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The problem of predicting the moments of the distribution of bubble radius in bubbly flows is
considered. The particular case where bubble oscillations occur due to a rapid �impulsive or step
change� change in pressure is analyzed, and it is mathematically shown that in this case, inviscid
bubble oscillations reach a stationary statistical equilibrium, whereby phase cancellations among
bubbles with different sizes lead to time-invariant values of the statistics. It is also shown that at
statistical equilibrium, moments of the bubble radius may be computed using the period-averaged
bubble radius in place of the instantaneous one. For sufficiently broad distributions of bubble
equilibrium �or initial� radius, it is demonstrated that bubble statistics reach equilibrium on a time
scale that is fast compared to physical damping of bubble oscillations due to viscosity, heat transfer,
and liquid compressibility. The period-averaged bubble radius may then be used to predict the slow
changes in the moments caused by the damping. A benefit is that period averaging gives a much
smoother integrand, and accurate statistics can be obtained by tracking as few as five bubbles from
the broad distribution. The period-averaged formula may therefore prove useful in reducing
computational effort in models of dilute bubbly flow wherein bubbles are forced by shock waves or
other rapid pressure changes, for which, at present, the strong effects caused by a distribution in
bubble size can only be accurately predicted by tracking thousands of bubbles. Some challenges
associated with extending the results to more general �nonimpulsive� forcing and strong two-way
coupled bubbly flows are briefly discussed. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2912517�

I. INTRODUCTION

This paper is concerned with the computation of con-
tinuum models for bubbly flows. Mixture-averaged equations
describing the motion �mixture density and velocity� and
bubble dynamics �bubble radius and radial velocity� in such
a flow have been derived by Zhang and Prosperetti1 using a
ensemble phase-averaging approach. The equations are
closed in the dilute limit by specification of a probability
density function �PDF� for the number of bubbles with a
given radius and radial velocity.2 For spherical bubbles ini-
tially in static equilibrium, the only uncertain quantity is the
bubble equilibrium radius R0. Once a probability distribution
function for R0 has been specified, a closed set of equations
is obtained describing conservation of mass, bubble number
density, momentum in the mixture, and equations describing
the bubble dynamics. Most generally, the latter consists of a
set of partial differential equation �PDE� describing conser-
vation of mass, momentum, and energy inside the �spherical�
bubble and at the interface, but with additional approxima-
tions, these are typically simplified to one or more ordinary
differential equations �ODEs�. In many cases, the model
takes the form of the Rayleigh–Plesset equation or one of its
generalizations.

With minor variations, this mixture-averaged model for
bubbly flow was derived by earlier investigators3–5 and has
been used to investigate linear and nonlinear wave propaga-
tions in bubbly liquids.6 For example, Commander and
Prosperetti7 provided a detailed comparison of the dispersion
relation for small amplitude pressure waves with experimen-

tal data. Provided the distribution of bubble sizes is suffi-
ciently broad, they found reasonable agreement for volume
fractions up to a few percent. Nonlinear versions of the
model have been used to investigate the structure of bubbly
shock waves �e.g., Ref. 8�, the dynamics of a cloud of
bubbles subjected to a �spatially uniform� change in ambient
pressure,9–12 and cavitating nozzle flow,13–15 and to model
the dynamics of a cloud of bubbles excited by a focused
shock wave in a lithotripter.16

Except for bubbly shock waves, comparison of the non-
linear models with experiments is limited and for the most
part qualitative. Even so, the results make it clear that several
features of the model warrant improvement. For example,
Wang14 showed that using a broad distribution of bubble
sizes has a profound impact on the dynamics of bubbly flow
in a converging-diverging nozzle. Indeed, when narrow dis-
tributions of bubbles are used, the nonlinear models are not
self-consistent: Bubble dynamics can lead to rapid spatial
variations in mixture-averaged properties that, in turn, may
violate the modeling assumptions leading to the development
of the internal bubble model. For example, it is often as-
sumed that the mixture-averaged flow varies on a length
scale that is long compared to the bubble, so that the bubble
sees a locally uniform flow.

Unfortunately, the only available technique for comput-
ing flows with a distribution of bubbles sizes is a direct one
whereby an extended Rayleigh–Plesset equation is solved at
each point in space and for every possible equilibrium ra-
dius. Bubbles that oscillate on a time scale that is short com-

PHYSICS OF FLUIDS 20, 040902 �2008�

1070-6631/2008/20�4�/040902/12/$23.00 © 2008 American Institute of Physics20, 040902-1

Downloaded 02 May 2008 to 131.215.225.137. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.2912517
http://dx.doi.org/10.1063/1.2912517


pared to the mixture-averaged time scale give rise to an os-
cillatory behavior of the PDF of the bubble radius. The direct
approach becomes prohibitively expensive, as we show be-
low, because many thousands of values of R0 need to be
tracked to accurately compute the average bubble radius and
its variance. In this paper, we try to develop computationally
efficient methods to accurately track bubble statistics. In or-
der to simplify the presentation, we consider here the case of
one-way coupling between the flow and the bubbles. That is,
we assume that the pressure distribution in the continuous
phase is given a priori. The principal result is that in many
cases of interest, it is sufficient to track only a few bubbles,
provided that the individual bubble radius is appropriately
filtered �in time� prior to computing the required statistics.

In the next section, we formulate the mathematical prob-
lem and discuss the specific bubble models used in the fol-
lowing sections. In Sec. III, we demonstrate the existence, in
the absence of forcing and viscous effects, of a statistical
equilibrium, whereby phase cancellations among bubbles
with different sizes lead to time-invariant values of the sta-
tistics. We show that at statistical equilibrium, moments of
the distribution computed with the instantaneous bubble ra-
dius are equivalent to those computed by first period averag-
ing the bubble radius. This averaging removes, to the extent
possible, the oscillatory behavior in the integrand for the
moments of the bubble radius and allows the bubble statistics
to be accurately computed by tracking only a few bubbles. In
Sec. IV, it is observed that, for typical broad equilibrium
radius distributions, the time scale associated with relaxation
to statistical equilibrium is short when compared to time
scales associated with physical damping of bubble oscilla-
tions due to viscosity, compressibility, and heat transfer. This
allows for a slowly varying statistical equilibrium that ac-
counts for physical damping. A discussion of the results and
prospects for their extension to continually forced bubbles
�and ultimately two-way-coupled bubbly flows� is discussed
in Sec. V.

II. BUBBLE MODELS

A. Preliminaries

In what follows, we normalize all length scales �includ-
ing bubble radius and equilibrium radius� by a reference
equilibrium radius �representing a probable bubble size� R0

ref.
Ambient liquid density �0 and pressure p0 are used to form
mass and time scales so that, for example, time is normalized
by R0

ref ��0 / p0. This time scale is roughly a tenth of the
period corresponding to the natural frequency of a bubble
with equilibrium radius R0

ref. Table I gives dimensional val-
ues of the time scale and natural period for reference bubble
sizes of 1, 10, and 100 �m for an air bubble in water at
293 K. Nondimensional parameters governing the bubble

dynamics are a Weber-like number Ŝ, a Reynolds number Re,
and a cavitation number Ca, which are defined by

Ŝ =
p0R0

ref

S
, Re =�p0

�0

R0
ref

�0
, Ca =

p0 − pv

p0
, �1�

respectively, where �0, S, and pv are the liquid kinematic

viscosity, surface tension, and vapor pressure at ambient con-
ditions. For water at 293 K, Ca=0.977, and values for the
other nondimensional parameters are given for different
bubble sizes in Table I. For the one-way coupling discussed
here, the PDF for the equilibrium radius does not depend on
the spatial position or time. We let f�R0�dR0 represent the
probability of finding a bubble with equilibrium radius be-
tween R0 and R0+dR0. Our main interest is, for a given
bubble model, the evolution of moments of the bubble ra-
dius,

�m�t� = �
0

�

R�t;R0�mf�R0�dR0. �2�

For example, the mean radius ��1�t�� and the mean bubble
volume ��3�t�� both appear in the ensemble phase-averaged
equations for a bubbly flow.

We illustrate specific examples with a lognormal distri-
bution,

f�R0� =
1

�2��R0

e−ln2�R0�/2�2
, �3�

where � is the standard deviation of the log of the equilib-
rium radius. The measured distributions in water tunnels and
for naturally occurring bubble nuclei in seawater17 show con-
siderable scatter but are reasonably fit by the lognormal dis-
tribution with R0

ref�10 �m and ��0.7.

B. Rayleigh–Plesset equation

The simplest model we consider is the Rayleigh–Plesset
equation for a bubble with a spatially uniform mixture of
noncondensable gas and vapor. The gas is assumed to be
adiabatically compressed. The usual derivation17 gives

RR̈ +
3

2
Ṙ2 +

4

Re
ṘR−1 = F�R,R0,Cp� , �4�

where R is the bubble radius and Ṙ and R̈ are the first and
second time derivatives of R, respectively. Furthermore,
Cp�t�= �p��t�− p0� / p0 is the specified distribution of pressure
in the continuous phase �i.e., far from the bubble�, and

TABLE I. Time scales and nondimensional parameters for different equilib-
rium radii, all for air/water-vapor bubbles in water at 293 K. The table
includes parameters for the model including heat transfer and liquid com-
pressibility given in the Appendix. For bubbles of any size, Ca=0.977.

R0
ref ��m� 1 10 100

Time scale R0
ref ��0 / p0 �s� 10−7 10−6 10−5

Natural period �s� 6.7�10−7 9.3�10−6 9.7�10−5

Re 10 102 103

Ŝ 1.39 13.9 139.3

PeT 1.16 5.50 48.8

Pe� 0.416 4.16 41.6
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F�R,R0,Cp� = −
2

ŜR0

�	 R

R0

−1

− 	 R

R0

−3	� + Ca	 R

R0

−3	

− �Cp�t� + Ca
 . �5�

It is noted that throughout the paper, the dependency of func-

tions on Ŝ and Ca is not explicitly written.

When Re→� and Ċp=0, then trajectories �R , Ṙ� in
phase space are described by curves of constant
Hamiltonian.18–20 We define the Hamiltonian as

H�R,Ṙ,R0,Cp� � 1
2R3Ṙ2 + G�R,R0,Cp� − G�Req,R0,Cp� , �6�

where

G�R,R0,Cp� �
2R0

2

Ŝ
�1

2
	 R

R0

2

+
1

3�	 − 1�
	 R

R0

−3�	−1��

+ CaR0
3�1

3
	 R

R0

3

+
1

3�	 − 1�
	 R

R0

−3�	−1��

+
1

3
Cp�t�R3. �7�

In Eq. �6�, we have used the pressure-dependent equilibrium
radius, Req�R0 ,Cp�, which is implicitly defined by

F�Req,R0,Cp� = 0, �8�

expressing that a bubble with R=Req�R0 ,Cp� is stationary at
that particular value of Cp. We note that R0, which is used in
this paper to label individual bubbles, is the equilibrium ra-
dius at Cp=0, i.e., Req�R0 ,0�=R0. The first term in Eq. �6� is
the kinetic energy of the liquid surrounding the bubble,21

whereas the function G can be interpreted as being the po-
tential energy corresponding to the force field −FR2 that
drives the oscillation:

�G

�R
= − FR2. �9�

Hence, H represents the total energy of the bubble and its

surrounding liquid, which is zero when �R , Ṙ�= �Req ,0�. It is

easily verified that upon setting q=R and p=R3Ṙ, we obtain
the following differential equations:

q̇ =
�H
�p

,

ṗ = −
�H
�q

−
4

Re
pq−2, �10�

Ḣ = −
4

Re
p2q−5 +

1

3
�q3 − qeq

3 �Ċp.

The third expression confirms that deviations from Hamil-
tonian trajectories are caused by �a� viscous damping �Re

��, always leading to loss of energy, and �b� pressure

variations �Ċp�0�, which may either decrease energy or in-

crease energy depending on the signs of q3−qeq
3 and Ċp. In-

deed, when a pressure variation is applied such that

sign�Ċp�=sign�q−qeq� at all times, i.e., when the pressure

signal is resonant, the total energy will continuously grow.
Equation �10� shows that the bubble dynamics are

Hamiltonian when Re→� and Ċp=0. In that case, H is con-

stant, and Ṙ2 is a function of R,

1
2 Ṙ2 = �H − G�R,R0,Cp� + G�Req,R0,Cp�
/R3. �11�

The minimum and maximum radii of this closed trajectory,
Rmin�R0 ,Cp� and Rmax�R0 ,Cp�, are the solutions �for R� of

G�R,R0,Cp� − G�Req,R0,Cp� = H . �12�

Consider cases where �Cp� is small with the bubble ra-
dius close to R0, then it is appropriate to linearize Eq. �4�
about R0. By denoting R�=R−R0, we obtain

R̈� + 2��R0�Ṙ� + �2�R0�R� = − Cp/R0, �13�

where

��R0� =
2

ReR0
2 and �2�R0� =

3	Ca

R0
2 +

2

ŜR0
3
�3	 − 1�

characterize the damping rate and bubble natural frequency,
respectively. Suppose that all bubbles are initially in static
equilibrium at Cp=Cp

0:

R��t 
 0;R0� = 
R0, 
 = −
Cp

0

�2R0
2 ,

and that there is a rapid step change of pressure toward Cp

=0. Then, in the limit of Ŝ→�, the value of 
 is independent
of R0 and we can rescale the response to eliminate depen-
dence on 
, i.e., let R�ªR� /
 so that R��0�=R0. Since the
value of �2−�2 is generally positive, the relevant solution is

R��t;R0� = R0e−��R0�t cos���2�R0� − �2�R0�2t� . �14�

Evolution of the statistical moments of bubble radius is dis-
cussed later in Sec. III A. More general initial conditions for
both the bubble radius and bubble radial velocity are dis-
cussed in Sec. III B 2.

C. Model including liquid compressibility
and heat transfer

Some of the assumptions made in deriving the Rayleigh–
Plesset equation, most notably the neglect of liquid com-
pressibility and the assumption of polytropic compression/
expansion of the bubble contents, need to be relaxed in order
to obtain a realistic model for spherical bubble dynamics.
Most generally, a set of PDEs describing radial transport of
momentum, heat, and mass transfer need to be solved in the
bubble and surrounding liquid. Needless to say, such compu-
tations for each bubble �and each possible bubble size� in a
complex bubbly flow are prohibitively computationally in-
tensive. Several models have been introduced that include
heat and mass transfer in an approximate way and allow for
the bubble radius to be computed by solving a few ODEs. It
is beyond the scope of the present paper to discuss these
models or their relative merits in detail; see �Refs. 22–29 for
more details. Rather, our purpose is to show that the analysis
of statistical equilibrium can be adapted from the Rayleigh–
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Plesset equation, for which it is derived, to more complex
models of the bubble behaviors. For this purpose, we imple-
ment a model based on Gilmore’s30 generalization of the
Rayleigh–Plesset equation which accounts, to first order, for
effects of liquid compressibility, and we couple it to a
reduced-order model proposed by Preston et al.29 for the heat
and mass transfer. The assumptions and equations for this
model are given in the Appendix. Quantities such as bubble
radius, pressure, and so on, are normalized as discussed in
Sec. II A, and the two additional nondimensional parameters
�Peclet numbers� needed to initialize the model are given in
Table I.

III. STATISTICAL EQUILIBRIUM

In this section, we show, first by direct integration and
then theoretically, that inviscid bubbles �viscosity, liquid
compressibility, and heat transfer are ignored�, which are in
static equilibrium and then forced by an impulsive or step
change in pressure, Cp�t�, reach a statistical equilibrium
whereby the moments of the bubble radius become indepen-
dent of time. The main theoretical results are �a� that the
statistical equilibrium exists and �b� that moments of the dis-
tribution can be found by first averaging each bubble history
over a period of oscillation. We show why the latter result
leads to vast reduction in computational expense in comput-
ing the statistical equilibrium solutions when the bubble his-
tories are determined by numerical integration.

A. Observations from direct computation

Starting with the linearized case, we consider bubbles
that evolve from a nonequilibrium initial condition �which is
in turn equivalent to the response to a pressure step change�,
according to Eq. �14�. Similar results can be obtained with

more general �smooth� initial conditions for the bubble ra-
dius and radial velocity as discussed in Sec. III B 2. Here, we
directly compute

�m� �t� = �
0

�

�R��t,R0��mf�R0�dR0 �15�

for the lognormal distribution with R0
ref=10 �m and various

values of �. The integrand is plotted for m=1 �average ra-
dius� in Fig. 1 at early and late times. The integrand becomes
progressively more oscillatory for a large time due to the
inverse proportionality between the natural frequency � and
the equilibrium radius. While the integral can be analytically
evaluated in this case �discussed below�, it is instructive to
perform numerical integrations since in the general nonlinear
case, the bubble motion can only be numerically computed.
In Fig. 2, the first two moments are plotted for two values of
�. The behavior is to be expected: The broader the distribu-
tion, the more quickly cancellation between bubbles at dif-
ferent phases of their oscillation cycles occur, and the more
rapidly the moments converge to a steady-state value. We
term this “statistical equilibrium” to distinguish it from static
equilibrium.

A similar behavior occurs for the nonlinear inviscid case.
The scaled radius, R /R0, is depicted in Fig. 3 at early and
late times, and the evolution of the moments is plotted in Fig.
4. In this example, the bubbles are forced by a �negative�
step change in pressure, which causes bubbles to follow
Hamiltonian trajectories with minimum radius R0. Note that
in this case, the time dependent bubble radii, R�t ;R0�, were
constructed from curves of constant Hamiltonian rather than
direct time integration of the Rayleigh–Plesset equation.
Again, a statistical equilibrium is achieved for a long time.

Several features of the nonlinear evolution are worth
noting for future reference. Figure 3 shows that at t=10−2,
the smaller bubbles �R0
1� are oscillating, whereas the
larger bubbles �R0�1� are still in their initial state. The larg-
est peak represents a bubble that has reached its maximum
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FIG. 1. The integrand of Eq. �15� for �1��t� due to impulsive Cp�t� at times
t=5 �left� and t=100 �right� for linear, inviscid bubbles.
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radius for the first time. The minimum left to it represents a
bubble that has completed its trajectory for the first time, the
next minimum represents a bubble that has completed its
trajectory for the second time, and so on. When the minima
are numbered from right to left, then the corresponding
bubbles in terms of R0 can be found from

T�R0,n�t�� = t/n, n = 1,2,3, . . . , �16�

where T�R0� represents the oscillation period of a bubble
with R0. Taylor expansion of T�R0� leads to

R0,n+1�t� − R0,n�t� = −
Tn

nTn�
+ O	 1

n2
 , �17�

where Tn=T�R0,n�t�� and Tn�=T��R0,n�t��, which shows that
the distance between two neighboring minima becomes arbi-
trarily small when t /T�R0,n� becomes sufficiently large. At
t=102, the larger bubbles are also oscillating, and the R0,n�t�
have increased. An implication of this result is that any
quadrature of the integrand is destined �in the inviscid case�
to fail for sufficiently long times no matter how many
quadrature points are used.

B. Theory

1. Derivation of statistical equilibrium

We now show that the statistical equilibrium exists by
considering an arbitrary but smooth functional ��R�t ,R0��,
which is allowed to be a function of R and any of its time
derivatives. The expectation of � is

E��;t� = �
0

�

f�R0���R�t,R0��dR0. �18�

Since ��R0��2� /T�R0� is a strictly decreasing function of
R0, we can transform functions from the �t ,R0� plane to the
�t ,�� plane,

R̄�t,��R0�� = R�t,R0� ,

f̄���R0�� = f�R0� , �19�

dR0 =
dR0

d�
d� ,

which gives

E��;t� = �
0

�

f̄����dR0

d�
���R̄�t,���d� . �20�

In the inviscid, impulsively �or step-change� forced case,
each bubble eventually oscillates periodically in time, so for
a sufficiently large time, we can expand the function � in a
Fourier series,

��R̄�t,��� = �
j=−�

�

� j���eij�t. �21�

Upon substitution into Eq. �20�, this leads to

E��;t� = �
j=−�

� �
0

�

f̄����dR0

d�
�� j���eij�td� . �22�

Provided that the PDF, f�R0�, and all its derivatives vanish
for R0→0 and R0→�, the Riemann–Lebesgue theorem31

implies that

lim
t→�

�
0

�

f̄����dR0

d�
�� j���eij�td� = 0, j � 0, �23�

lim
t→�

E��;t� = �
0

�

f̄����dR0

d�
��0�T�d� . �24�

That is, the existence of the limit proves that statistical equi-
librium is achieved in the general, nonlinear case.

A further result that is the key to efficient computation of
the moments can be found by backtransformation and noting
that

�0 =
1

T
�

0

T

��R�t,R0��dt . �25�

This finally leads to an expression for the equilibrium expec-
tation:

lim
t→�

E��;t� = E���

= �
0

�

f�R0�� 1

T�R0��0

T�R0�

��R�t,R0��dt�dR0.

�26�

Equation �26� shows that at statistical equilibrium, it is per-
missible to replace � by its period-averaged value. The im-
portance of this is made evident by comparing the integrand
of Eq. �26�, for ��R�=R, with the integrand of the original
expression for �1�t�, viz., Eq. �2�. The value of the integral
has been shown to be identical, but the singular oscillatory
behavior of the integrand has been removed in Eq. �26�, thus
allowing accurate numerical evaluation with relatively few
quadrature points. This is demonstrated below.

Finally, we note that one can also verify Eq. �26� by first
supposing that the system is in statistical equilibrium, in
which case, E�� ; t� is independent of t and equal to its time-
averaged value:

E��,t� =
1

t
�

0

t

E��,t�dt

= �
0

�

f�R0��1

t
�

0

t

��R�t,R0��dt�dR0. �27�

For long times t, the properties of the Fourier integral are
such that the long time average inside the integrand can be
replaced by the integral over a single period T�R0�, which
again directly leads to Eq. �26�.
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2. More general initial conditions

Expression �26� does not explicitly depend on the initial

conditions for the bubble radius R�0� or radial velocity Ṙ�0�,
but application of the Riemann–Lebesgue theorem to Eq.
�22� requires that the integrand be a smooth function of R0

�and by transformation, ��. This, in turn, requires that the
bubble response, R�t ,��R0��, and hence the initial condi-

tions, R�0� and Ṙ�0�, be smooth functions of R0. Conversely,
provided the initial conditions are smooth, statistical equilib-
rium will be achieved and Eq. �26� will hold regardless of
the particular initial conditions.

3. Equilibrium probability density function

We will derive an explicit expression for the PDF fr�r� in
case of statistical equilibrium. Given a specific value of R0,
the fraction of the period that the bubble radius is smaller
than r is

F�r,t;R0� =
1

t
�

0

t

H�r − R�t;R0��dt , �28�

with H�r� the Heaviside step function. For large, random
values of t, F�r ;R0� represents the probability of the bubble
radius being smaller than r. When t /T�R0�→�, the integral
can be replaced by

F�r;R0� =
1

T�R0��0

T�R0�

H�r − R�t;R0��dt , �29�

which leads to a corresponding conditional PDF,

fr�R0
�r�R0� =

1

T�R0��0

T�R0�

��r − R�t;R0��dt , �30�

with ��r� the Dirac delta function. Hence, the equilibrium
PDF is

fr�r� = �
0

�

fr�R0
�r�R0�f�R0�dR0. �31�

To test the consistency of this expression with our previous
statistical equilibrium results, it is easily verified that evalu-
ation of

�
0

�

fr�r���r�dr �32�

by changing the order of integration twice again leads to
Eq. �26�.

C. Application to linearized dynamics

To demonstrate our theory, we derive explicit expres-
sions for the equilibrium moments and PDF for the linear-
ized dynamics and compare these to expressions derived by
direct computation. Setting Re→�, Eq. �14� becomes

R��t;R0� = R0 cos���R0�t� . �33�

The corresponding moments are defined as

�k��t� = E�R�k,t�, k � N . �34�

For the equilibrium moments, we apply Eq. �26�,

1

T�R0��0

T�R0�

��R�t,R0��dt =
R0

k

�
�

0

�

cosk���d� = �0, k odd,

	2R0
k

�

2F1	 k + 1

2
,
1

2
;
k + 3

2
,1
 , k even, � �35�

where 2F1 is the hypergeometric function. We use

2F1�a,b;c,1� =
��c���c − a − b�
��c − a���c − b�

, c − a − b � 0, �36�

to write

2F1	 k + 1

2
,
1

2
;
k + 3

2
,1
 =

�	 k + 3

2

�	1

2



��1��	 k + 2

2

 , �37�

and with �� 1
2

�=�� and ��1�=1, we get

�k� =�
0, k odd,

2
���k + 1�

�	 k + 3

2



�	 k + 2

2

�0

�

R0
k f�R0�dR0, k even.�

�38�

For the specific case when f�R0� is lognormal, we have

�
0

�

R0
k f�R0�dR0 = e�1/2�k2�2

, �39�

so for k=0 and k=2, we find

�0� = 1, �2� = 1
2e2�2

. �40�
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These values are identical to the directly computed statistical
equilibrium as shown in Fig. 2.

To derive the equilibrium PDF, we calculate the integral
given by Eq. �29�, differentiate the result, and finally inte-
grate over R0. Substitution of Eq. �33� into Eq. �29� gives

F�r�;R0� = �1, r�/R0 � 1,

1 − �1/��arccos�r�/R0� , − 1 
 r�/R0 
 1,

0, r�/R0 � − 1,
�

�41�

which, upon differentiation with respect to r�, leads to

fr��R0
�r��R0� = �0, �r�/R0� � 1,

�1/���R0
2 − r�2�−1/2, �r�/R0� 
 1.

� �42�

Finally, integration gives

fr��r�� =
1

�
�

�r��

� 1

�R0
2 − r�2

f�R0�dR0. �43�

For r�=0, the integral can be analytically found,

fr��0� = �−1e�1/2��2
. �44�

For other values of r�, we introduce x=R0− �r��, write R0
2

−r�2= �R0+ �r����R0− �r���, and integrate by parts to eliminate
the singularity,

fr��r�� =
1

�
�

0

� f�x + �r��� − 2f��x + �r����x + 2�r���
�x + 2�r���3/2

�xdx .

�45�

The remaining integral can be readily numerically evaluated.
Figure 5 shows the typical results.

When moments of fr� are computed, it is convenient to
rewrite Eq. �43� as

fr��r�� =
1

�
�

0

� H�R0
2 − r�2�

�R0
2 − r�2

f�R0�dR0, �46�

which enables one to interchange the order of integration,
i.e.,

�
−�

�

r�kfr��r��dr� =
1

�
�

0

�

f�R0���
−R0

R0 r�k

�R0
2 − r�2

dr��dR0.

�47�

From this result, it is straightforward to recover �0� and �2�
given by Eq. �40�.

D. Application to nonlinear dynamics

When we solve the nonlinear Rayleigh–Plesset equation

in the limit of Re→� and Ċp=0 in terms of closed curves of

constant Hamiltonian in the �R , Ṙ� space, the time coordinate
is eliminated. To apply our statistical equilibrium model, it is
therefore convenient to replace the time integrals by radius

integrals. As long as Ṙ�0, we may invert R�t� to t�R� with

dt

dR
= Ṙ−1, �48�

and therefore, by using Eq. �11�, we may transform Eq. �26�
into

E��� = �
0

�

f�R0�� 2

T�R0��Rmin

Rmax

��R�Ṙ−1dR�dR0, �49�

with

T�R0� = 2�
Rmin

Rmax

Ṙ−1dR . �50�

Upon numerical evaluation of the above integrals, one en-

counters difficulties due to singularities of Ṙ−1 at R=Rmin and
R=Rmax. This can be dealt with by employing Taylor expan-
sions of R�t� around t=0 and t=T /2, setting R�0�=Rmin. At
the lower integration boundary, this gives

R��t� = Rmin + 1
2 R̈�0��t2 + O��t3� . �51�

Then, by the Rayleigh–Plesset equation, R̈�0�
=F�Rmin,R0 ,Cp� /Rmin, so finally,

�t ��2�R��t� − Rmin�Rmin

F�Rmin,R0,Cp�
. �52�

In a similar way, one finds at the upper integration boundary,

�t ��2�Rmax − R�T/2 − �t��Rmax

F�Rmax,R0,Cp�
. �53�

With these expressions, we have calculated the long time
moment limits for �=0.1 and �=0.7. Figure 4 shows that the
computed values agree with the results obtained from direct
computation. In addition, we have numerically computed the
PDF for both values of � by using numerical integration of
Eq. �32�. The resulting PDFs are plotted in Fig. 6.

IV. SLOWLY DECAYING STATISTICAL EQUILIBRIUM

Equation �26� governs the long time, stationary, behavior
of statistics of the inviscid �Hamiltonian� bubbles. Two non-
Hamiltonian effects must be considered before applying it to
real bubbles. The first is physical damping of bubble oscilla-
tions due to viscosity, liquid compressibility, and heat and
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FIG. 5. Equilibrium PDF, f��r��, for various values of � and with Cp

=−0.84Ca, for linear inviscid bubbles.
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mass transfer; we consider this effect in detail in this section.
The second is nonimpulsive forcing of bubble oscillations,
Cp�t�, which we discuss briefly in the last section.

For damping due to viscosity, liquid compressibility, and
heat and mass transfer, which we collectively term “physical
damping,” unforced bubble oscillations ultimately decay to
zero and each bubble reaches a static equilibrium �as op-
posed to a statistical one� with R=R0. However, these physi-
cal damping mechanisms can, depending on the equilibrium
radius, be weak compared to damping of bubble statistics
associated with the approach to statistical equilibrium. In that
case, bubbles may, on the time scale of damping, rapidly
reach a statistical equilibrium. Thus, we may speak of a
slowly varying statistical equilibrium where physical damp-
ing causes the equilibrium statistics to slowly decay to the
static ones �i.e., the original distribution of equilibrium ra-
dius�.

Below, we show that for typical broad distributions of
equilibrium radii with most bubbles in the range of
1–100 �m, these physical damping effects are indeed acting
more slowly than the approach to statistical equilibrium. We
thus consider a multiple-scale approach to Eq. �26�, which
we informally write as

E������ = �
0

�

f�R0�� 1

T�R0,����−T�R0,��

�

��R�t,R0��dt�dR0.

�54�

The period of bubble oscillation, T, in Eq. �54� is now a
function of the slow time scale since physical damping and
forcing lead to changes in T. For linearized dynamics, this
variation can be analytically determined, whereas for the
nonlinear case, it must be either estimated based on a locally
inviscid approximation or directly measured from the solu-
tion at previous times.

In the next two sections, we empirically explore the ac-
curacy of using Eq. �54� for linear and nonlinear bubble dy-
namics, respectively, and compare results to those obtained
using its direct counterpart, Eq. �18�. We use the lognormal
distribution for R0, with various values of �. For each case
presented below, we numerically integrate as many as 5000
bubbles with different R0 and evaluate Eq. �18� using Simp-
son’s rule with all 5000 points. For Eq. �54�, we find that a
Gauss–Hermite quadrature of the integral with as few as five
the quadrature points �values of R0� is sufficient to reproduce
the same results once statistical equilibrium is achieved. In-
dividual bubbles are integrated in time using an adaptive
fifth-order Runge–Kutta time marching method with error
control.

A. Linearized dynamics

We first consider linearized bubbles where physical
damping is restricted to liquid viscosity, i.e., bubbles are
governed by Eq. �13�. The period, T�R0�, appearing in Eq.
�54� is independent of � in the linear case and is analytically
found.32 Bubbles are initialized in static equilibrium �at Cp

=0� and then impulsively forced according to

Cp = − A exp�− 	 t

Tf

2� , �55�

with Tf chosen sufficiently small to ensure that the dynamics
are independent of Tf. For the linearized case, the value of A
is irrelevant.

In Fig. 7, we show the evolution of �k��t� for k=1 and 2,
for �=0.7, and R0

ref of 1, 10, and 100 �m. For linear bubbles
in statistical equilibrium, �1��t�→0. In all cases, this is rap-
idly achieved. For inviscid bubbles in statistical equilibrium,
�2��t� would approach a finite value, and its decay in Fig. 7 is
the result of physical damping, which is strongest for the
distribution of smaller bubbles. Despite the physical damp-
ing of the bubbles, the statistical equilibrium is rapidly
achieved and the period-averaged formula �with just five
quadrature points� is very accurate. The largest discrepancy
occurs for the distribution of smaller bubbles as would be
expected.

The quadrature error for both formulas is found by com-
paring the values of the integrals with varying the number of
quadrature points to their values using a far-larger number
and plotted in Fig. 8 for R0

ref=10 �m. The integrand is also
plotted for both cases to aid in interpreting the results. We
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FIG. 6. Equilibrium PDF fr�r� �solid� and initial PDF f�R0� �dashed� for
�=0.7 and with Cp=−0.84 Ca �left� and Cp=−0.999 Ca �right�.
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see that the period averaging effectively removes oscillatory
behavior from the integrand, resulting in accurate quadrature
with far fewer points. For a reasonable accuracy, of about
1%, just five Gauss–Hermite points are needed to accurately
integrate the period-averaged integrand; this number of
quadrature points is used for all results that follow. We note
that while the Gauss–Hermite quadrature should be optimal
for integrals involving the lognormal distribution �we evalu-
ate them using the log of R0 as the independent variable�, we
do not achieve spectral convergence likely owing to lack of
smoothness in the integrand, which is numerically deter-
mined by time marching each bubble. Nevertheless, we do
find that the error for the Gauss–Hermite quadrature is far
smaller for small numbers of bubbles than equally spaced
quadrature points. On the other hand, to accurately evaluate
the integrand in Eq. �18�, we require as many as 5000
quadrature points. For that case, we use evenly spaced
quadrature points �with Simpson’s rule� since the Gauss–
Hermite quadrature suffers from severe roundoff errors with
more than about 40 quadrature points.

In Fig. 9, we vary the width of the lognormal distribu-
tion, 0.1
�
0.7. Again, the period-averaged formula is ac-
curate for the entire range. We remark that in the limit of

�→0, statistical equilibrium is never achieved, bubble sta-
tistics approach zero only as a result of viscosity. For refer-
ence, in Fig. 10, we compare the early-time decay of �2� with
0.1
�
0.7 to a single 10 �m bubble, i.e., the case �=0. It
is clear that the damping due to viscosity acts more slowly
than approach to statistical equilibrium for all ��0.1.

In Fig. 11, we again vary the width of the lognormal
distribution, but this time for the �linearized� bubble model
that includes heat transfer and liquid compressibility. The
period-averaged formula continues to hold for the more com-
plicated model despite the much stronger physical damping
associated with compressibility and heat transfer, which
causes the bubble oscillations to rapidly decay to zero. For
reference, we plot in Fig. 12 a distribution of larger bubbles,
R0

ref=100 �m, for which compressibility and heat transfer
are less effective.

In summary, all the linear cases we tried show the effi-
cacy of the period-averaged formula, Eq. �54�, even when the
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effects of physical damping of bubble are quite strong. In all
cases, it was sufficient to integrate only five bubbles in order
to accurately predict the statistics.

B. Application to nonlinear dynamics

In the nonlinear case, we do not have an available ex-
plicit expression for the period T, and therefore, the period T
has to be numerically calculated. By using Eq. �50�, we nu-
merically calculated T for a wide range of values of R0, Cp,
and H, and the results have been stored in a database which
can be used as a look-up table during the bubble-dynamic
computations.

We consider the nonlinear Rayleigh–Plesset equation.
Bubbles are again impulsively forced with Eq. �55�, but the
value of A has a strong impact on the resulting bubble dy-
namics in the nonlinear case. We examine two cases where A
has been chosen as 4 and 25 in order to cause a bubble with
R0

ref=10 �m to grow to three and ten times its equilibrium
radius, respectively. These values are indicative of strongly
nonlinear bubbles.

In Figs. 13 and 14, we show the results for �1�t� with
A=4 and 25, respectively. For the lowest values of �=0.1
and 0.3, we see a more pronounced initial transient where
statistical equilibrium is not yet achieved than in the corre-
sponding linear case. Note that the bubble oscillation period
for the nonlinear case is longer than the corresponding linear
cases. Nevertheless, we again find in both cases that during
statistical equilibrium, bubble statistics are very well ap-
proximated by Eq. �54� with just five quadrature points for
these nonlinear physically damped bubbles. In Fig. 15, other
relevant moments are shown for the case where A=8, includ-
ing moments that would be needed to close bubble flow
equations such as �−1�t� and �3�t�, the latter being particu-
larly important as it is proportional to the void fraction. Ap-
parently Eq. �54� is equally valid for all relevant moments.

V. SUMMARY AND EXTENSIONS

The main result of this paper is that once a distribution
of inviscid, oscillating bubbles reaches a stationary equilib-
rium, moments of the bubble radius may be found by replac-
ing the bubble radius with its period-averaged value. Pro-
vided the PDF of equilibrium radius is sufficiently broad, the
time scale required to reach statistical equilibrium is short
compared to the physical damping of bubbles by viscosity,
heat transfer, and liquid compressibility, at least for equilib-
rium radius distributions that are likely to occur in practical
situations, where equilibrium radius can vary over a few or-
ders of magnitude with average values in the range of
1–100 �m. In these cases, it is also permissible to replace
the bubble radius with its period-averaged value when com-
puting moments of the radius distribution.

A major benefit of the result is that the period-averaged
bubble radius is a much smoother function of the equilibrium
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radius than is the bubble radius itself. We showed in specific
examples of linear and nonlinear bubble oscillations that ac-
curate statistics could be computed by tracking as few as five
individual period-averaged bubbles compared to O�1000�
that are required for a direct computation. The computational
savings means that continuum bubbly flow models can be
implemented for more complex flows while, at the same
time, accounting for the important effect of size distribution
of equilibrium radius.

Important aspects of this problem require further inves-
tigation before the period-averaged formula can be used for
more general problems involving continual forcing of
bubbles either through a specified nonimpulsive Cp�t� or
through two-way coupling with the flow. Certain cases, such
as when bubbles are slowly forced compared to bubble pe-
riod, should allow moments of the distribution to be com-
puted with the period-averaged value since filtering the re-
sponse over the bubble period will have little effect on the
moments. A more serious challenge is forcing or coupling
that leads to unstable growth of bubbles whose radius ex-
ceeds the Blake critical radius or that leads to resonance of
particular bubbles. It may, for example, be possible to isolate
resonating bubbles, say, at the forcing frequency and its har-
monics and subharmonics, and individually track these
bubble contributions to the moments. We hope to address
these issues in a future work.
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APPENDIX: SPHERICAL BUBBLE DYNAMICS
INCLUDING LIQUID COMPRESSIBILITY
AND HEAT TRANSFER

To illustrate the applicability of statistical equilibrium
computations to more complex spherical bubble-dynamic
models, we consider a simple model that includes, in an
approximate way, the effects of liquid compressibility and
heat transfer. For reference, we list here the assumptions and
equations governing the model. To be clear, we are not as-
serting that the model discussed here is accurate in all situ-
ations; the references given below should be consulted for
full details. Rather, we take the model as representative of
models that introduce significant bubble damping due to
compressibility and heat transfer.

The model assumes that �a� the mass of noncondensable
gas in the bubble remains constant, �b� the liquid is cold �far
from boiling point�, �c� phase change instantaneously occurs,
and �d� the bubble contents have a spatially uniform pressure
�homobaric�. These assumptions are typically adequate ex-
cept near the end of a violent bubble collapse, see, for ex-

ample, Refs. 22–29. With these assumptions, internal bubble
pressure pb �sum of vapor pressure and noncondensable gas
pressure� is governed by an ODE,

ṗb =
3	

R
�� − Ṙpb + Rvṁv�Tw + pb0

kmw

PeT

1

R

�T

�y
�

w
� , �A1�

where 	 is the specific-heat ratio of noncondensable gas and
vapor �	n�	v�	�, R is the radius, T is the temperature, Rv
is the gas constant, ṁ� is the mass flux at the bubble wall, k
is the thermal conductivity, and y is the normalized radial
coordinate. PeT=��p0 /�0��R0

ref /�0� is the Peclet number for
heat transfer, where �0 is the �heat� diffusivity of the equi-
librium bubble contents. Finally, the subscripts 0 and w de-
notes initial, equilibrium conditions and bubble wall proper-
ties, respectively; the subscripts m, v, and n denote quantities
for the mixture, the vapor, and the noncondensable gas, re-
spectively. Representative values of PeT for bubbles with
sizes 1, 10, and 100 �m are given in Table I.

The nondimensionalization used here is the same as dis-
cussed in Sec. II A, with the addition of a reference tempera-
ture T0, which is taken as the ambient liquid temperature.
Liquid properties and the transport properties of individual
gas components are assumed constant, and the thermal con-
ductivity for the gas mixture is taken from a semiempirical
formula.33

The bubble internal phenomena that govern the diffusion
processes are so complex that the simple polytropic assump-
tion for the noncondensable gas is inadequate. Preston et
al.29 employed constant transfer coefficients to estimate the
heat and mass flux at the bubble wall,

� ��v

�y
�

w
� − ����v − �vw�, � �T

�y
�

w
� − �T�T̄ − Tw� ,

�A2�

where the overbar denotes the volume average over the
bubble, �v denotes the mass fraction of vapor, and the con-
stant transfer coefficients are approximated by

� =
1

2
���iR0

2�NPe coth �iR0
2�NPe − 1�−1

−
3

iR0
2�NPe

�−1

+ c.c., �A3�

where PeT is used for �T, and Pe�=��p0 /�0��R0
ref /D0�, the

Peclet number for mass transfer �D0 is the diffusivity be-
tween water vapor and noncondensable gas�, is used for ��.
�N is the bubble natural frequency. In the linear scenario, the
model is exact as the Peclet numbers approach zero. The
model has been shown to be very accurate for nonlinear
bubble dynamics provided the bubble growth is not too large
�Rmax /R0
 �10�. Note that �T can be set to zero to recover
adiabatic behavior for the noncondensable gas, and �� can be
set to zero for noncavitating gas bubbles.

To approximately account for liquid compressibility, we
employ Gilmore’s model30 �see also �Refs. 34 and 35�,
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RR̈	1 −
Ṙ

a

 +

3

2
Ṙ2	1 −

1

3

Ṙ

a



= H	1 +
Ṙ

a

 +

RḢ

a
	1 −

Ṙ

a

 , �A4�

where H and A are the enthalpy and speed of sound, respec-
tively, at the bubble wall in the liquid, nondimensionalized
with the characteristic velocity �p0 /�0,

H =
n�1 + B�

n − 1
�	 Cb

1 + B
+ 1
�n−1�/n

− 	 Cp

1 + B
+ 1
�n−1�/n� ,

�A5�

a =�n�1 + B�	 Cp

1 + B
+ 1
�n−1�/n

+ �n − 1�H . �A6�

Here, n and B are the nondimensional numerical constants
from the Tait equation of state for water, n=7.15, and B
=3009. Cb is the pressure coefficient at the bubble wall in
the liquid and is given by

Cb = pb − 1 −
4

Re

Ṙ

R
−

2

WeR
. �A7�

In the incompressible limit, the Gilmore equation �A2� re-
covers the well-known incompressible Rayleigh–Plesset
equation.

Finally, assuming that Fick’s law holds for mass diffu-
sion between vapor and noncondensable gas, the species
conservation requires

ṁv� =
�mw

Pe��1 − �vw�R
��v

�y
. �A8�

By using the perfect gas law, �mw and �vw are given by

�vw = �1 +
Rv

Rn
	 pb

pv
− 1
�−1

, �A9�

�mw =
pv

�vwRvTw
. �A10�

Note that Tw is constant �Tw=T0� by the cold liquid assump-
tion.

As a direct result of the four assumptions, �a�–�d�, and
the constant transfer model, there is no need to solve any
PDEs for the conservation laws in either liquid or gas phase;
rather, two ODEs, Eqs. �A1� and �A2� are solved with the
constraint �A8�.
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