalized amplitude of the bubble radius damped oscillations in a
bubble cloud as a function of the normalized radial coordinate /4, for
3ay(1 — ay)A3/RG = m /4 and various values of the excitation frequen-
¢y: @® = @} /2 (solid line), (w? + w2)/2 (dash-dotted line), 1.1 wy (dot-
ted line), and 2w} (broken line).
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FIG. 4. Acoustical absorption cross sections of a bubble cloud as a function
of the reduced frequency w?/w? for three values of the parameter
3ag(l —ag)A3/RG = w>/4 (solid line), 72/8 (broken line), and 7 2/2
(dash-dotted line).

rameter 3ay(1 — )4 3/R3. Note the presence of two
peaks corresponding to the first and the second natural
modes of the bubble cloud and the absence of a third peak at
bubble resonance conditions. Since the natural frequencies
are determined by the parameter 3a,(1 — a)AS/RE
through Eq. (17), the peak frequencies corresponding to the
cloud’s natural modes of oscillations decrease at higher void
fractions. Also note that the maximum values of the acousti-
cal absorption and scattering cross sections increase slightly
with void fraction and the second resonant peaks tend to
become more pronounced due to the greater compressibility
of the cloud.

Comparisons of the acoustical absorption and scatter-
ing cross sections of a bubble cloud with those of each indi-
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FIG. 5. Acoustical scattering cross sections of a bubble cloud as a function
of the reduced frequency w?/w? for three values of the parameter
3ay(1 —ag)A5/RG = m*/4 (solid line), 7 2/8 (broken line), and 7%/2
(dash-dotted line).

L. d’Agostino and C. E. Brennen: Bubble clouds 2131



f T = T
h

z & - B
= = 53] -
o 107 _— . / —
xr o
o
w " - .
o g ><
= e L \ i
_:
-

n
= 107~ —
0w
=)
o O B y
o
I o

|69 1 |

—t

102 10 I 10

SQUARE OF THE REDUCED FREQUENCY, w?/w?

FIG. 6. Acoustical absorption cross sections as a function of the reduced
frequency @*/w3. The curves refer to a bubble cloud with
3ag(1 — ay)42/R% = w%/4 (solid line), a single bubble in the cloud
(broken line), and a larger single bubble of radius R, = A,x)’* (dash-dot-

ted line) whose volume is equal to the total volume of the bubbles in the
cloud.

vidual bubble in the cloud and of a single large bubble with
the same total volume as the bubbles in the cloud are shown
in Figs. 6 and 7 for 3a,(1 — @,)4 3/R % = 7 2/4. Note that
the results in the various cases vary by orders of magnitude
in both amplitude and spectral distribution. In particular,
the large bubble has the highest acoustical absorption cross
section with the lowest peak frequency. On the other hand,
the individual bubble has a lower maximum value of the
acoustical absorption cross section, but the highest peak fre-
quency, while the bubble cloud is characterized by an inter-
mediate value of the peak frequency and by a much smaller
maximum amplitude of the acoustical absorption cross sec-
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FIG. 7. Acoustical scattering cross sections as a function of the reduced
frequency @’/w}. The curves refer to a bubble cloud with
3ag(l —a)A5/R = 7%/4 (solid line), a single bubble in the cloud
(broken line), and a larger single bubble of radius R, = Aye® (dash-dot-

ted line) whose volume is equal to the total volume of the bubbles in the
cloud.
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tion. The situation for the acoustical scattering cross sec-
tions is similar, with the peaks located at the same frequen-
cies. However, the spread in the maximum values is
significantly reduced because the scattering cross section of
the bubble cloud is larger than that of the individual small
bubble and only slightly lower that the scattering cross sec-
tion of the single large bubble. It appears therefore that the
acoustical properties of any given volume of the dispersed
phase depend strongly on the degree of dispersion in the
bubbly mixture. This has important consequences in the
analysis of noise in bubbly and cavitating flows.

IV. LIMITATIONS

We now briefly examine the restrictions imposed on the
previous theory by the various simplifying assumptions that
have been made. Specifically we will discuss the limitations
due to the introduction of the continuum model of the flow,
to the use of the linear perturbation approach in deriving the
solution, and to the neglect of the local pressure perturba-
tions in the neighborhood of each individual bubble. In what
follows we will refer to the solution for harmonic excitation,
since it represents the basis of the generalization to arbitrary-
shaped farfield forcing pressure.

The perturbation approach simply requires that ¢ < 1 in
Eq. (18), a constraint that can be satisfied far from reso-
nance conditions with proper choice of the excitation rela-
tive amplitude €. This is probably the most restrictive limita-
tion of the present analysis.

For the continuum approach to be valid, the two phases
must be minutely dispersed with respect to the shortest char-
acteristic length of the flow, here either the cloud radius Ag
or the wavelength 277/ k of the disturbances in the 7 direction.
Hence the average bubble spacing s = O(R,/al?) is re-
quired to satisfy the most restrictive of the two conditions:
s€Ayand ks<1.

In order to estimate the error associated with the neglect
of local pressure effects due to the dynamic response of each
individual bubble, we consider the pressure perturbation ex-
perienced by one bubble as a consequence. of the growth or
collapse of a neighbor:

, R[, D’R DR)\? R* (DRY?
ar p{ 5 [R R (Dt) ] 2s* (Dt) } ’
(34)

where R = Ry(1 + @) is given by Eq. (18). To the same
order of approximation used to develop the present analysis,
comparison with the global pressure change Ap
= p(rt) — p, expressed by Eq. (19) then shows that the
local pressure perturbations are unimportant if

R, | @*(1 —iwRy/c)
s |05, — o+ iw2A '

(35)

Far from bubble resonance regime, this condition is general-
ly satisfied in low void fraction flows.

V. CONCLUSIONS
The results of this study reveal a number of important

effects occurring in confined bubbly and cavitating flows. As
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anticipated in the introduction and confirmed by the present
theory, the dynamics of the bubbles is strongly coupled
through the pressure and velocity fields with the global dy-
namics of the flow in the bubble cloud. The bubbles are re-
sponsible for the occurrence of bubble resonance phenome-
na and for the drastic modification of the sonic speed in the
medium, which decreases and becomes dispersive (frequen-
cy dependent). Furthermore, internal resonant modes of os-
cillation are possible at the system’s natural frequencies due
to the presence of boundaries confining the bubbly region of
the flow.

The occurrence of resonances leads in turn to the identi-
fication of three different flow regimes, referred to as subre-
sonant, transresonant, and superresonant. These are defined
by the relation between the exciting frequency, the first natu-
ral frequency of the cloud, and the individual bubble natural
frequency. The natural frequencies of the cloud are always
lower than the natural frequency of the individual bubbles.
In particular, they become significantly smaller than the
bubble resonance frequency when the parameter
3ay(1 — ay)A5/R = wyAl/ck, is of order unity or larger.
+ In the presence of damping the first natural mode of oscilla-
* tion of the cloud is the most important component of the
cloud dynamic response. Its effects dominate those of higher
modes and the contributions of individual bubbles at their
own natural frequency. Substantial global bubble interac-
tions occur in the flow, with the result that the acoustical
properties of bubbly clouds are no longer adequately de-
scribed in terms of the collective but independent responses
of the individual bubbles. In particular, the acoustical ab-
sorption and scattering cross sections of a bubble cloud are
very significantly different in both amplitude and frequency
distribution from the acoustical absorption and scattering
cross sections of individual bubbles in the cloud. They are
also very different from the cross sections of a single large
bubble with the same total volume of vapor and gas. It ap-
pears therefore that the acoustical properties of any given
volume of the dispersed phase depend strongly on the degree
of dispersion of the vapor/gas phase in the bubbly mixture.
An increase of the void fraction also causes a substantial
reduction in the amplitude of the bubble response. This, in
turn, could reduce the acoustic noise in bubbly mixtures or
the damage potential in cavitating flows. The above phe-
nomena may help to explain some of the unexpected changes
experimentally observed in the noise spectrum of bubbly ca-
vitating flows.

The present theory contains many simplifying assump-
tions involving the flow geometry and the linearization of
both the velocity field and the bubble dynamics. It cannot,
therefore, be expected to provide a quantitative description
of the unsteady behavior of bubble clouds subject to farfield
pressure excitation, except in the acoustical limit. Large bub-
ble radius perturbations occur in most flows of practical in-
terest; hence the most crucial limitation in the present paper
is the linearization of the bubble dynamics, while the as-
sumption of small velocity perturbations is likely to be more
widely justified. If all the above linearizations were omitted,
only numerical solutions could be realistically attempted.
However, if only the hypothesis of linear bubble dynamics is
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relaxed, the development of quasilinear theories might be
possible and would have a much broader applicability.
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