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1. INTRODUCTION

Recently, Mérch [1,2,3.4] Chahine [56] and others have
focused attention on the dynamics of a cloud or cluster of cavi-
tating bubbles and have expanded on the work of van Wijngaar-
den [7.8] and others. Unfortunately, there appear to be a
number of inconsistencies in this recent work which will
require further study before a coherent body of knowledge on
the dynamiecs of clouds of bubbles is established. For example,
Merch and his co-workers [1,2,3] have visualized the collapse of
a cloud of cavitating bubbles as involving the inward propaga-
tion of a shock wave; it is assumed that the bubbles collapse
virtually completely when they encounter the shock. This
implies the virtual absence of non-condensable gas in the bub-
bles and the predominance of vapor. Yet in these cir-
cumstances the mixture in the cloud will not have any real
sonic speed. As implied by a negative L.H.S. of equation (9), the
fluid motion equations for the mixture would be elliplic not
hyperbolic and hence shock wave solutions are inappropriate.

One can visualize several kinds of bubble interaction which
could influence the dynamics of a cloud of bubbles. The com-
bined response of the bubbles to an external pressure change
will result in velume changes leading to a global accelerating,
velocity field. Associated with this velocity field would be pres-
sure gradients which would determine the pressure encoun-
tered by individual bubbles within the mixture. It can be shown
that such global interactions usually deminate any pressure
perturbation experienced by cne bubble due to the growth or
collapse of a neighbor. The early work of Chahine [5] does not
reflect this fact, though in a later paper [8] he does begin to
consider the global motion.

We do not intend to resolve these questions in this brief
note, but feel it necessary to indicate the lack of established
literature on finite clouds of bubbles. In the present note we
only wish to delineate the response of a spherical cloud of bub-
bles to harmonic pressure luctuations far from the cloud.

R. BASIC EQUATIONS

A number of simplifying assumptions are made in order to
construct a soluble set of equations which nevertheless model
the interactions between the bubbles and the fluid. First, the
relative motion between bubble and the surrounding fluid is
neglected; the limitations this imposes will be discussed in a
later publication. Then it follows that velocity, ¥, must satisfy
the continuity equation
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where 7 is the number of bubbles per unit volume of the liquid
(assumed incompressible with density, p), 7(z ,t) the volume of
an individual bubble and D/Dt is the material derivative,
defined as usual by 8/8f +» - V. Continuity is written in this
form rather than in terms of the void fraction, a (=n/{1+n7)),
for the following reasons, Since relative motion is neglected,
the population, n, must satisfy Dn/Df = 0. Hence the solution
of the equations is greatly simplified by considering only those
flows in which the population is piecewise constant in a finite
number of prescribed material regions.
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Then, if the values of population 7 in each of the prescribed
material regions is known initially, % remaing at those values
throughout the motion.

In the equation of motion:

P %* —(1 +n7)Vp ()

external body forces have been neglected, as have viscous
terms. The pressure, p(z.f), and the velocity, u(z t), are
defined as the corresponding quantities in the absence of local
perturbations caused by the growth of any individual bubble. It
is interesting to point out that, due te the particular form of
the boundary conditions, the Navier-Stokes equations for the
flow considered later are satisfied by an irrotational sclution,
Hence, the only error introduced by the neglect of viscous
terms in () is related to the small change of the viscosity
caused by the presence of the bubbles.

Finally, the bubble volume, T =4nE3/3, or, more con-
veniently, its radius F(z.t), is determined by the Rayleigh-
Plesset equation:
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where viscous effects on the bubble growth have been
neglected. Here S is the surface tension and pg is the pressure
within the bubble, consisting of partial pressures of the vapor,
Py, and non- condensable gas, pe. The former is assumed con-
stant (neglecting thermal effects) and the non-condensable gas
is assumed to consist of a constant mass which behaves with a
polytropic index k so that pg = pe,{ R,/ R)%*, where pg, is the
gas partial pressure at a reference radius, R,. Furthermore, if
the reference state is an equilibrium state, then the equili-
brium pressure in the liquid is:
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The system of equations (1), (2), and (8) could in theory be
solved for p(z t)u(z.t) and 7(z,t) when supplemented by suit-
able boundary conditions and the piecewise constant popula-
tion, . In practice the non-linearity of the system causes great
difficulties in all but the simplest flows.

3. DYNAMICS OF A BUBBLY CLOUD IN ALIQUID.

The problem we now address is that of a spherical cloud of
bubbles in an unbonded liquid at rest at infinity as shown in
Fig. 1. We only consider the case of very low void fraction, so
that T << 1 and the expression {1 + nT) appearing in (1) and
(2) can be approximated as unity; then the equations (1) and
() become:
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The radius of the cloud is A(t), where A(0) = 4, is known. The
size of the bubbles inside the cloud is a function of both
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Figure 1. Schematic of spherical cloud of bubbles.

position, 7, and time, £, namely F(r.t). For simplicity it is
assumed that initially all the bubbles have the same size,
R(r,0) = R,. Furthermore we assume that the population per
unit liquid volume, %, is uniform and known from the initial
conditions. Indeed, if the number of bubbles in the cloud is N,
then 7 = 3N/4n(43-NRf). Outside the eloud where r = A(t)
there are no bubbles (n = 0) and the equations reduce to fami-
liar form.

We examine first the linearized form of these equations
which will simultaneously provide the response of the cloud to
small oscillations in the pressure at irifinity, p..(f). and the ini-
tial motion of a cloud in equilibrium when subject to a step
function change in p,. Then:

Rirt) =Rl +e(rt)] ; r<A(t) (7)

where ¢ « 1. Under these circumstances it is readily shown
that, since the velocity u is of the order of ¢ (equation (5)),
then the convective component of the material derivative is of
order ¢*® and D/Dt can be replaced by 8/8t if only terms of
order ¢ are to be considered. Then it follows from the Rayleigh
equation (3) that to order, g,
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and wp is the natural frequency of oscillation of a single bubble
in an infinite liquid [7,9].

If it is assumed that the bubbles are in stable equilibrium in
the initial or mean state (pg,.Ry) 50 that 3kpg, > RS/ R, [9,10],
then wp is real. Finally, upon substitution of (7) and (B) into
(5) and (6) and elimination of u(r,t), one obtains the following
equation for the function ¢(r,t) in the domain r<A(¢):
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The incompressible single phase flow outside the bubble cloud
(r=A(t)) must have the standard classical solution of the form:

ulr,t) = £y ; T=A(E) (11)
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where C(t) is of perturbation order. It follows that. to the first

order in ¢(r,t), the continuity of u (r.t) and p (= ,t) at the inter-

face between the cloud and the pure liquid results in the follow-

ing boundary condition for ¢(r t):
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The linearized solution of equation (10) for small periodic oscil-
lations of frequency w of the far fleld pressure in the liquid
P(t) =p, + Re{P.e*t] takes the form:
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Another possible solution involving (cosAr)/Ar has been elim-
inated since ¢(r,t) must clearly be finite as r»0. Therefore in
the domain r <4,:
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The entire flow has therefore been determined in terms of the
prescribed quantities A, %, n,& and p.,.

4. RESULTS

We examine first the natural modes and frequencies of oseil-
lation of the cloud. From (14) note that if §, were zero, oscilla-
tions only occur if:

(19)
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it follows from the expression (15) for A that the natural fre-
quencies, t,, of the cloud are:

(1) . = tp, namely the natural frequency of an indivi-
dual bubble in an infinite liquid, and
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which is an infinite series of frequencies of which o, is
the lowest. The higher frequencies approach wg as u
tends to infinity.

(20)

The lowest natural frequency, &, can be written in terms of
the initial void fraction a, =97,/ ({1+n7,) (which must be
much less than unity for the validity of the analysis) as
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Hence, the natural frequencies of the cloud will extend to fre-
quencies much smaller than the individual bubble frequency,
wp, if the initial void fraction, o,, is much larger than the

(1)



square of the ratio of bubble size to cloud size (6, »>R7/ AF). If
the reverse is the case (@, <R/ AZ), all the natural frequencies
of the cloud are contained in a small range just below wg.

Typical natural modes of oscillation of the cloud are dep-
icted in Fig. 2, where normalized amplitudes of the bubble
radius and pressure fluctuations are shown as functions of
position, 7/ 4., within the cloud.
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Figure 2. Natural mode shapes as a function of radial posi~
tion within the bubble cloud. The arbitrary vertical scale
represents the amplitude of the bubble radius oscillations
and the pressure oscillations for modes n =1,2,34 and
n - =, The slopes of these waves are proportional to the
radial velocity oscillations.

The amplitude of the radial velocity oscillations is proportional
to the slope of these curves. Since each bubble is supposed to
react to a uniform far field pressure, the validity of the model
is limited to wave numbers, n, such that n <4,/ K;. Note that
the first mode involves almost uniform oscillations of the bub-
bles at all radial positions within the cloud. Higher modes
involve amplitudes of oscillation near the center of the cloud
which become larger and larger relative to the amplitudes in
the rest of the cloud. In effect, an outer shell of bubbles essen-
tially shields the exterior fluid from the oscillations of the bub-
bles in the central core, with the result that the pressure oscil-
lations in the exterior fluid are of smaller amplitude for the
higher modes.

Fig. 3 shows the forced response amplitude of the bubbles at
the center (r=0) and surface of the cloud (r=4,) as a function
of frequency, @, for a typical case of a,4%/ RF=10. Note the
decline in the response at the surface relative to that in the
center of the cloud for frequencies less than wp. Also note the
nodes in the surface response at frequencies between the
natural frequencies. The response of the cloud to frequencies
greater than wp is quite different as illustrated in Fig, 4, Note
that, while the entire cloud responses in a fairly uniform
manner for w<wpg, only a surface layer of bubbles exhibits
significant response when w>wg. In the latter case the entire
core of the cloud is essentially shielded by this outer layer.
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Figure 3. Forced response of bubble cloud as a function of
{&2/wg)?. Amplitudes of the normalized bubble radius osecil-
lations at the center (r =0) and surface (r = Ao) of the
cloud are shown for the case of q,4%/ RZ = 10,
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Figure 4. Forced response of the bubble radius oscillations
as a function of radial position within the cloud for various
frequencies, o, as indicated (for the case a,4%/ R2=10).
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