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Introduction

We have recently become concerned with making estimates of steady
forces that may be exerted between moving blade rows and stationary blade
rows or volutes. Our present interest is with time averaged forces for
estimation of shaft loads and flow asymmetry forces rather than with
transient processes. For this purpose we have adopted the well-known
"actuator" model for the blade row in which the flow leaving the row or
cascade is assumed to have a constant leaving angle. The disturbances
external to this row such as a volute may be represented by distributions
of vortex elements as was done for example by Domm and Hergt[l].

In the present case this singularity causes perturbations of the basic
one—-dimensional flow through the actuator cascade which lead to overall
rotor forces and flow perturbations which are the subject of interest here.
The problem then is one of constructing a velocity field that includes the
disturbance (but adds no more) and satisfies the flow tangency condition

leaving the blade row. With reference to Fig. 1 this requires

cl<

= cos B (L

at the row exit, y = 0, where v includes the disturbance velocity as

*Not presented at workshop.
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well as added perturbations needed to satisfy Eq. (1). This is a partic-

ularly simple problem when the flow field leaving the actuator row is

irrotational. 1In the next paragraph we consider two such cases where this

assumption is valid.

The Actuator Cascade

Here we consider steady flow of constant total pressure through an
actuator cascade. The flow leaving this cascade has a given direction Bv
{see Fig. 1) as this is equivalent to the Kutta condition. We now consider
two situations: in the first, we may imagine that there are disturbances
downstream of the cascade. These disturbances may be due to the effect of
downstream diffuser vanes or a volute structure for example. In the second,
as a particularly simple example, we consider the effect of periodic changes
in the blade leaving angle Bv on the leaving flow without any downstream
disturbances.

(i) Downstream disturbances.

In the notation of Fig. 1, the trailing edge is situated on the real
z axis. The flow is assumed to be irrotational so that complex variable
methods may be used. Let us consider the problem of the interaction of the
cascade with a single disturbance located in the upper half plane at z = ZO'
This is denoted by

Wd(z—zo) = u —ivd (Za)

d

where (u,v) are the velocity components in the (x,y) directions respective-
ly. The effect of the disturbance gives rise to additional correction terms

Wi(z) which cannot have any singularities In the upper half plane. The
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sSum
W, = w tw, (2v)

must satisfy the flow angle leaving condition

vd+v.+V

————— = cgt B (2)
ud+ui+U v

where U,V are mean flow velocity components in the absence of any disturb-

ance. Then on y = 0

v

d+vi-(ud+ui)c0t BV =0 (4a)

since V = U cot Bv' Here (vd,ud) are known. The induced disturbance

w, must result in the total velocity components satisfying (4a), i.e.,

auT+ va = 0 (4b)

(where tere a = 1, b = -tan ﬁv). Thus L has to satisfy a mixed bound~
ary condition on vy = 0, This turns out to be neatly handled by the

methods described by Cheng and Rott [2]. The induced disturbance Wy is

o _ 2-ib = —
1=~ a5 YalFEp) (5)

which is seen merely to be an "image" of w in the cascade exit plane.

d

This is easy to show; let
H(z) = (a—ib)wT .

Then Re{H(z)} = au + bv is required to be zero on the real axis. Now

set
H(z) = (aFib)wd(z—zo)—(a—ib);é(z¥gb) s (6)
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so that on y = 0,H(x,0) is the difference of two complex conjugate func-
tions and isg therefore purely imaginary. As an example, consider the row

of vortices of strength T and period d seen in Fig. 1. Then

ir X 1
wd =T QF' =§ z—zo—nd M
Then
B e A
i 2 € — :

n=-—o00 z—zo—nd

and finally Vo has the well-known sum

W, = L cot jfZHZO) + eZIBV cot Efi:fgz . (8)
T 2d d d

We should point out here that this image system is almost the same
as that used by Domm and Hergt to set up the interference problem for a volute
in the presence of a point source-vortex. The principal difference is that
here the leaving angle of the cascade is fully modelled instead of being
approximated in the mean.

(ii) Leaving angle variation.

In the above it was assumed that the leaving angle BV was constant.
This is not essential as the following example shows. Suppose Bv = Bv(x)

and that w., = 0. Then Eq. (3) becomes

d
vi+V
w0 T oot By
a1
or
~ Iy . = - \ .
u; ~ tan val (U-tan Bv )
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Let's assume that

B, (x) = EV+AB(x)

where Af is a small change. Then v is proportional to AR and we have

approximately

ui - tan vai = - —
coszs
v

ABV(X) > (9a)
which is of the form

aug + bvi = c(x) . (9b)

Disturbance flows of this type may again be tackled by the methods of [2];
more complete formulations are given in the book by Carrier, Krook and

Pearson [3]. Again we note that Eq. (9b) is equivalent to requiring that
Re{(a+ib)wi} = ¢(x) (%c)

on ¥y =0, A solution of this equation is

w, = - C
i at+ib

(z) (10)

provided c¢(z) is chosen to have no singularities in the upper half plane.

As a practical example we may imagine c(x) 1is of the form

c(x) = const. co0s x

and then it is easily seen that

_ const iz

Yi T abb

242



is the required disturbance flow since w vanishes for y » .

i

Moving Cascades

The above examples were for irrotational, constant-energy flows. When
the cascade moves in a tacgential direction (parallel to the x axis) work
is done on the fluid in accordance with the Euler formula. In what follows

the absolute flow is assumed to be steady and the cascade wmoves at speed .Ut

parallel to the x axis. Agsume alse that the Bernoulli constant upstream
of the cascade, Bl’ is constant everywhere. Then it follows that the

leaving Bernoulli constant 3B is given by

2

2
- - w
B2 = Bl+Ut(u2 ul) [1 oL ds

where w 1is the relative velocity parallel to the blades and ds 1is an
increment of blade arc. The relative flow is unsteady since the absolute

flow is steady. Thus

oV
- 2| _dy_
B, =B +Ut 1 - J 2 (1)

and here u,, u are tangential velocities immediately downstream of aund

1

upstream of corresponding points of the moving blade row. 1In general, B2
is not constant at every point along the exit from the row and we there-

fore expect the leaving flow to be rotational through the relation

VB”EXQ
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from which we find the only component of ® to be kw = or simply

U 2

1 =._—.._t—._ _a__ - — M}S_’O_)_

w{(x,0) .0 % (uz(x,O) ul(x€ a)) + gxz L (11a)
From Fig. 1 the blade exit is at y = 0, the inlet is at y = -a and L
refers to the "length"

° 4
L = J — .

2
—a €08 B _(¥)

We see that the downstream flow is then rotational. Progress is
readily made now only if we assume the disturbances to the flow field are
small compared to the mean velocity components (U,V). 1In that case it can

be assumed that w and B are constant* on mean flow streamlines given by

dy _ ¥V _
ax T tan o s
thus
w(x,y) = w(x~-y cot o)
and
B(x,y) = B(x-y cota) .

We now separate the unknown downstream and upstream flow field into

components as follows

(i) downstream (u,v)2 (U,V) + (ud,vd) + (ui,vi) + (ur,vr)

(ii) upstream (u,v)l = (Ul,V) + (Ul,Vl)

where (U,V), (U1V) are mean components, (ud,vd) is the downstream

*
i.e., we linearize the vorticity equations.
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potential disturbance, (ui,vi) is a downstream irrotational flow

and (ur,vr) is a rotational (shear) flow which accounts for the vorticity

v au
T T

) = - —

ox 3y

It follows that u v are constant along lines of =x-y cot ¢ = constant
and that v, = tan ¢ u_- The upstream disturbance (ul,vl) is irrotational.
In this decompogition (ud,vd) are given disturbances. The problen
then is to find the three sets of components (ur,vr), (ui,vi) and (ul,vl).
One relation between these is given by Eq. (1la). Two more relations are

needed. One of these is given by éontinuity across the cascade, i.e.,
v, (x,0) = v, (x_ ,-a) (12)

(here (xc,—a) and (x,0) are points corresponding to the same vane trace).

The other is by the flow tangency condition at y = 0, i.e.,

u, ., +u = (v.tv
i T i

J +vr)tan Bv . (13)

d

This is apparently a complicated system of relations to solve. To
sum up we have the initially unknown six veloeity components (ur,vr), (ui,vi)

and (ul,v Ur and v, are related to each other though the require-

l)'
ment that far downstream the mean flow angle is undisturbed. Both sets
(ui,vi) downstream and (ul,vl) upstream are conjugate (potential) func~
tions so that u and v are related. There are then only three unknown
functions left and we have the Eqns. (1la) (with the previous definition
of w), (12) and (13) to relate them. Thus a closed system is obtained

from which solutions analogous to Eq. (8) can be found. Then in principle,
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complete volute actuator impeller interactions can be worked out.

We should mention that the type of problem addressed in this section

is not new except in its applicationr to singular disturbances. Earlier
Ehrich [4] studied the effect of inlet wakes passing through rotor and
stator blade rows with a set of equations essentially didentical to the
present ones. Subsequently Katz [5] carried out a simllar computation
using the acceleration potential instead of the velocity components but
with the inclusion of losses through the blade row. Again the matching
problem across the blade row is essentially the same as the present one.

The interaction flow fields in these works were determined by Fourier series
expansion which 1s a suitable procedure when only a few terms are needed

to represent the disturbance.

Discussion

We have used the singularities of Eq. (8) to study the interaction
between a rotating actuator impeller and a volute (assuming, irrotational
volute flow). The unknown vorticity distribution on the volute is expres-
sed in a Glauert series the coefficients of which are then determined in
the usual way to make the volute surface a streamline. With theses furces
can be found. This task is nearly complete; we intend subsequently to in-

clude the rotational effects described in the previous section.
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