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Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall
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Bubbly cavitating flow generated by the normal oscillation of a wall bounding a semi-infinite
domain of fluid is computed using a continuum two-phase flow model. Bubble dynamics are
computed, on the microscale, using the Rayleigh—Plesset equation. A Lagrangian finite volume
scheme and implicit adaptive time marching are employed to accurately resolve bubbly shock waves
and other steep gradients in the flow. The one-dimensional, unsteady computations show that when
the wall oscillation frequency is much smaller than the bubble natural frequency, the power radiated
away from the wall is limited by an acoustic saturation effétte radiated power becomes
independent of the amplitude of vibratiprvhich is similar to that found in a pure gas. That is, for
large enough vibration amplitude, nonlinear steepening of the generated waves leads to shocking of
the wave train, and the dissipation associated with the jump conditions across each shock limits the
radiated power. In the model, damping of the bubble volume oscillations is restricted to a simple
“effective” viscosity. For wall oscillation frequency less than the bubble natural frequency, the
saturation amplitude of the radiated field is nearly independent of any specific damping mechanism.
Finally, implications for noise radiation from cavitating flows are discussed.2080 American
Institute of Physicg.S1070-663(00)00511-0

I. INTRODUCTION Brennefi~1° have also explored weakly nonlinear solutions.
Fewer nonlinear solutionéwhich must be solved nu-
Cavitation leads to the production of noise, shock wavesmerically) have been presented in the literature. Of these,
and a host of flow instabilities. These, in turn, lead to dam-methods which coupldynamicequations for the bubble mi-
age of nearby solid surfaces, to radiated noise, and to degraroscale should be distinguished from methods which intro-
dation of the performance of devices. Previous investigatorguce an algebraic equation of state to relate mixture density
have identified the violent collapse of clouds of cavitationto pressure. While the results of the latterg., Refs. 11 and
bubbles as a possible mechanism for noise generation an@) may be of qualitative value, they imply a quasistatic
material damage. The violent collapse of the cloud leads tgituation which is inappropriate to most bubbly cavitating
the production of intense bubbly shock waves, and may bélows, which are inherently unsteady. Studies including dy-
related to other instabilities of the flow. Aside from the im- namic (e.g., Rayleigh—Plessemodels for the bubbly mi-
portant problem of cavitation on propellers, there are a varicroscale, include the numerical investigations of shock wave
ety of applications where the nonlinear dynamics of bubblepropagation in fluids with noncondensible gas bubbfe$,
play an important role. Experiments in these flows are ofterzavitation bubbled®®and the dynamics of spherically sym-
difficult, and therefore computational modeling is importantmetric clouds of bubble$}’?°and the flow on a hydrofoil
not only for prediction, but also as a means to study the flonsection?* The Kubotaet al. study, while most geometrically
physics. complex, involved amad hoclimitation that bubbles were not
We report here computations of the bubbly cavitatingpermitted to collapse below their original nuclei size, which
flow caused by normal oscillation of a plane rigid wall adja- excludes the formation of the large pressure perturbations
cent to a semi-infinite domain of fluid. In a companion study,and shock waves which are an important part of cloud cavi-
a similar methodology is applied to quasi-one-dimensionatation. Wang and Brennéf?°highlight the role of inwardly
flows through de Laval nozzlésThe computations are car- propagating shock waves during the collapse of a cloud.
ried out for a cavitating flow model similar to the one origi- Geometric focusing leads to large local pressures and sug-
nally proposed by van Wijngaardéi.he essence of his ap- gests the potential for noise and damage.
proach, discussed in more detail in Sec. Il, is to couple the In the present paper we investigate the simple cavitating
Rayleigh—Plesset equation for the dynamics of sphericaflow caused by an oscillating wall. The motivation for study-
bubbles, on the microscale, to the equations for a continuunng the present configuration is twofold. First, the develop-
two phase flow on the macroscale. A significant body ofment of accurate numerical methods for bubbly cavitating
literature now exists which uses similar modeling to explorefiows is difficult, and it is useful to establish benchmark so-
the linearized dynamics of clouds of bubbfe§Kumar and  lutions to relatively simple problems where the accuracy of
the numerics can be checked. Second, though the geometry

aAuthor to whom all correspondence should be addressed; electronic mailS KePt simple and restricted to one spatial dimension, t'he
colonius@caltech.edu flow may be thought to represent, to first order, the flow in
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vibratory cavitation-damage-assessment devices. An impoisentropic approximation for all bubbles, along with the
tant restriction of the present results is thataahhog but  simple “effective” damping discussed previously. The im-
computationally fast, model is used for damping the bubblegact of this simplified model for the damping is further dis-
radial motion. We argue in Sec. 1l B that the specific damp-cussed in Sec. Il B.

ing mechanisms are, for wall oscillation frequency much  These assumptions lead to macroscale conservation
smaller than the bubble natural frequency, largely irrelevanequations for mass and momentum of the bubbly mixture:
to the overall dynamics of the mixture.
. . Dp (9Ui

The paper is organized as follows. In Sec. II, the con- 4, =0, (1)
tinuum bubbly flow model and its numerical implementation ~ Pt~ 9Xi

are discussed. An accurate nonreflecting boundary condition, p, 1 ap
which allows the semi-infinite domain to be truncated to a ~ —— —=
finite strip, is developed in Sec. IIB. A Lagrangian finite
volume scheme is derived in Sec. Il C and validation is giverNote that viscous terms and gravity have been neglected in
in Sec. I D. Results are presented in Sec. lll. In Sec. lll C, arthe momentum equation.

analytical expression for the radiated pressure waves, and On the microscale, the typical bubble radig$x,t), is
their saturation, is developed in the low frequency limit. governed by the Rayleigh—Plesset equation:

Concluding comments are placed in Sec. IV. DR) 3 ( DR)z 1 DR

—+_ —_
R Dt>° 2| Dt

+ — =0.

+p= —+i(R*1—R*37)
PR Dt  We
Il. THE MODEL AND NUMERICAL METHOD

A. Physical modeling T1_R-3r =
+5(1-R*)+P=0. ©)

We consider a continuum bubbly flow modet?>*The
equations and simplifying assumptions and their justification ~ The system of equations is closed by noting that the
are briefly described here; the original references should babove-mentioned assumptions lead to a relation between the
consulted for more detailed discussion of the derivation.  mixture density and bubble radius:

The essence of the model is to couple conventional con- anR3 | 1
tinuity and momentum equations for a compressible liquid—  p= 1 0 )
vapor mixture to a Rayleigh—Plesset equation for the bubble —ao
dynamics which provides the necessary relation connecting In Egs. (1)—(4) the mixture densityp, is made dimen-
the local pressure with the bubble size and therefore the localonless by the constant liquid densipy,. The initial void
mixture density. The principle modeling assumptions are thafraction is denoted byy,. Lengths,x;, and the bubble ra-
bubbles are spherical and that typical length scales associateflis, R, are normalized by an equilibrium bubble radiRs,
with fluctuations in the mixture are large compared to theand the mixture velocityy;, is normalized by the equilib-
typical bubble radius. The mixture is further assumed to beium bubble natural frequencyy,, times the equilibrium
dilute (low void fraction, to initially contain a large number bubble radius. The pressurB, is measured relative to its
of nuclei (heterogeneous nucleatiprand fusion and fission equilibrium value,py, and normalized by, R3w3. Time, t,
of bubbles are not permitted. Moreover, the liquid phase iss normalized by kb,. Moreover,o is the cavitation num-

incompressible. _ _ ber, defined asp,— p,)/3p R3w3, wherep, is the vapor
Further assumptions are that relative motion between thgressyre. The ratio of specific heats for a noncondensable gas

phases can be neglected, and liquid compressibility effect$, he pubble isy. The effective damping for spherical

can be neglected in the Rayleigh—Plesset equation. Theggppjes is denoted by and is discussed in detail in Sec.

latter assumptions have been shown to have mir12imal iMpagfiB. The Weber number is given by Wep R30S,

on the linearized dynamics of spherical bubkfre%f ~ whereSis the(constank surface tension. We note that these
Damping of the bubble radial motion, which in reality is gq,ations may be derived using a detailed ensemble phase

governed by a complex interaction of diffusive and thermo'averaging technique, as describe by Zhang and Prosgretti.

dynamic effects, is modeled with a simple “effective”  agq 3 result of the way in which the equations have been
damping, and the further assumption that any noncondens;yndimensionalized. the valu®®=1. P=0. u=0 and p

able gas in the bubbles is fully mixed and undergoes isentro= 1 _ a, constitute a steady solution of E(B), and this is
pic compression and expansion. The use of a polytr@pid  (eferred to as bubble equilibrium. For a slight disturbance
isentropig exponent is not strictly valid for nonlinear oscil- oy this equilibrium state, bubbles will oscillate with their
lations of bubbleg* Far from the wall, oscillations are nearly natural frequencyw,. Since the equations have been nor-

linear and, for low frequency, isothermal behavior is prob-,5jized byw,, the expression for the natural frequency be-
ably more realistic. Near the wall, however, bubble collapsg.,mes

is violent and nonlinear, and adiabatic behavior seems more
appropriate(especially considering the internal motions of
the gas that would exist if spherical symmetry is Jodto
avoid solution of unsteady radial diffusion equations forIn what follows we consider We1 andy=1.4, and thus
mass, momentum, and energy for the bubble contents at each
position in the mixture, we choose for simplicity to use the 0~0.475. (6)

1+

4

2 3, 1)+ 5
V%(V )T_' (5
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Moreover, for convenience we confine attention to a fixed (1—ag) 12
equilibrium void fracti 9 Z(w)"==(1-ag)c=* (05— 1=iwdp)
quilibrium void fraction,«, of 1%. 0 3ag 0 D )

(10

. S ) where the positive and negative roots correspond to right-

moving wall. The boundary condition for the wall is that the ye|ocitieg, respectively. Thus at one boundary of the do-
fluid velocity normal to the wall is equal to the wall velocity. main, a nonreflecting boundary condition is

In the following we specifically consider sinusoidal motion R o
of the wall given by p=Z"u+p,, (12)

B. Boundary conditions

Uy (X ) =Asin(27(t/T)). (7)  where we have addeg] to allow the possibility of arbitrarily

This introduces two additional nondimensional parameterss'pecIflecj incoming pressure disturbances. Equaltidy is

the amplitudeA (relative toRyw,, and the frequency of wall fonlocal in time since it _contalns the square root of the fre-
oscillation, w,,, which is made dimensionless with . qguency. If the frequency is further assumed to be small, then

Often a semi-infinite domain can be treated numerically,We can approximate Eq11) by

at least for incompressible flow problems, by mapping the SpCo P

infinite domain to a finite computational one. For compress-  P(Xn,1) =poCou(Xn, ) = —— —=(Xn,O+py, - (12)
ible flow problems which involve acoustic waves that propa-

gate to infinity and decay only slowlor not at all in the ~Where
case of one-dimensional inviscid flpwdomain mappings 1
are problematic since the waves become more and more Cozwo(m
poorly resolved as they propagate through the highly 0 0
stretched mesh near infinity. In these types of problems, The efficacy of these nonreflecting boundary conditions
therefore, the computational domain is usually truncated at & discussed in Sec. I D.

finite location, and an artificial boundary condition is im-

posed. C. A Lagrangian finite volume scheme

To pose an artificial boundary condition, it is necessary ¢ is not trivial to obtain an accurate and efficient numeri-

to make additional assumptions about the flow outside theg goution of flow equations coupled to highly nonlinear
region of m_tere;t. Considering the one-dimensional ﬂo_Wbubee dynamics. In the present work we begin by deriving a
next to the vibrating wall, we suppose that the bubbly flow 'Shumerical method for one-dimensional flow. The develop-

semi-infinite and impose a nonreflecting boundary conditiony,eny of accurate multidimensional schemes will be pursued
at the edge of the truncated domain. The nonreflecting, future publications.

boundary conditiorfapproximately eliminates any incoming
wave at the edge of the computational domain.

The development of nonreflecting boundary conditions
even for hyperboligdnondispersive problems, is difficult in

1/2

Equations (1)—(4) are integrated using a one-
dimensional Lagrangian finite volume scheme in which each
‘control volume face moves at the local fluid velocity. The

Lagrangian framework is convenient for two reasons: First, it

the general mult|d|meér715|onal case. The reader is referred i qjjitates the application of the boundary condition at the
recent review papef$?’ for a detailed discussion of the im- moving wall, and second, it allows the Rayleigh—Plesset
portant issues. For linear one-dimensional hyperbolic sys:

X o equation to be integratetfor a particular Lagrangian ele-
tems an exact nonreflecting boundary condition may be o Meny as an ordinary differential equatiofODE). The

tained by decomposing the solution into a set of decouplegheihog discretely conserves both mass and momentum, and
(characteristic waves. In the present case, the waves arenus appropriately preserves “jump” conditions across bub-

ponlingar and dispersive. However, smal amplitt@ﬁimegr- bly shock wavegwhich, unlike gas dynamic shocks, have
ized disturbances with frequenay and wave numbekwill  finjite thickness with an internal structure dictated by inertial

propagate at a speed effects.
12 Consider a one-dimensional space divided into a collec-
c=wlk==* m(l—wz—iw%) : (8)  tion of N control volumes. Integrating Eqél) and (2) over
0 0 the control volumes we obtain, fg=1,2, ... N—1:

Equation(8) follows from the Fourier transform of the lin-
earized versions of Eq$l)—(4) (e.g., Ref. 28 Note thatw i Xj+1de:0 (13)
is normalized bywg, k is normalized by Ry, andc is dt X] '
normalized byRywg. d (xia

Furthermore, for one-dimensional small amplitude dis- d_J : pudx=P;—Pj. ;. (14)
turbances, it can be shown that the Fourier amplitudes of the dtJx,

velocity and pressurey andp, respectively, are related by  Equations(13) and (14) describe the rate of change of the
[A):Z(w)iﬂ ) total mass and momentum in tfté control volume. Each _of
' the faces (=1,2, ... N) of the control volume moves with
whereZ(w) ™ is the “acoustic impedance,” given by the local fluid velocity and therefore
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dx the limit of zero time step, and to provide an error estimate
ar Ui (15 for the integration. The overall time step is adjusted based on
the number of subdivisions and the error estimate. The de-

whereu; is shorthand foru(x;(t),t). Also, Eg.(3) can be tails of the scheme are as given by Hairer and Warher.

split into two first-order equations at each face: Numerical experiments showed that the extrapolation
RV method is much more efficient than first- and second-order
L) L Gi+P,=0 (16)  implicit schemes.
dt R o ,

The basic time advancement of the extrapolation method
dR. is chosen to be the implicit Euler method. Using this integra-
d_tJ_V':O’ (170  tion scheme on Eq$13)—(19) and going through the alge-

bra, we can establisN equations of the form
where N+l N+l on+ly__ (-
Fi(RZ1,R" R 1)=0, j=12,...,N, (21

V2 2 _ _ .
Gj:_J+5DRj_1Vj+ —(Rj_l—Rj_Sk)+ g(l_Rj—3k)_ which containN unknowns,R?”, for j=1,2,...N. In
2 We 2 each equatiorfF;, various parameters of the problem also

(18) appear as well as the fields from previous time levels. To
Finally, the density and bubble radius at the faces are relatesblve the nonlinear equations we use Newton's method. In
by the present case, the Jacobian matrix is tridiagonal in form
3\ -1 and so Newton iterations are rapidly solved.
pi=|1+ 2oR; ) (19) Finally, the stability of the above-mentioned numerical
. 1-ag scheme was analyzed using the von Neumann mefbag,

Ref. 31 for the linearization of Eqs(13)—(19) about the

equilibrium flow (R=1). The resulting ODE is, in the semi-

discrete limit, inherently stable, and therefore A-stable im-

plicit schemes will also be stable. Note that the extrapolated

schemes used here are not A-stable, but only nearly so, and

they can be unstable for eigenvalues which lie near the

imaginary axis’ In practice we have found that our scheme

whereAx;=x;.;—X;, and wheref is any of RjV;, R;, or s stable even for large time steps, and even in the presence

M;. of significant nonlinearity.

Equationg13)—(19) are 6N—2 ODEs for 68\ unknowns

(pj» Ry, Vj,Xj,u;, andP; at the edges of the control vol- D. Code validation

umes,j=1,2,... N). Specifying two boundary conditions . . .

closesjthe systemN?At thpe mfoyvingg solid wall theyveloa:igyis Qalculatlon of steadily propagating bgbbly shock waves

prescribed. The approximate nonreflecting boundary condiProvides a useful test case fqr the numerlcal method, as their

tion derived previouslyEq. (12)] is applied at the other end structur'e can be comput.ed,'ln a stationary reference frame,

of the computational domain. by sqlvmg an ODE. We ms_tlg_ate a shock wave in the com-
I]@utanonal domain by specifying a pressure increase at the

These equations are solved in the Lagrangian coordina f bound in the f £ an incid h
system. Note that, depending on the solution, the controff 't Poundary, in the form of an incident wave whose pres-

volumes could become very small or very large. If they he-SUr€ IS given by

To integrate this system dfas yet exagtequations, it
remains to approximate the integrals in Eqs3) and(14). A
second-order approximation is used:

Xj+l AX] 3
L fdx= " (fj+1,,2)+0(8%), (20

]

come large then the trapezoidal rule given in E20) may Pa t

not be accurate. In that case it may be necessargrtesh P=7 1+tan|‘(_|_— ) (22
the computation by interpolating the Lagrangian quantities f

back to a regular grid. The parameteiT; controls the time scale over which the

An interesting feature of the discretized equations is thapressure jump is accomplished. The pressure rise begins
an explicit time marching of the equations will not conservepropagating to the left through the domain at the sonic speed
mass precisely. For explicit time marching, Eq$5) and  given earlier in Eq(8). As it propagates, nonlinearity cause
(17) give x; andR; at the new time level. Equatidid9) then  the wave front to steepen and accelerate, and eventually a
gives the density at the new time level, and so in general, Edoubbly shock wave is formed. (eventually propagates to
(13) cannot be satisfied at the new time level. This may behe left at a(constant speedu;. To test the accuracy of the
related to difficulties previous investigators have encoun<ode, we compare in Fig. 1 the shock wave structure from
tered in solving similar equations with explicit scherfié8.  the present unsteady code with the steady bubbly shock wave

For this reasortand the additional advantage of handling solution obtained by solving Ed6.72 of Brenner® Note
stiffnesg an implicit time marching scheme is used. Thethat the steady equation is an ODE which must also be
method chosen is a Richardson extrapolation method basewlved numerically and requires an initial position and rate of
on the implicit Euler method. For a given time step, a seriechange of bubble radius with position which are taken from
of predictions are made for the solution at the new time levethe unsteady numerical solution. The figures show excellent
based on different numbers of subdivisions of the time interagreement between the two independent solutions. Appar-
val. The series of predictions is then used to extrapolate tently as the resolution of the unsteady solution is increased,
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1
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R 0.85
0.8r
0.75 J
0.7 : : : :
0 200 400 600 800 1000
X
1 FIG. 2. Nonlinear steepening of the waves for k870, 6,=0.4, a
=0.01,0=0.475. A grid of 801 points is used on a domain 400 units wide
0.95r (relative to the initial equilibrium bubble radiusPlotted are: The wall ve-
locity (—) and the particle velocity ak=400 for A=0.0001 (--), A
0.9¢ =0.001(—--), andA=0.01(---). All velocities are normalized by the am-
plitude of the wall velocity A.
R 0.851
0.8f . ", .
A measure of the efficacy of the boundary condition is the
0.75} history of total “acoustic energy,” which is estimated sim-
ply asE(t)=3]L, p7. Tests show that for small amplitudes
" n ) _ _3 . . . .
07 00 200 600 800 1000 [pPAa=0(10"°) and smalle} the reflection coefficientratio

X of energy in the domain before and after passage of the pulse
, _ through the boundajyis about 0.0016%. As the amplitude is
FIG. 1. Comparison of numerically calculated unsteady shock w@yend increased the reflection coefficient increases owing to non-
a steady shock—) given by the solution of Eq6.72 of Brennen(1995. . . . .
The various parametefmade nondimensional as discussed previgueslg: linear effects which are not accounted for 'n the an?‘lyS'S-
We= 1870, §,=0.04, aq=0.01, t,=100, T;=25, ¢=0.475,k=1.4 (w, However, forp, as large as 0.05 the reflection coefficient
=1). (& Ax; is initially 4 for each celli(b) Ax; is initially 2. These values  increases only to 0.36%, and clearly most of the energy is
do not change significantly during the course of the shock propagation. il absorbed by the boundary. Note that for these large am-
plitude disturbances the incident wave steepens and forms a
bubbly shock, similar to that described previously.
the phase error between the two solutions is decreased. There
is a slightly exaggerated decay of the subsequent reboun(iiﬁ, RESULTS
and collapses in the numerical solution due to numerical dis- -
sipation. It should be noted that the present unsteady shodk Low frequency vibration

has propagated a substantial distance by the time the com- o begin by considering low frequency wall vibration,

parison is made. One would expect further dissipation of th%w<1. In what follows, we set the effective damping coef-
collapses and rebounds to take place upon further Propagfigient, 6., in the Rayleigh—Plesset equation to 0.4. The

tion. effects of damping are discussed in Sec. Il B.

For small enough amplitudes, nonlinear effects are ab-
sent and, for low enough frequency, the phase speed of pres-
A series of computations were also performed to test theure disturbances is real and constémit a function fre-

efficacy of the nonreflecting boundary condition. An incom-quency, according to Eq.(8). That is, wall vibration
ing wave was generated at the nonreflecting boundary bgenerates propagating disturbances that are only slightly at-
specifying tenuated by the damping in the Rayleigh—Plesset equation.
For higher frequencies, again at sufficiently low amplitude,
P1=PaXp(—(IT)?). (23 the phase speed in E@®) is dispersive. Neglecting the small
If T is large enough, the energy of the wave is restricted talissipation, the phase speed is purely imaginary for frequen-
low frequencies, and, for small amplitude, it should propa-cies greater thaw,. In this case the wave motion is cut-off,
gate nondispersively at a speeg],given by Eq.(8). The  with disturbances decaying exponentially with distance from
wave propagates first in the negatixedirection, reflects the wall.
from the solid wall, propagates in the positixedirection, Plotted in Fig. 2 are time traces of the mixture velocity at
and eventually passes through the nonreflecting boundarga distance of 40(R, from the wall, for w,,=0.1, and for
Because the boundary condition is approximate, some fraaelatively low amplitudes of wall vibration. In Fig. 2, the
tion of the wave energy is reflected back, and the procesgelocity has been normalized by the amplitude, which allows
continues until there is no enerdpr rather until there is a wide range of amplitudes to be depicted on the same scale.
nothing but accumulated numerical epréaft in the domain.  This indicates nearly linear behavior. Note that the time axis

E. Test of nonreflecting boundary condition
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0.03 B. The effective damping parameter

In this section we discuss the limitations of the use of an
effective damping parameter for volume oscillations of
spherical bubbles. It has been recognized for many years that
several different physical processes may contribute to this
damping. Chapman and Pleséegtrovided a useful summary
of the relative magnitudes of the contributions from viscous
liquid effects, from acoustic radiation, and from thermal ef-
fects. More recent work has further quantified these pro-
00 ‘ ‘ , cesses in nonlinear calculations. For noncondensible gas
4 5 6 7 8 bubbles, Watanabe and Prospetéghowed that the thermal

t/T exchange between bubble and liquid must be modeled by
FIG. 3. Asymptotic shock structure for the same parameters as in Fig. 2 bi0IVINg an unsteady radial heat diffusion equation for the
with A=0.05 (—), A=0.075 (---), A=0.01(—-—), A=0.2 (), and A bubble contents. Their results showed that this process was
=0.3(—). Note that the velocitieare notnormalized byA. not well modeled by a single “effective” polytropic index.
They were able to show that their model agreed with experi-
ments for shocks that had time to broaden from an initial
sharp front to a more diffuse profile. The issue is also dis-

is scaled by the period of wall oscillation, and is only plottedcussed by Kamedet al,** who also show a substantial im-
after initial transients have died out; the wave train is peri-Pact of the thermal effects on the shock profile. The relative
odic. For the largest amplitude in the plét=0.01, nonlin- importance of thermal diffusion for vapgproduced by cavi-
ear Steepening of the waves is evident. tation) or mixtures of vapor and noncondensible gas is not as

For still higher amplitudes, the compressions steepefglear as it is for bubbles consisting only of noncondensible
into shock waves, and the waves take the approximate forrdas>* and detailed computations of shocks in such flows
of a periodic train ofN waves. This is illustrated in Fig. 3, (including heat and mass diffusion effeckave not yet been
which is similar to Fig. 2, but with higher amplitudes. Note attempted.
that in Fig. 3, the velocitys notscaled with the amplitude of Another process which leads, on average, to the dissipa-
the wall velocity. Clearly a saturation of the radiated energytion or “smoothing” of bubble oscillations is statistical
takes place. This is due to the presence of shocks whickariations in bubble size either spatially or in different real-
dissipate increasing amounts of energy as the amplitude igations of the flow(or both. The basic process has been
increased. The process is similar to theoustic saturation demonstrated in computations by Kameelgal'* and by
phenomena, which is well known in gas dynamics. In fact Wang?® though neither computational model included all ef-
for low frequencies, the saturated wave form can be prefects consistent with statistical variations in the low void
dicted analytically, which we demonstrate in Sec. IlI C. fraction approximation, as can be seen by comparing their

Very near the wall, as the amplitude is increased, signifiimodels with the rigorous ensemble phase-averaging process
cant bubble growtHcavitation occurs in a thin layer near developed by Zhang and Prosperé&tti.
the wall. The bubble sizeR(x,t), adjacent to the wall is A final uncertainty in real cavitating bubbly flows is the
shown as a function of time in Fig. 4. The response of thdikelihood that the fission of bubbles and other departures
layer near the wall is reminiscent of the response of a singlérom sphericity, which often occurs in the first collapse, in-
bubble to a harmonic pressure field. troduces additionaland perhaps domingntlissipation that
reduces the number and magnitude of the rebounds after the
first collapse. Quantifying this additional attenuation mecha-
nism presents a real challenge as yet not met.

In the present work, we have tried to account for all
these effects in a computational fast, albeit crude, manner, by
6r ] using a total “effective” viscosity in place of the physical
liquid viscosity in the Rayleigh—Plesset equation. This
simple approach has been used previously, for example, to
match experimental results for the attenuation of small am-
plitude (linean acoustic waves, though with mixed restifts.

The limitations of this approach are now discussed. For
the results presented in Sec. lllA we have uskg=0.4.
Values of 6p as large as 0.5 have been used to match theo-
retical and experimental predictions for the attenuation of
acoustic waves in bubbly mixturé&Interestingly, for suffi-
ciently low frequencies of wall vibration, it turns out that

FIG. 4. Growth and collapse of bubble radius near wele same param- 0p=~ 0.5 represents a significant transition in the results pre-
eters and legend as in Fig).3 sented in Sec. lll A. To demonstrate this, the bubble radius at

0.02f

0.01f

-0.01
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6 ' ' , forcing frequency, even though the flow adjacent to the wall
remains significantly modified by bubble dynamitkat is,
the flow is not barotropic
A well known result for plane waves generated by nor-
mal oscillation of a wall in a gas is acoustic saturatisee
the discussion by Piercé which contains the original refer-
ence$. Even in the limit of vanishing dissipation mecha-
nisms(e.g., viscosity, heat conduction, et@coustic energy
is dissipated when compressions steepen into shocks. For
. shocks, the total amount of dissipation is, for small viscosity,
0 ' : : independent of viscosity, dependent only on the “jump con-
5 5.25 5.5 5.75 6 e o
ditions” across the shock. Larger shocks dissipate more en-
/T . LT
ergy. Thus as the amplitude of vibration is increased, waves
FIG. 5. Growth and collapse of bubble radius near wall 46+0.3 and  shock closer and closer to wall, and with greater shock
9p=0.4(—), =08 (---), 5p=4.0(=-), and 5p=40.0(--). strength. The pressure at a fixed distance from the wall, suf-
ficiently far from the wall, then becomes independent of the
) o ) ) amplitude of vibration.
the wall is plotted in Fig. 5 over one period, for a series of "5 \veak shock analysige.g., Ref. 37 shows that at a

runs with A=0.3 but with differing values 0. FOr 6p  fiveq value ofx, the maximum pressuré@ver a cyclg is
greater than 0.8 the maximum bubble radius begins to degiven (in dimensional form by

crease significantly. For this large value of the damping theré

is no violent collapse and rebound of the cloud. For values ) WPng

below 0.8 the maximum bubble radius appears to saturate, Pa if X 2 Bopa®

and the only significant difference in the results is the num- B 3

ber of collapses and rebounds during each cycle. For values Prmax= TPA if >3”p000 (24
of 8p much less than 0.4nhot shown in the plot the larger XBow Bobaw '

number of rebounds lead to much greater computational re- 1+pa m

quirements for adequate resolution of both temporal and spa- . . —_—
tial features of the flow wherep, is the amplitude of pressure oscillation at the wall,

Thus, at low frequency, there appears to be an uppelf© andc, are the amb.ient. density ar!d speed of soumdls_
limit on the effective damping, beyond which the dampingthe fr_equgncy of oscillation, ang, is a thermodynamic
has a significant impact on the entire solution for the mix-duantity given, for a perfect gas, by
ture. Below this value, varying the effective damping
changes only the attenuation of the “ringing” of the bubbles ~ Bo=1+pqCo o
following collapse. Such ringing may have an impact on the
high frequency acoustic field produced by cavitating flowswhere the partial derivative is at fixed entropy and evaluated
but it is evidently not of dynamic significance to the flow of at ambient conditions. The quantif§, is a measure of the
the mixture. The detailed reason for this, as derived in Semonlinear steepening of the waves, and stems from two ef-
1 C, is that the dissipation associated with the shock jumpfects. The first is that, for compression, the wave'’s patrticle
conditions is much larger than, and independent of, the disvelocity enhances its propagation speed. The second is that
sipation provided by any of the aforementioned processeshe speed of sound is increased by compression. Note that for
Thus it appears, for low frequency forcing, that it is rela-a perfect gas, the first effect is the dominant one, and that
tively unimportant to model the detailed thermal processes iBy=(y+ 1)/2.
the bubble. To apply Eq.(24) to a bubbly cavitating flow, we take

As the externally imposed frequency approaches théhe limit of zero frequency in E(8) to obtain(reverting to
bubble natural frequency, it is not presently clear whethedimensional quantitigs
realistic results can be obtained with the effective damping. R202
Indeed, computations we performed for high frequency os-  -2_ 0%0
cillation showed that the collapse and rebound process is = 3ao(l—ag)’

intimately related to the dynamics of the overall mixture, andyere the subscript “0” here refers to ambient conditions
there was no way to justify the lumping of all dissipative yith hupble equilibrium. For large Weber number, we have,

(25

0

(26)

effects into a single effective damping. from Sec. Il, thatyo=1/6 and thus
C. Analytical model of acoustic saturation 2= ¥(Po—Py) 27)
0_—.
As discussed in Sec. Il A, large amplitude wall vibra- @oPo

tion, at low frequency, results in a saturation of the acousticThis can be differentiated with respectpg to obtain,:
energy which is radiated away from the wall. In this section,
we show that a model for the radiated wave form and its Bo=

‘y+ l+2(1’0
=1+ —_—,
saturation pressure may be obtained in the limit of vanishing ' ° 2ap(1—ap)

(28)
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FIG. 6. Spatial evolution of thénondimensionalpressure for wall oscilla-
tion at 0.02», for several different amplitudes of oscillation and We
=1870, 5p=0.4, ¢;=0.01, 0=0.475. The dashed lines are plots of Eq.
(24).

where the expressiopy~p, (1—«ay) has been used. For
small «g this becomes

y+1
2a0 '

Bo~

(29
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0.03

FIG. 7. Spatial evolution ofnondimensionalpressure for wall oscillation
at 0.02v»,. Same conditions in Fig. 6 with=0.005, andsp=0.4 (—-—)
and 0.08(—).

process of acoustic saturation. This further suggests that the
dissipation provided by the effective damping is asymptoti-
cally small in the evolution of the waves, with the majority
of the dissipation due to the shock jump conditions. In other
words, the collapses and rebounds following the shocks ap-
pear to have no dynamic significance for the evolution of the
wave. For effective damping much larger than 0.4, this is not
true, as discussed previously. If the damping were set to zero

which is identical to the result for a pure perfect gas, excepthen unattenuated ringing from each compression would per-
that it is divided by the void fraction. The result is singular asSist indefinitely. On the other hand, as the frequency goes to
the void fraction is decreased to zero, since the liquid hagero the wavelength of the ringing following the shock be-
been considered as incompressible. Valueggfin a real ~ comes vanishingly small compared to the wavelength of the
pure liquid are on the order of 10. It should be noted thatinderlying N wave. Thus acoustic saturation would take
larger values of3 imply that shocks are formed with a lower Place for arbitrarily small damping, provided that the fre-
amplitude of vibration than would be necessary in a pure gagluency is low enough.

Equation (24) is compared in Fig. 6 to the computed At the higher frequency ob,,=0.1, as was shown in the
pressure as a function of distance from the nominal walFig. 3, the amplitude of the radiated waves still saturates.
position, for several amplitudes of wall vibration. The resultsHowever, comparison with the predicted maximum pressure
presented are for a vibration frequeney,=0.02, and the of Eq. (24) becomes more difficult since collapse and re-
distance from the wall has been normalized by the acoustibound following collapse occupy a much larger fraction of
wavelength\ =2m¢y/w,,. The maximum pressure is appar- the total cycle. This is shown in Fig. 8, where the spatial
ently well predicted by Eq(24) (dashed ling Note that, as evolution of pressure is shown fas,,=0.1, for A=0.005
predicted by Eq(24), saturation occurs closer to the wall as and several values of the effective damping. For comparison
the amplitude is increased. At the highest amplitude, shockpurposes, the result fas,,=0.02 and the prediction for the
ing of the wave is immediate. maximum pressure from E@24) are replotted.

Bubbly shock waves are characterized by a pressure Thus the process of acoustic saturation in bubbly flow is,
jump followed by oscillations, or ringing, at a frequency strictly speaking, only valid when the driving frequency is
which, depending on the damping, varies from about a tentimuch lower than the bubble natural frequency, and when the
of the postshock natural frequency to, for large damping, thelamping is sufficiently small, but nonzero. van

postshock natural frequency for small dampffidhese os-
cillations are evident in the train df waves in Fig. 6, but

Wijngaarderi® noted that generally shock waves in bubbly
flows involve an interplay between three mechanisms, con-

they are highly damped due to the relatively large dampingsection (or wave steepeningdissipation, and dispersion. In

coefficient,5p=0.4. In Fig. 7, the results foA=0.005 are
replotted for several wavelengths of oscillatiGavay from

going to higher frequencies, the interplay is complicated be-
cause not only is the ringing frequency following shocks

the wal) along with a results for the same conditions exceptcloser to the driving frequency, but dispersive effects in Eq.
that the damping was lowered to 0.08. While the ringing(8) begin to become important. By experimentation, we find
following the shocks is enhanced, these oscillations ar¢hat the acoustic saturation process is valid for forcing fre-
merely superimposed on the badicwave predicted by the quencies below aboud,,=0.2.



2760 Phys. Fluids, Vol. 12, No. 11, November 2000 Colonius, d’Auria, and Brennen

that the acoustic field is more narrowly peaked about the
dominant frequency.

We speculate that acoustic saturation may explain, at
least in part, some of these observations. For spherical
waves, the large expression in Eq(24) remains valid ex-
cept for a multiplicative logarithmic dependence on the ra-
dial distance from the souré For a fixed distance from the
source, the average pressure level at saturation would, for
low void fraction, obey the following scaling:

2 (pO_ pv)3

prage? %0

0.08

0.06

0.04

0.02

»0.02

1 Ly L where w is the (dimensional frequency of the source. This
0 2 Ay follows from Eq.(24) at largex, using definitions from Sec.
_ _ _ _ ll. For submerged jets, Frankfifi suggests that the peak
'206,'035, Saﬁg:e(‘)’jlztf’i)log;(rgfom:?_sfr)‘a;%e;?fg.ézr‘m_z)(.)‘kls/; Strouhal number of the radiated noise=StD/U scales like
shown are results foh=0.005 andw,,=0.02(—), as well as the prediction o?, whereD is the jet diameter ant the jet velocity, and
of Eq. (24). the cavitation number is defined with the jet velocity. Noting
that Franklin obtained different cavitation numbers by vary-
ing the jet velocity while holding the pressure constant, we
obtain, again at a fixed location,

IV. DISCUSSION
> (Po—Py)? 31
. . 3
We have computed numerically bubbly cavitation &0
caused by the normal oscillating of a rigid wall. The prin- jn agreement with his observations of submerged jets.
Ciple result of the Computations is that when the wall oscil- Of course, this result is open to criticism on several

lation frequency is much smaller than the bubble natural frefronts. The result here is for a simple harmonic source, not a
quency, the power radiated away from the wall is limited byturbulent bubbly flow with a broad band spectra. Also, we
an acoustic saturation effect, where the radiated power berave not accounted for the effects of having a distribution of
comes independent of the amplitude of vibration. This isphypble sizes, and gradients in bubble concentrations. Never-
similar to the process which occurs in a pure gas, whergnheless, it appears possible that the acoustic saturation pro-

nonlinear steepening of the generated waves leads to shockess could exist in practical cavitating flows, and merits fur-
ing of thg wave train, and the dissipation associated with thener investigation.
shocks limits the radiated power. For low enough frequency,
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