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Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall
T. Colonius,a) F. d’Auria, and C. E. Brennen
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Bubbly cavitating flow generated by the normal oscillation of a wall bounding a semi-infinite
domain of fluid is computed using a continuum two-phase flow model. Bubble dynamics are
computed, on the microscale, using the Rayleigh–Plesset equation. A Lagrangian finite volume
scheme and implicit adaptive time marching are employed to accurately resolve bubbly shock waves
and other steep gradients in the flow. The one-dimensional, unsteady computations show that when
the wall oscillation frequency is much smaller than the bubble natural frequency, the power radiated
away from the wall is limited by an acoustic saturation effect~the radiated power becomes
independent of the amplitude of vibration!, which is similar to that found in a pure gas. That is, for
large enough vibration amplitude, nonlinear steepening of the generated waves leads to shocking of
the wave train, and the dissipation associated with the jump conditions across each shock limits the
radiated power. In the model, damping of the bubble volume oscillations is restricted to a simple
‘‘effective’’ viscosity. For wall oscillation frequency less than the bubble natural frequency, the
saturation amplitude of the radiated field is nearly independent of any specific damping mechanism.
Finally, implications for noise radiation from cavitating flows are discussed. ©2000 American
Institute of Physics.@S1070-6631~00!00511-0#
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I. INTRODUCTION

Cavitation leads to the production of noise, shock wav
and a host of flow instabilities. These, in turn, lead to da
age of nearby solid surfaces, to radiated noise, and to de
dation of the performance of devices. Previous investiga
have identified the violent collapse of clouds of cavitati
bubbles as a possible mechanism for noise generation
material damage. The violent collapse of the cloud lead
the production of intense bubbly shock waves, and may
related to other instabilities of the flow. Aside from the im
portant problem of cavitation on propellers, there are a v
ety of applications where the nonlinear dynamics of bubb
play an important role. Experiments in these flows are of
difficult, and therefore computational modeling is importa
not only for prediction, but also as a means to study the fl
physics.

We report here computations of the bubbly cavitati
flow caused by normal oscillation of a plane rigid wall ad
cent to a semi-infinite domain of fluid. In a companion stud
a similar methodology is applied to quasi-one-dimensio
flows through de Laval nozzles.1 The computations are car
ried out for a cavitating flow model similar to the one orig
nally proposed by van Wijngaarden.2 The essence of his ap
proach, discussed in more detail in Sec. II, is to couple
Rayleigh–Plesset equation for the dynamics of spher
bubbles, on the microscale, to the equations for a continu
two phase flow on the macroscale. A significant body
literature now exists which uses similar modeling to explo
the linearized dynamics of clouds of bubbles.3–7 Kumar and

a!Author to whom all correspondence should be addressed; electronic
colonius@caltech.edu
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Brennen8–10 have also explored weakly nonlinear solution
Fewer nonlinear solutions~which must be solved nu

merically! have been presented in the literature. Of the
methods which coupledynamicequations for the bubble mi
croscale should be distinguished from methods which in
duce an algebraic equation of state to relate mixture den
to pressure. While the results of the latter~e.g., Refs. 11 and
12! may be of qualitative value, they imply a quasista
situation which is inappropriate to most bubbly cavitati
flows, which are inherently unsteady. Studies including d
namic ~e.g., Rayleigh–Plesset! models for the bubbly mi-
croscale, include the numerical investigations of shock w
propagation in fluids with noncondensible gas bubbles,13,14

cavitation bubbles,15,16and the dynamics of spherically sym
metric clouds of bubbles,6,17–20and the flow on a hydrofoil
section.21 The Kubotaet al. study, while most geometrically
complex, involved anad hoclimitation that bubbles were no
permitted to collapse below their original nuclei size, whi
excludes the formation of the large pressure perturbati
and shock waves which are an important part of cloud ca
tation. Wang and Brennen18–20highlight the role of inwardly
propagating shock waves during the collapse of a clo
Geometric focusing leads to large local pressures and
gests the potential for noise and damage.

In the present paper we investigate the simple cavita
flow caused by an oscillating wall. The motivation for stud
ing the present configuration is twofold. First, the develo
ment of accurate numerical methods for bubbly cavitat
flows is difficult, and it is useful to establish benchmark s
lutions to relatively simple problems where the accuracy
the numerics can be checked. Second, though the geom
is kept simple and restricted to one spatial dimension,
flow may be thought to represent, to first order, the flow
il:
2 © 2000 American Institute of Physics
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vibratory cavitation-damage-assessment devices. An im
tant restriction of the present results is that anad hoc, but
computationally fast, model is used for damping the bub
radial motion. We argue in Sec. III B that the specific dam
ing mechanisms are, for wall oscillation frequency mu
smaller than the bubble natural frequency, largely irrelev
to the overall dynamics of the mixture.

The paper is organized as follows. In Sec. II, the co
tinuum bubbly flow model and its numerical implementati
are discussed. An accurate nonreflecting boundary condi
which allows the semi-infinite domain to be truncated to
finite strip, is developed in Sec. II B. A Lagrangian fini
volume scheme is derived in Sec. II C and validation is giv
in Sec. II D. Results are presented in Sec. III. In Sec. III C,
analytical expression for the radiated pressure waves,
their saturation, is developed in the low frequency lim
Concluding comments are placed in Sec. IV.

II. THE MODEL AND NUMERICAL METHOD

A. Physical modeling

We consider a continuum bubbly flow model.2,3,22,23The
equations and simplifying assumptions and their justificat
are briefly described here; the original references should
consulted for more detailed discussion of the derivation.

The essence of the model is to couple conventional c
tinuity and momentum equations for a compressible liqui
vapor mixture to a Rayleigh–Plesset equation for the bub
dynamics which provides the necessary relation connec
the local pressure with the bubble size and therefore the l
mixture density. The principle modeling assumptions are t
bubbles are spherical and that typical length scales assoc
with fluctuations in the mixture are large compared to
typical bubble radius. The mixture is further assumed to
dilute ~low void fraction!, to initially contain a large numbe
of nuclei ~heterogeneous nucleation!, and fusion and fission
of bubbles are not permitted. Moreover, the liquid phase
incompressible.

Further assumptions are that relative motion between
phases can be neglected, and liquid compressibility eff
can be neglected in the Rayleigh–Plesset equation. T
latter assumptions have been shown to have minimal im
on the linearized dynamics of spherical bubbles.3–5,22

Damping of the bubble radial motion, which in reality
governed by a complex interaction of diffusive and therm
dynamic effects, is modeled with a simple ‘‘effective
damping, and the further assumption that any noncond
able gas in the bubbles is fully mixed and undergoes isen
pic compression and expansion. The use of a polytropic~and
isentropic! exponent is not strictly valid for nonlinear osci
lations of bubbles.24 Far from the wall, oscillations are nearl
linear and, for low frequency, isothermal behavior is pro
ably more realistic. Near the wall, however, bubble collap
is violent and nonlinear, and adiabatic behavior seems m
appropriate~especially considering the internal motions
the gas that would exist if spherical symmetry is lost!. To
avoid solution of unsteady radial diffusion equations
mass, momentum, and energy for the bubble contents at
position in the mixture, we choose for simplicity to use t
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isentropic approximation for all bubbles, along with th
simple ‘‘effective’’ damping discussed previously. The im
pact of this simplified model for the damping is further di
cussed in Sec. III B.

These assumptions lead to macroscale conserva
equations for mass and momentum of the bubbly mixture

Dr

Dt
1r

]ui

]xi
50, ~1!

Duj

Dt
1

1

r

]p

]xj
50. ~2!

Note that viscous terms and gravity have been neglecte
the momentum equation.

On the microscale, the typical bubble radius,R(x,t), is
governed by the Rayleigh–Plesset equation:

R
D2~R!

Dt2 1
3

2 S DR

Dt D 2

1dD

1

R

DR

Dt
1

2

We
~R212R23g!

1
s

2
~12R23g!1P50. ~3!

The system of equations is closed by noting that
above-mentioned assumptions lead to a relation between
mixture density and bubble radius:

r5S 11
a0R3

12a0
D 21

. ~4!

In Eqs. ~1!–~4! the mixture density,r, is made dimen-
sionless by the constant liquid density,rL . The initial void
fraction is denoted bya0 . Lengths,xi , and the bubble ra-
dius,R, are normalized by an equilibrium bubble radius,R0 ,
and the mixture velocity,ui , is normalized by the equilib-
rium bubble natural frequency,v0 , times the equilibrium
bubble radius. The pressure,P, is measured relative to its
equilibrium value,p0 , and normalized byrLR0

2v0
2. Time, t,

is normalized by 1/v0 . Moreover,s is the cavitation num-

ber, defined as (p02pv)/ 1
2rLR0

2v0
2, where pv is the vapor

pressure. The ratio of specific heats for a noncondensable
in the bubble isg. The effective damping for spherica
bubbles is denoted bydD and is discussed in detail in Se
III B. The Weber number is given by We5 rLR0

3v0
2/S,

whereS is the~constant! surface tension. We note that the
equations may be derived using a detailed ensemble p
averaging technique, as describe by Zhang and Prospere25

As a result of the way in which the equations have be
nondimensionalized, the valuesR51, P50, u50, and r
512a0 constitute a steady solution of Eq.~3!, and this is
referred to as bubble equilibrium. For a slight disturban
from this equilibrium state, bubbles will oscillate with the
natural frequency,v0 . Since the equations have been no
malized byv0 , the expression for the natural frequency b
comes

2

We
~3g21!1

3gs

2
51. ~5!

In what follows we consider We@1 andg51.4, and thus

s'0.475. ~6!
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Moreover, for convenience we confine attention to a fix
equilibrium void fraction,a, of 1%.

B. Boundary conditions

We consider a semi-infinite region bounded by a fl
moving wall. The boundary condition for the wall is that th
fluid velocity normal to the wall is equal to the wall velocity
In the following we specifically consider sinusoidal motio
of the wall given by

uw~xw ,t !5A sin~2p~ t/T!!. ~7!

This introduces two additional nondimensional paramet
the amplitude,A ~relative toR0v0 , and the frequency of wal
oscillation,vw , which is made dimensionless withv0 .

Often a semi-infinite domain can be treated numerica
at least for incompressible flow problems, by mapping
infinite domain to a finite computational one. For compre
ible flow problems which involve acoustic waves that prop
gate to infinity and decay only slowly~or not at all in the
case of one-dimensional inviscid flow!, domain mappings
are problematic since the waves become more and m
poorly resolved as they propagate through the hig
stretched mesh near infinity. In these types of proble
therefore, the computational domain is usually truncated
finite location, and an artificial boundary condition is im
posed.

To pose an artificial boundary condition, it is necess
to make additional assumptions about the flow outside
region of interest. Considering the one-dimensional fl
next to the vibrating wall, we suppose that the bubbly flow
semi-infinite and impose a nonreflecting boundary condit
at the edge of the truncated domain. The nonreflec
boundary condition~approximately! eliminates any incoming
wave at the edge of the computational domain.

The development of nonreflecting boundary conditio
even for hyperbolic~nondispersive! problems, is difficult in
the general multidimensional case. The reader is referre
recent review papers26,27 for a detailed discussion of the im
portant issues. For linear one-dimensional hyperbolic s
tems an exact nonreflecting boundary condition may be
tained by decomposing the solution into a set of decoup
~characteristic! waves. In the present case, the waves
nonlinear and dispersive. However, small amplitude~linear-
ized! disturbances with frequencyv and wave numberk will
propagate at a speed

c5v/k56S 1

3a0~12a0!
~12v22 ivdD! D 1/2

. ~8!

Equation~8! follows from the Fourier transform of the lin
earized versions of Eqs.~1!–~4! ~e.g., Ref. 28!. Note thatv
is normalized byv0 , k is normalized by 1/R0 , and c is
normalized byR0v0 .

Furthermore, for one-dimensional small amplitude d
turbances, it can be shown that the Fourier amplitudes of
velocity and pressure,û and p̂, respectively, are related by

p̂5Z~v!6û, ~9!

whereZ(v)6 is the ‘‘acoustic impedance,’’ given by
d
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Z~v!656~12a0!c56S ~12a0!

3a0
~v0

2212 ivdD! D 1/2

,

~10!

where the positive and negative roots correspond to rig
going and left-going waves~and positive and negative phas
velocities!, respectively. Thus at one boundary of the d
main, a nonreflecting boundary condition is

p̂5Z1û1 p̂I , ~11!

where we have addedp̂I to allow the possibility of arbitrarily
specified incoming pressure disturbances. Equation~11! is
nonlocal in time since it contains the square root of the f
quency. If the frequency is further assumed to be small, t
we can approximate Eq.~11! by

p~xN ,t !5r0c0u~xN ,t !2
dDc0

2

]p

]x
~xN ,t !1pI , ~12!

where

c05v0S 1

3a0~12a0! D
1/2

.

The efficacy of these nonreflecting boundary conditio
is discussed in Sec. II D.

C. A Lagrangian finite volume scheme

It is not trivial to obtain an accurate and efficient nume
cal solution of flow equations coupled to highly nonline
bubble dynamics. In the present work we begin by derivin
numerical method for one-dimensional flow. The develo
ment of accurate multidimensional schemes will be purs
in future publications.

Equations ~1!–~4! are integrated using a one
dimensional Lagrangian finite volume scheme in which ea
control volume face moves at the local fluid velocity. Th
Lagrangian framework is convenient for two reasons: Firs
facilitates the application of the boundary condition at t
moving wall, and second, it allows the Rayleigh–Ples
equation to be integrated~for a particular Lagrangian ele
ment! as an ordinary differential equation~ODE!. The
method discretely conserves both mass and momentum,
thus appropriately preserves ‘‘jump’’ conditions across bu
bly shock waves~which, unlike gas dynamic shocks, hav
finite thickness with an internal structure dictated by inert
effects!.

Consider a one-dimensional space divided into a coll
tion of N control volumes. Integrating Eqs.~1! and ~2! over
the control volumes we obtain, forj 51,2, . . . ,N21:

d

dtExj

xj 11
r dx50, ~13!

d

dtExj

xj 11
ru dx5Pj2Pj 11 . ~14!

Equations~13! and ~14! describe the rate of change of th
total mass and momentum in thejth control volume. Each of
the faces (j 51,2, . . . ,N) of the control volume moves with
the local fluid velocity and therefore
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dxj

dt
5uj , ~15!

whereuj is shorthand foru(xj (t),t). Also, Eq. ~3! can be
split into two first-order equations at each face:

dRjVj

dt
1Gj1Pj50, ~16!

dRj

dt
2Vj50, ~17!

where

Gj5
Vj

2

2
1dDRj

21Vj1
2

We
~Rj

212Rj
23k!1

s

2
~12Rj

23k!.

~18!

Finally, the density and bubble radius at the faces are rel
by

r j5S 11
a0Rj

3

12a0
D 21

. ~19!

To integrate this system of~as yet exact! equations, it
remains to approximate the integrals in Eqs.~13! and~14!. A
second-order approximation is used:

E
xj

xj 11
f dx5

Dxj

2
~ f j1 f j 11!1O~D3!, ~20!

whereDxj5xj 112xj , and wheref is any of RjVj , Rj , or
M j .

Equations~13!–~19! are 6N22 ODEs for 6N unknowns
(r j , Rj , Vj , xj ,uj , and Pj at the edges of the control vo
umes, j 51,2, . . . ,N). Specifying two boundary condition
closes the system. At the moving solid wall the velocityu1 is
prescribed. The approximate nonreflecting boundary co
tion derived previously@Eq. ~12!# is applied at the other en
of the computational domain.

These equations are solved in the Lagrangian coordi
system. Note that, depending on the solution, the con
volumes could become very small or very large. If they b
come large then the trapezoidal rule given in Eq.~20! may
not be accurate. In that case it may be necessary toremesh
the computation by interpolating the Lagrangian quantit
back to a regular grid.

An interesting feature of the discretized equations is t
an explicit time marching of the equations will not conser
mass precisely. For explicit time marching, Eqs.~15! and
~17! give xj andRj at the new time level. Equation~19! then
gives the density at the new time level, and so in general,
~13! cannot be satisfied at the new time level. This may
related to difficulties previous investigators have enco
tered in solving similar equations with explicit schemes.6,29

For this reason~and the additional advantage of handlin
stiffness! an implicit time marching scheme is used. T
method chosen is a Richardson extrapolation method b
on the implicit Euler method. For a given time step, a ser
of predictions are made for the solution at the new time le
based on different numbers of subdivisions of the time in
val. The series of predictions is then used to extrapolat
ed

i-

te
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the limit of zero time step, and to provide an error estim
for the integration. The overall time step is adjusted based
the number of subdivisions and the error estimate. The
tails of the scheme are as given by Hairer and Wanne30

Numerical experiments showed that the extrapolat
method is much more efficient than first- and second-or
implicit schemes.

The basic time advancement of the extrapolation met
is chosen to be the implicit Euler method. Using this integ
tion scheme on Eqs.~13!–~19! and going through the alge
bra, we can establishN equations of the form

F j~Rj 21
n11 ,Rj

n11 ,Rj 11
n11!50, j 51,2, . . . ,N, ~21!

which containN unknowns,Rj
n11 , for j 51,2, . . . ,N. In

each equationF j , various parameters of the problem al
appear as well as the fields from previous time levels.
solve the nonlinear equations we use Newton’s method
the present case, the Jacobian matrix is tridiagonal in fo
and so Newton iterations are rapidly solved.

Finally, the stability of the above-mentioned numeric
scheme was analyzed using the von Neumann method~e.g.,
Ref. 31! for the linearization of Eqs.~13!–~19! about the
equilibrium flow (R51). The resulting ODE is, in the sem
discrete limit, inherently stable, and therefore A-stable i
plicit schemes will also be stable. Note that the extrapola
schemes used here are not A-stable, but only nearly so,
they can be unstable for eigenvalues which lie near
imaginary axis.30 In practice we have found that our schem
is stable even for large time steps, and even in the prese
of significant nonlinearity.

D. Code validation

Calculation of steadily propagating bubbly shock wav
provides a useful test case for the numerical method, as t
structure can be computed, in a stationary reference fra
by solving an ODE. We instigate a shock wave in the co
putational domain by specifying a pressure increase at
left boundary, in the form of an incident wave whose pre
sure is given by

pI5
pA

2 S 11tanhS t

Tf
D D . ~22!

The parameterTf controls the time scale over which th
pressure jump is accomplished. The pressure rise be
propagating to the left through the domain at the sonic sp
given earlier in Eq.~8!. As it propagates, nonlinearity caus
the wave front to steepen and accelerate, and eventua
bubbly shock wave is formed. It~eventually! propagates to
the left at a~constant! speed,u1 . To test the accuracy of the
code, we compare in Fig. 1 the shock wave structure fr
the present unsteady code with the steady bubbly shock w
solution obtained by solving Eq.~6.72! of Brennen.28 Note
that the steady equation is an ODE which must also
solved numerically and requires an initial position and rate
change of bubble radius with position which are taken fro
the unsteady numerical solution. The figures show excel
agreement between the two independent solutions. Ap
ently as the resolution of the unsteady solution is increas
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the phase error between the two solutions is decreased. T
is a slightly exaggerated decay of the subsequent rebo
and collapses in the numerical solution due to numerical
sipation. It should be noted that the present unsteady sh
has propagated a substantial distance by the time the c
parison is made. One would expect further dissipation of
collapses and rebounds to take place upon further prop
tion.

E. Test of nonreflecting boundary condition

A series of computations were also performed to test
efficacy of the nonreflecting boundary condition. An incom
ing wave was generated at the nonreflecting boundary
specifying

pI5pAexp~2~ t/T!2!. ~23!

If T is large enough, the energy of the wave is restricted
low frequencies, and, for small amplitude, it should prop
gate nondispersively at a speed,c, given by Eq.~8!. The
wave propagates first in the negativex direction, reflects
from the solid wall, propagates in the positivex direction,
and eventually passes through the nonreflecting bound
Because the boundary condition is approximate, some f
tion of the wave energy is reflected back, and the proc
continues until there is no energy~or rather until there is
nothing but accumulated numerical error! left in the domain.

FIG. 1. Comparison of numerically calculated unsteady shock wave~s! and
a steady shock~—! given by the solution of Eq.~6.72! of Brennen~1995!.
The various parameters~made nondimensional as discussed previously! are:
We51870, dD50.04, a050.01, t05100, Tf525, s50.475, k51.4 (v0

51). ~a! Dxj is initially 4 for each cell;~b! Dxj is initially 2. These values
do not change significantly during the course of the shock propagation
ere
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s-
ck
m-
e
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e
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ry.
c-
ss

A measure of the efficacy of the boundary condition is t
history of total ‘‘acoustic energy,’’ which is estimated sim
ply asE(t)5( j 51

N pj
2 . Tests show that for small amplitude

@pA5O(1023) and smaller# the reflection coefficient~ratio
of energy in the domain before and after passage of the p
through the boundary! is about 0.0016%. As the amplitude
increased the reflection coefficient increases owing to n
linear effects which are not accounted for in the analys
However, forpA as large as 0.05 the reflection coefficie
increases only to 0.36%, and clearly most of the energ
still absorbed by the boundary. Note that for these large a
plitude disturbances the incident wave steepens and form
bubbly shock, similar to that described previously.

III. RESULTS

A. Low frequency vibration

We begin by considering low frequency wall vibratio
vw!1. In what follows, we set the effective damping coe
ficient, dD , in the Rayleigh–Plesset equation to 0.4. T
effects of damping are discussed in Sec. III B.

For small enough amplitudes, nonlinear effects are
sent and, for low enough frequency, the phase speed of p
sure disturbances is real and constant~not a function fre-
quency!, according to Eq.~8!. That is, wall vibration
generates propagating disturbances that are only slightly
tenuated by the damping in the Rayleigh–Plesset equa
For higher frequencies, again at sufficiently low amplitud
the phase speed in Eq.~8! is dispersive. Neglecting the sma
dissipation, the phase speed is purely imaginary for frequ
cies greater thanv0 . In this case the wave motion is cut-of
with disturbances decaying exponentially with distance fr
the wall.

Plotted in Fig. 2 are time traces of the mixture velocity
a distance of 400R0 from the wall, for vw50.1, and for
relatively low amplitudes of wall vibration. In Fig. 2, th
velocity has been normalized by the amplitude, which allo
a wide range of amplitudes to be depicted on the same sc
This indicates nearly linear behavior. Note that the time a

FIG. 2. Nonlinear steepening of the waves for We51870, dD50.4, a0

50.01, s50.475. A grid of 801 points is used on a domain 400 units wi
~relative to the initial equilibrium bubble radius!. Plotted are: The wall ve-
locity ~—! and the particle velocity atx5400 for A50.0001 (•••), A
50.001~–•–!, andA50.01 ~---!. All velocities are normalized by the am
plitude of the wall velocity,A.
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is scaled by the period of wall oscillation, and is only plott
after initial transients have died out; the wave train is pe
odic. For the largest amplitude in the plot,A50.01, nonlin-
ear steepening of the waves is evident.

For still higher amplitudes, the compressions stee
into shock waves, and the waves take the approximate f
of a periodic train ofN waves. This is illustrated in Fig. 3
which is similar to Fig. 2, but with higher amplitudes. No
that in Fig. 3, the velocityis notscaled with the amplitude o
the wall velocity. Clearly a saturation of the radiated ene
takes place. This is due to the presence of shocks w
dissipate increasing amounts of energy as the amplitud
increased. The process is similar to theacoustic saturation
phenomena, which is well known in gas dynamics. In fa
for low frequencies, the saturated wave form can be p
dicted analytically, which we demonstrate in Sec. III C.

Very near the wall, as the amplitude is increased, sign
cant bubble growth~cavitation! occurs in a thin layer nea
the wall. The bubble size,R(x,t), adjacent to the wall is
shown as a function of time in Fig. 4. The response of
layer near the wall is reminiscent of the response of a sin
bubble to a harmonic pressure field.

FIG. 3. Asymptotic shock structure for the same parameters as in Fig. 2
with A50.05 ~—!, A50.075 (•••), A50.01 ~–•–!, A50.2 ~---!, and A
50.3 ~—!. Note that the velocitiesare notnormalized byA.

FIG. 4. Growth and collapse of bubble radius near wall~the same param-
eters and legend as in Fig. 3!.
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B. The effective damping parameter

In this section we discuss the limitations of the use of
effective damping parameter for volume oscillations
spherical bubbles. It has been recognized for many years
several different physical processes may contribute to
damping. Chapman and Plesset32 provided a useful summary
of the relative magnitudes of the contributions from visco
liquid effects, from acoustic radiation, and from thermal e
fects. More recent work has further quantified these p
cesses in nonlinear calculations. For noncondensible
bubbles, Watanabe and Prosperetti33 showed that the therma
exchange between bubble and liquid must be modeled
solving an unsteady radial heat diffusion equation for
bubble contents. Their results showed that this process
not well modeled by a single ‘‘effective’’ polytropic index
They were able to show that their model agreed with exp
ments for shocks that had time to broaden from an ini
sharp front to a more diffuse profile. The issue is also d
cussed by Kamedaet al.,14 who also show a substantial im
pact of the thermal effects on the shock profile. The relat
importance of thermal diffusion for vapor~produced by cavi-
tation! or mixtures of vapor and noncondensible gas is no
clear as it is for bubbles consisting only of noncondensi
gas,34 and detailed computations of shocks in such flo
~including heat and mass diffusion effects! have not yet been
attempted.

Another process which leads, on average, to the diss
tion or ‘‘smoothing’’ of bubble oscillations is statistica
variations in bubble size either spatially or in different re
izations of the flow~or both!. The basic process has bee
demonstrated in computations by Kamedaet al.14 and by
Wang,35 though neither computational model included all e
fects consistent with statistical variations in the low vo
fraction approximation, as can be seen by comparing th
models with the rigorous ensemble phase-averaging pro
developed by Zhang and Prosperetti.25

A final uncertainty in real cavitating bubbly flows is th
likelihood that the fission of bubbles and other departu
from sphericity, which often occurs in the first collapse, i
troduces additional~and perhaps dominant! dissipation that
reduces the number and magnitude of the rebounds afte
first collapse. Quantifying this additional attenuation mech
nism presents a real challenge as yet not met.

In the present work, we have tried to account for
these effects in a computational fast, albeit crude, manner
using a total ‘‘effective’’ viscosity in place of the physica
liquid viscosity in the Rayleigh–Plesset equation. Th
simple approach has been used previously, for example
match experimental results for the attenuation of small a
plitude ~linear! acoustic waves, though with mixed results36

The limitations of this approach are now discussed. F
the results presented in Sec. III A we have useddD50.4.
Values ofdD as large as 0.5 have been used to match th
retical and experimental predictions for the attenuation
acoustic waves in bubbly mixtures.36 Interestingly, for suffi-
ciently low frequencies of wall vibration, it turns out tha
dD'0.5 represents a significant transition in the results p
sented in Sec. III A. To demonstrate this, the bubble radiu

ut



o

d
e
e
a
m
lu

l r
sp

p
ng
ix
g

es
th
w
of
e

m
di
se
la-
s

th
he
ng
os
s
n
e

a-
st
n
it
in

all

r-

-
-

For
ity,
n-
en-
ves
ck

suf-
he

ll,

ted

ef-
cle
that
t for
that

ns
e,

2758 Phys. Fluids, Vol. 12, No. 11, November 2000 Colonius, d’Auria, and Brennen
the wall is plotted in Fig. 5 over one period, for a series
runs with A50.3 but with differing values ofdD . For dD

greater than 0.8 the maximum bubble radius begins to
crease significantly. For this large value of the damping th
is no violent collapse and rebound of the cloud. For valu
below 0.8 the maximum bubble radius appears to satur
and the only significant difference in the results is the nu
ber of collapses and rebounds during each cycle. For va
of dD much less than 0.4~not shown in the plot!, the larger
number of rebounds lead to much greater computationa
quirements for adequate resolution of both temporal and
tial features of the flow.

Thus, at low frequency, there appears to be an up
limit on the effective damping, beyond which the dampi
has a significant impact on the entire solution for the m
ture. Below this value, varying the effective dampin
changes only the attenuation of the ‘‘ringing’’ of the bubbl
following collapse. Such ringing may have an impact on
high frequency acoustic field produced by cavitating flo
but it is evidently not of dynamic significance to the flow
the mixture. The detailed reason for this, as derived in S
III C, is that the dissipation associated with the shock ju
conditions is much larger than, and independent of, the
sipation provided by any of the aforementioned proces
Thus it appears, for low frequency forcing, that it is re
tively unimportant to model the detailed thermal processe
the bubble.

As the externally imposed frequency approaches
bubble natural frequency, it is not presently clear whet
realistic results can be obtained with the effective dampi
Indeed, computations we performed for high frequency
cillation showed that the collapse and rebound proces
intimately related to the dynamics of the overall mixture, a
there was no way to justify the lumping of all dissipativ
effects into a single effective damping.

C. Analytical model of acoustic saturation

As discussed in Sec. III A, large amplitude wall vibr
tion, at low frequency, results in a saturation of the acou
energy which is radiated away from the wall. In this sectio
we show that a model for the radiated wave form and
saturation pressure may be obtained in the limit of vanish

FIG. 5. Growth and collapse of bubble radius near wall forA50.3 and
dD50.4 ~—!, dD50.8 (•••), dD54.0 ~–•–!, anddD540.0 ~---!.
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forcing frequency, even though the flow adjacent to the w
remains significantly modified by bubble dynamics~that is,
the flow is not barotropic!.

A well known result for plane waves generated by no
mal oscillation of a wall in a gas is acoustic saturation~see
the discussion by Pierce,37 which contains the original refer
ences!. Even in the limit of vanishing dissipation mecha
nisms~e.g., viscosity, heat conduction, etc.!, acoustic energy
is dissipated when compressions steepen into shocks.
shocks, the total amount of dissipation is, for small viscos
independent of viscosity, dependent only on the ‘‘jump co
ditions’’ across the shock. Larger shocks dissipate more
ergy. Thus as the amplitude of vibration is increased, wa
shock closer and closer to wall, and with greater sho
strength. The pressure at a fixed distance from the wall,
ficiently far from the wall, then becomes independent of t
amplitude of vibration.

A weak shock analysis~e.g., Ref. 37! shows that at a
fixed value ofx, the maximum pressure~over a cycle! is
given ~in dimensional form! by

pmax55
pA if x,

pr0c0
3

2b0pAv

ppA

11pAS xb0v

r0c3 D if x.
3pr0c0

3

b0pAv
,

~24!

wherepA is the amplitude of pressure oscillation at the wa
r0 andc0 are the ambient density and speed of sound,v is
the frequency of oscillation, andb0 is a thermodynamic
quantity given, for a perfect gas, by

b0511r0c0S ]c

]pD
0

, ~25!

where the partial derivative is at fixed entropy and evalua
at ambient conditions. The quantityb0 is a measure of the
nonlinear steepening of the waves, and stems from two
fects. The first is that, for compression, the wave’s parti
velocity enhances its propagation speed. The second is
the speed of sound is increased by compression. Note tha
a perfect gas, the first effect is the dominant one, and
b05(g11)/2.

To apply Eq.~24! to a bubbly cavitating flow, we take
the limit of zero frequency in Eq.~8! to obtain~reverting to
dimensional quantities!

c0
25

R0
2v0

2

3a0~12a0!
, ~26!

where the subscript ‘‘0’’ here refers to ambient conditio
with bubble equilibrium. For large Weber number, we hav
from Sec. II, thatgs51/6 and thus

c0
25

g~p02pv!

a0r0
. ~27!

This can be differentiated with respect top0 to obtainb0 :

b0511
g1112a0

2a0~12a0!
, ~28!
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where the expressionr0'rL(12a0) has been used. Fo
small a0 this becomes

b0'
g11

2a0
, ~29!

which is identical to the result for a pure perfect gas, exc
that it is divided by the void fraction. The result is singular
the void fraction is decreased to zero, since the liquid
been considered as incompressible. Values ofb0 in a real
pure liquid are on the order of 10. It should be noted t
larger values ofb imply that shocks are formed with a lowe
amplitude of vibration than would be necessary in a pure g

Equation ~24! is compared in Fig. 6 to the compute
pressure as a function of distance from the nominal w
position, for several amplitudes of wall vibration. The resu
presented are for a vibration frequency,vw50.02, and the
distance from the wall has been normalized by the acou
wavelength,l52pc0 /vw . The maximum pressure is appa
ently well predicted by Eq.~24! ~dashed line!. Note that, as
predicted by Eq.~24!, saturation occurs closer to the wall a
the amplitude is increased. At the highest amplitude, sho
ing of the wave is immediate.

Bubbly shock waves are characterized by a press
jump followed by oscillations, or ringing, at a frequenc
which, depending on the damping, varies from about a te
of the postshock natural frequency to, for large damping,
postshock natural frequency for small damping.28 These os-
cillations are evident in the train ofN waves in Fig. 6, but
they are highly damped due to the relatively large damp
coefficient,dD50.4. In Fig. 7, the results forA50.005 are
replotted for several wavelengths of oscillation~away from
the wall! along with a results for the same conditions exc
that the damping was lowered to 0.08. While the ringi
following the shocks is enhanced, these oscillations
merely superimposed on the basicN wave predicted by the

FIG. 6. Spatial evolution of the~nondimensional! pressure for wall oscilla-
tion at 0.02v0 for several different amplitudes of oscillation and W
51870, dD50.4, a050.01, s50.475. The dashed lines are plots of E
~24!.
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process of acoustic saturation. This further suggests tha
dissipation provided by the effective damping is asympto
cally small in the evolution of the waves, with the majori
of the dissipation due to the shock jump conditions. In oth
words, the collapses and rebounds following the shocks
pear to have no dynamic significance for the evolution of
wave. For effective damping much larger than 0.4, this is
true, as discussed previously. If the damping were set to z
then unattenuated ringing from each compression would
sist indefinitely. On the other hand, as the frequency goe
zero the wavelength of the ringing following the shock b
comes vanishingly small compared to the wavelength of
underlying N wave. Thus acoustic saturation would ta
place for arbitrarily small damping, provided that the fr
quency is low enough.

At the higher frequency ofvw50.1, as was shown in the
Fig. 3, the amplitude of the radiated waves still saturat
However, comparison with the predicted maximum press
of Eq. ~24! becomes more difficult since collapse and r
bound following collapse occupy a much larger fraction
the total cycle. This is shown in Fig. 8, where the spat
evolution of pressure is shown forvw50.1, for A50.005
and several values of the effective damping. For compari
purposes, the result forvw50.02 and the prediction for the
maximum pressure from Eq.~24! are replotted.

Thus the process of acoustic saturation in bubbly flow
strictly speaking, only valid when the driving frequency
much lower than the bubble natural frequency, and when
damping is sufficiently small, but nonzero. va
Wijngaarden36 noted that generally shock waves in bubb
flows involve an interplay between three mechanisms, c
vection ~or wave steepening!, dissipation, and dispersion. I
going to higher frequencies, the interplay is complicated
cause not only is the ringing frequency following shoc
closer to the driving frequency, but dispersive effects in E
~8! begin to become important. By experimentation, we fi
that the acoustic saturation process is valid for forcing f
quencies below aboutvw50.2.

FIG. 7. Spatial evolution of~nondimensional! pressure for wall oscillation
at 0.02v0 . Same conditions in Fig. 6 withA50.005, anddD50.4 ~–•–!
and 0.08~—!.
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IV. DISCUSSION

We have computed numerically bubbly cavitatio
caused by the normal oscillating of a rigid wall. The pri
ciple result of the computations is that when the wall os
lation frequency is much smaller than the bubble natural
quency, the power radiated away from the wall is limited
an acoustic saturation effect, where the radiated power
comes independent of the amplitude of vibration. This
similar to the process which occurs in a pure gas, wh
nonlinear steepening of the generated waves leads to sh
ing of the wave train, and the dissipation associated with
shocks limits the radiated power. For low enough frequen
a formula for the maximum radiated pressure at a fixed
tance from the wall was developed, based on weak sh
theory, and found to be in excellent agreement with the co
putations. It was argued that the radiated waves are ne
independent of the viscosity~and indeed other dissipativ
mechanisms!, for sufficiently small viscosity.

The process of acoustic saturation may have broader
plications in cavitating flows which are driven at a frequen
much lower than the bubble natural frequency. It has of
been noted in experiments that as the cavitation numbe
decreased the noise first increases quickly, but increases
lower rate or levels off or decreases with further decreas
the cavitation number. In experiments with submerged j
for example, Franklin38,39 has noted an abrupt change in t
noise generated by the jet as the cavitation number is
creased below a certain critical value. Below this value
data suggest a dependence of the mean-square pressure
in the far field of 1/sn, with n around 5. It should be note
that the value of 5 is approximate, fitted with only a few da
points, and, indeed subsequent measurements~e.g., Fig. 10
of Ref. 39! would seem to indicate a somewhat weaker
pendence aroundn52 to n53. It has also been observe
that below the critical cavitation number, the submerged
flow exhibits a higher degree of organization, perhaps du
self-excitation of large scale structures by the acoustics,

FIG. 8. Spatial evolution of~nondimensional! pressure forvw50.1, A
50.005, anddD50.4 ~–•–!, dD50.08 ~–"–! and dD50.04 (•••). Also
shown are results forA50.005 andvw50.02~—!, as well as the prediction
of Eq. ~24!.
-
-

e-
s
re
ck-
e

y,
-

ck
-

rly

-

n
is
t a

in
s,

e-
s
evel

-

t
to
nd

that the acoustic field is more narrowly peaked about
dominant frequency.

We speculate that acoustic saturation may explain
least in part, some of these observations. For spher
waves, the largex expression in Eq.~24! remains valid ex-
cept for a multiplicative logarithmic dependence on the
dial distance from the source.40 For a fixed distance from the
source, the average pressure level at saturation would
low void fraction, obey the following scaling:

p̄2;
~p02pv!3

r la0v2x2 , ~30!

wherev is the ~dimensional! frequency of the source. Thi
follows from Eq.~24! at largex, using definitions from Sec
III. For submerged jets, Franklin38 suggests that the pea
Strouhal number of the radiated noise, St5 f D/U scales like
s2, whereD is the jet diameter andU the jet velocity, and
the cavitation number is defined with the jet velocity. Notin
that Franklin obtained different cavitation numbers by va
ing the jet velocity while holding the pressure constant,
obtain, again at a fixed location,

p̄2;
~p02pv!2

a0s3 , ~31!

in agreement with his observations of submerged jets.
Of course, this result is open to criticism on seve

fronts. The result here is for a simple harmonic source, n
turbulent bubbly flow with a broad band spectra. Also, w
have not accounted for the effects of having a distribution
bubble sizes, and gradients in bubble concentrations. Ne
theless, it appears possible that the acoustic saturation
cess could exist in practical cavitating flows, and merits f
ther investigation.
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