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Abstract The issue of the transport of dissolved nutrients and contaminants between the
sediment in the bottom of a lake or reservoir and the body of water above it is an important
one for many reasons. In particular the biological and chemical condition of the body of
water is intricately linked to these mass transport processes. As the review by Boudreau
(Rev Geophys 38(3):389—-416, 2000) clearly demonstrates those transport processes are very
complex involving mechanisms as diverse as the wave-induced flux between the sediment and
the overlying water and the effect of burrowing animals on the transport within the sediment
as well as basic diffusion mechanisms. The present paper focuses on one facet of these
transport processes; we re-examine the balance of diffusion and wave-induced advection
and demonstrate that the wave-induced flux of a solute from submerged sediment is not
necessarily purely diffusive as suggested by Harrison et al. (J Geophys Res 88:7617-7622,
1983) but can be dominated by a mean or time-averaged flux induced by the advective fluid
motion into and out of the sediment caused by the fluctuating pressure waves associated with
wave motion. Indeed along the subtidal shoreline where the fluctuating bottom pressures
are greatest, wave-induced advection will dominate the mean, time-averaged transport of
solute into or out of the sediment as suggested in the work of Riedl et al. (Mar Biol 13:210-
221, 1972). However, the present calculations also indicate that this advective flux decreases
rapidly with increasing depth so that further away from the shoreline the advective flux
becomes negligible relative to the diffusive flux and therefore the latter dominates in deeper
water.

Keywords Solute - Sediment - Mass transfer - Lakes and oceans

C. E. Brennen (X)) - J. Imberger
California Institute of Technology, Pasadena, CA, USA
e-mail: brennen @caltech.edu

@ Springer



222 Environ Fluid Mech (2014) 14:221-234

List of Symbols
Surface wave amplitude (m)
c Concentration of solute (kg m~3)
Coo Concentration as y tends to infinity (kg m~3)
Co Time-averaged concentration at the sediment surface (kg m~3)
¢ Amplitude of surface concentration fluctuation (kg m=2)
d Grain size (m)
D Diffusivity tensor (m%s™ 1)
Dy, Dr Longitudinal and transverse diffusivities (m2s~h
Dy Pure liquid molecular diffusivity (m?s~!)
Dp Porous medium molecular diffusivity (m%s™ 1)
D, Turbulent diffusivity in overlying water (m%s~ 1)
F Flux of solute (kg m~2s71)
F Time-averaged flux of solute (kg m~2s~!)
g Acceleration due to gravity (ms~2)
H Water depth (m)
i (12
k Wavenumber (m~')
Pe Peclet number |u|d/ Dy
q Sink strength factor s™hH
q Source strength factor (s 1)
(0] Filtered water volume per unit area time averaged over wave period (ms~!)
t Time (s)
u Pore water velocity vector (m s7h
U Maximum wave-induced pore water velocity (ms~!)
u,v, w Pore water velocities in x, y, z directions (m s7h
X Horizontal coordinate in direction of wave motion (m)
y Coordinate measured vertically downward (m)
Z Horizontal coordinate perpendicular to x and y (m)
a (D + Dr)/2 (ms™!)
B (Dy — Dr)/2 (ms™)
y,8 Constants
&En, T Dimensionless parameters
T Transport parameter, U/ (g’ oz)%
K Ratio of hydraulic conductivity to the porosity (ms™!)
P Water density (kgm—3)
0 kx — wt
1) Radian frequency of wave motion (rad s~ ')

1 Introduction

This paper presents a re-evaluation of the wave-induced solute transport between lake- or
ocean-bottom sediment and the overlying body of water. The issue is of particular impor-
tance to the biological and chemical condition of the overlying water because of the reac-
tions that occur within the sediment and the associated transport of solute to and from the
water. For example, nutrients generated by the decomposition of deposited organic mate-
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rial are recycled by transportation back up into the water. Also contaminants within the
sediment may be similarly mixed up into the lake or ocean. For these reasons, significant
attention has been given in the literature to these transport processes. In this paper we focus
on the transport to and from the sediment that occurs in the subtidal zone. The transport
that occurs along the beaches and in the tidal zone is much more complex involving factors
such as breaking wave transport, tidal effects and the influence of freshwater runoff (see, for
example, [1]).

In subtidal waters, the possible transport mechanisms are fewer though still diverse: in
addition to porous-media molecular diffusion they include wave-induced advection, tide-
induced advection, the transport enhancement due to wave-induced ripples on the sediment
surface, transport due to animal burrowing (see [2,3]) and that due to gas bubbles (or hot
water) percolating up through the sediment [4]. Of these, this paper will be concerned only
with wave-induced advection. Enhancement of transport by tide-induced advection has been
detected in some North Sea sediments by [5] (purely diffusive transport was measured in
other areas). The ripple-induced enhancement that has been measured in the laboratory by
[6] and analysed by [7,8]. It probably pertains in some locations and is clearly related to
the detailed investigations carried out by [9—11] and [12,13] on the solute flux between a
stream and migrating sediment bedforms. Also site specific are the transport due to animal
burrowing and percolating bubbles.

The focus of the present paper is restricted to the possible enhancement of the solute
transport in the subtidal sediment caused by wave-induced pressures and flows. In particular,
in the absence of the other possible transport mechanisms listed above, is there significant
wave-induced advective enhancement of the solute transport or is porous-media diffusion
the dominant process? This question has received significant attention in the literature, for
example in the reviews by [2] and [14]. Transport in excess of that by molecular diffusion
has certainly been observed by a number of researchers. Some have ascribed that excess to
an increase in the effective diffusivity in the sediment due to tortuosity [15] or to turbulent
mixing [16]. However experimental measurements of solute transport such as those of [17]
off the coast of Georgia and Florida suggest that advective enhancement is important in some
locations.

The literature contains a surprising diversity of analyses reflecting a significant diver-
gence in what is considered the primary resistance to solute transport. Key analyses have
been published by [18] and by [15] who present two different understandings and models
of the wave-induced transport processes. The model of [15] contains no purely advective
time-averaged transport due to flows into and out of the sediment that might be induced by
the pressure fluctuations caused by surface or internal waves. Indeed the only effect that is
included in their model is purely diffusive transport and the sole effect of the sediment is
the modification of the porous medium diffusivity caused by the tortuosity of the diffusion
pathway within the medium and by possible elevated levels of the diffusivity at higher Peclet
numbers. In an alternative approach, [18] imply that the primary wave effect is due to advec-
tion into and out of the sediment. They associate the exchange of nutrients or contaminants
between the sediment and the overlying water with the total volume of liquid that passes into
and out of the sediment during the passage of one wavelength. Their analysis focuses on the
total volume “filtered through the sediment” by adding the volume flowing into and out of the
sediment (per unit surface area per unit time averaged over one cycle of the wave motion).
[18] focus on this total advective transport volume; no diffusive contribution is included in
their analysis. In this paper we will attempt to resolve this conflict and to identify those cir-
cumstances in which either of the two mechanisms, diffusion or advection, might dominate
the time-averaged solute transport into or out of the sediment.
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2 Transport equation

The basic equations for solute transport in a granular bed have been carefully developed and
presented by [18] and [15] and need only be quoted here. The transport equation for the
concentration, ¢, of a solute (which could be a contaminant or a nutrient dissolved in the
liquid) is:

9
V(D.Ve) —u.Ve + ¢ (coo — ) — 8—f =0 )

where 7 is time, u is the pore water velocity field, and D is the diffusivity tensor. [15] address
the circumstances in which the solute is being absorbed in the sediment, but only a minor
modification is required to handle cases in which solute is produced rather than absorbed. To
do so the term —gc in their version of the transport equation (where gc is the mass rate of
absorption of solute per unit volume of the sediment per unit time) has been replaced in Eq.
1 by a mass rate of production per unit sediment volume per unit time of +¢’(c — ¢) where
+¢’ is the solute production factor and ¢ is the concentration deep in the bed far from the
sediment surface. We note that this form that includes the factor (coc — ¢) is necessary in
order for a steady state solute concentration to exist.

We also note as [15] observe that even in homogeneous isotropic sediments, the diffusivity
in Eq. 1 must be represented by a tensor because of anisotropy caused by the direction of the
pore water velocity vector, u. Experiments show (e.g. [19]) and analyses confirm [20] that
in isotropic sediments the dispersion tensor in a coordinate system oriented with its first axis
parallel to the pore water velocity vector u, has the following diagonal elements (the oft-
diagonal elements are zero): along this axis the “longitudinal” dispersion coefficient, denoted
by Dy, may be much larger than the “transverse” dispersion coefficient, D7, perpendicular
to u. Both dispersion coefficients approach the porous media molecular diffusivity, Dp,
when the Peclet number, Pe = |u|d/Dy < 1 (d is some measure of the grain size, most
conveniently the equivalent spherical diameter). Note also that D p is somewhat less than the
pure liquid molecular diffusivity, Dy, due to the more tortuous path for diffusion within the
porous medium (usually Dp & 0.67D,;). More notably for Pe > 1, Dy > Dr, usually by
an order of magnitude. It is the combined effect on the diffusivity of the tortuosity and of the
high Peclet number that [15] explore.

We define a coordinate system, (x, y, z), in which x and z are horizontal coordinates, y
is vertical down and the pore velocity in the z direction is zero. Defining 6 to be the angle
of the pore velocity, u, relative to a horizontal plane [15] identify the following form of the
diffusion term in the transport equation:

V(D.Vc) = (acy)y + (acy)y + Dr(cy); + (Bcos20 ¢y — Bsin26 cy)y
+(=pBsin26 cx — Bcos2f cy)y 2)

where the subscripts x, y refer to partial differentiation with respect to those variables and o
is the mean dispersion coefficient given by

oa=(Dp+ Dr)/2 and B = (DL — Dr)/2 3)
Note that when Pe < 1,0« — Dp and 8 — 0.
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3 Pore water velocity field

The pore water velocity may be evaluated using the incompressibility condition and Darcy’s
law for incompressible flow in a porous medium [21]. We focus here on the flows and solute
fluxes induced by waves in the overlying liquid; both traveling surface waves and internal
waves will be considered and it is convenient to consider an individual wavenumber, k, in the
x direction associated with a radian frequency, w, so that the pore velocity field, (u, v, w),
can be represented by

u=Ue ™ cos(kx —wt); v=—Ue sin(kx —wt); w=0, 4)

where ¢ is time and U is the velocity fluctuation amplitude at the sediment surface. Note that
the angle, 6, which the velocity vector makes with the x axis is given by 0 = (kx — wt).

According to the simplest form of Darcy’s law, the sediment surface pressure variation,
p(x, 1), associated with the above velocity field is

U
p= _rs sin (kx — wt), S
Kk

where p is the liquid density, g is the acceleration due to gravity and « is the hydraulic
conductivity of the sediment divided by the porosity. The velocity amplitude U is thus given
by

Kk P

U=——yf, (6)

P8
where P is the amplitude of the pressure fluctuations acting on the sediment surface as a
result of the waves in the overlying water. The above applies to all traveling wave motions
of small amplitude, whether surface waves or internal waves. In the particular case of linear
surface waves of amplitude @ on a homogeneous ocean of depth, H:

_ pga
coshkH

but other forms of P and w are readily incorporated into the system of governing equations
including the effect of sediment surface slope [18,21]. The validity of such expressions for
the fluid velocity within the sediment have been well tested by the extensive experimental
measurements of [18] and others. [15] make note of additional limitations in the simple form
of Darcy’s law used in the above system of equations, including the neglect of fluid inertial
terms (see also [22,23]).

Finally, we note that the advective term in Eq. 1 can be written in terms of the above
velocity field as

and = (gk tanh (kH))? )

w.Ve = Ue ™ (¢, cos — ¢y sinh) )
and the corresponding form of the solute transport Eq. 1 becomes
(acy)y + (acy)y + Dr(cy); + (Bey cos 20 — Bey sin 20)
—~Ue ™ (cycosf —cysind) +¢'(coo —¢) — ¢, =0 )

To investigate the solute flux due to the above wave motion, we seek a solution of this
equation which is purely periodic in x, ¢ and therefore 6. Consequently,
d a d d

—=k— and — =-w— (10)
ox 20 at a6
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and, if we assume that & and 8 are constant and uniform and that there is no change in the z
direction, then Eq. 9 becomes

KPaceg + acyy + Bk(cos (20) kcp — sin (20) ¢y)g
—B(sin (20) kg + cos (20) cy)y — Ue ™ (kcos b cg — sin6 cy)
+¢'(coo =€) +wcg =0 an

Though this appears complicated it has the advantage of being linear and homogeneous in
the concentration, c. It is useful to rewrite it using a non-dimensional y coordinate, s, defined
by

1
s = (q’/oz)%y so that % = (%’)2 % (12)
Then, using the dimensionless parameters
E=qjo i n1=p2a ; T=U/G@w? ; T=ka/g)? (13)
the governing Eq. 11 becomes
Css 4 (Coo — €) 4 co/E — 2 cos (20) cg5 + Tsinh e ¢

—I'[4n(cos (20) cs + sin (20) c59) + T cos b e TS col
+217F2[cos (20) cpo — 2sin (20) cg] =0 (14)

Equation 14 is the governing equation to which we seek solutions. It can be greatly
simplified by considering the typical magnitude of the various parameters as we will do in
the sections which follow and in the Appendix. Once a solution is obtained we will evaluate
the solute flux at the sediment surface in the downward direction (into the sediment), F(0),
from

ac 10c
F@®) = (vc—a—) = (vc— (q’a)Z—) (15)
3y y=0 as s=0

and we will be most interested in the flux, F, averaged over one period of 6.

4 In the absence of waves

First, however, we note that in the absence of waves (k — 0 and w — 0) the governing
equation reduces to the simple diffusion equation

Css + (Coo =€) =0 (16)
to which the steady state solution is
€ =Coo — (Coo — Cy=0)e ™", A7)

where cy— is the concentration at the sediment surface which would be uniform and constant
in the absence of waves. It follows that the thickness of the “diffusion-reaction sublayer” just
underneath the sediment surface (in which most of the solute production and diffusion occurs)
is given by

As=1 or Ay=(a/q)? (18)
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In this elementary case in which vy—g = 0, the flux, F, simply becomes

F = —(g'a)2(coo — y—0) (19)

Note that the absence of a contribution to F'(6) (Eq. 15) from the advective term is due to
the imposed constant and uniform value of ¢y—g. Equation 15 is also the result that [15]
obtain when waves are present because they impose the condition that ¢ is constant on the
sediment surface. As a consequence, they are left only with the effects on the diffusivity of
tortuosity and of high Peclet number. Thus, in the absence of waves and in the Harrison et al.
wave effect analysis, the flux, F, divided by the flux, Fy through a pure, non-moving liquid
“sediment” with diffusivity Dy, becomes

i = (i)j (20)
Fy \ Dy

5 Simplification

We proceed with the evaluation of the effect of waves by examining some simplifications to
the governing Eq. 14. The first step in this process is to gauge the magnitude of the parameter,
I". From the definition 13 and Eq. 18, I is readily seen to be the ratio of the typical diffusion-
reaction sublayer thickness, (¢/q’ )%, to the wavelength divided by 2, 1/k. The diffusion-
reaction sublayer thickness is usually of the order of millimeters to several centimeters [24,25]
compared with wavelengths of the order of meters. Though much larger diffusion-reaction
sublayer thicknesses are possible we will focus here on thicknesses that are smaller than
meters. The parameter I is therefore much less unity in many cases of practical interest and
we will confine our attention to this range. Since 7 is always less than one, it follows that
when I' « 1 we need only be concerned with the sediment layer in which s < I'"!, and
the second and third lines of Eq. 14 become negligible (" must also be small and this is
addressed in Appendix). Equation 14 then takes the manageable, large wavelength form

Css + (Coo —€) +co/E —2ncos(20) cgs + Tsinf ¢g =0 21

A detailed solution to this governing equation is delineated in Appendix. In that appendix we
demonstrate that within some reasonable parametric limitations, an appropriate, approximate
solution to the governing Eq. 21 which is consistent with the desired form of the sediment
surface boundary condition (Eq. 24) leads to a time-averaged flux into the sediment, F, given
by

F=—(g'a)(coo — Go) — E U2 (22)

where ¢y and ¢ are the time-averaged solute concentration and the fluctuating solute con-
centration at the sediment surface. Not surprisingly therefore, the boundary condition at the
sediment surface plays a crucial role in determining the magnitude of the solute flux and we
turn to that issue in the sections which follow. (We note that Eq. 22 could, of course, have
been constructed heuristically without any of the complicated algebra presented in Appen-
dix. However, the authors believe it is still useful to delineate the parametric limitations and
assumptions behind that result.)

The above expression, Eq. 22, displays an additional advective contribution, —¢ U /2, over
and above that in the absence of waves or in the analysis of [15]. Consequently a key issue is
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the relative importance of diffusive and advective contributions to the time-averaged solute
flux. From Eq. 22 the ratio of the advective flux to the diffusive flux is given by

Advective Flux U ¢ TC

Diffusive Flux (q’a)% 2(co0 — Cp) - 2(cxo — Cp)

(23)

Therefore the issue depends on the product of two key quantities, the parameter T and the ratio
of the amplitude of the sediment surface concentration fluctuation to the difference between
the deep sediment concentration and the time-averaged sediment surface concentration. We
examine each of these quantities in the sections which follow, beginning with an estimate of
7 followed by an examination of the sediment surface boundary condition and the quantity

&/2(cos — €0).

6 Parameter estimation

Measurements and estimates by [18,25] and others allow estimates of some of the controlling

parameters, particularly the key parameter, T = U/(q’ a)%. Beginning with the velocity U
in the sediment, we will make use of the extensive measurements by [18] of the volume of
liquid Q (per unit surface area per unit time averaged over a cycle of the wave motion) that
passes into and out of the sediment during the passage of a wave. Note that Q = U /272 in
the present notation. Reidl et al. made measurements and estimates of Q for the sediment
of the Atlantic Continental Shelf and concluded that Q varied from values of the order of
0=2x 107% m/s (U = 4 x 10> m/s) within a few miles of the coast to values smaller by an
order of magnitude or more further out on the Continental Shelf. This decrease is primarily
due to the increasing depth and its effect on the wave-induced bottom pressures. We will call
this data for U and the associated dimensionless parameters, “coastal” data having U values
of the order of 4 x 10~ m/s and decreasing with increasing depth.

However, sample calculations readily demonstrate that much larger values of U will
pertain along the shoreline and, in the discussion, we will refer to these as “shoreline” data.
For example, using Eq. 6 a 1 m amplitude wave of wavelength 10 m in shallow water with
P/pg = 1 m will produce U values of 10~ for the 130 jLm Oklahoma 90 sand of [9] (which
has a k = 0.00011 m/s) and U = 1073 m/s for Elliott’s 470 wm Ottawa sand (which has a
k = 0.0014 m/s). These much larger values are consistent with the measurements by [26] of
the pore water velocities in the breaker zone of a laboratory beach. They imply very different
solute transport along the shoreline.

Next we note that a typical value for the molecular diffusivity Dp is 107 m?>s~! [15]
for fine sand, corresponding to a value of « ~ 4 x 10~ m?s~!. Moreover («/q’ )% is the
typical diffusion-reaction sublayer thickness in the sediment and this thickness is estimated
and measured to be about 0.03 m for fine sand [18,25]. It follows that with coastal U values
of 4 x 107 m/s and less and with fine sand the pertinent values of  are 300 and less. On the
other hand the above shoreline values of U lead to  values of about 10° for the Oklahoma
90 sand and 10* for the Ottawa sand. In summary, the key parameter t = U/(q’ oz)% appears
to decrease from values of the order of 10* for coarse sand (less for fine sand) at the subtidal
shoreline to values of the order of 300 for fine sand in deeper coastal waters.

As a postscript we also note that other parameters of interest include I', the ratio of the
typical diffusion-reaction sublayer thickness to the wavelength (divided by 27), which we
have earlier concluded is much less than unity in almost all cases of practical interest and
the parameter n which is clearly of order unity or smaller. We also note that, by definition,
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(¢")~" is a measure of the time required for the source type used to deplete the concentration
in the sediment by diffusion and since (w)~! is typical of the period of the wave motions we
might reasonably expect that in almost all circumstances of interest the former time is much
longer than the latter so that § < 1 and én < 1.

7 Sediment surface boundary

Clearly the time-averaged solute transport may depend crucially on the boundary condition(s)
at the sediment surface. If the conditions are such that the solute concentration remains
constant at the sediment surface (as [15] assume) then, since ¢ =& 0, the transport is purely
diffusive; there would be no advective transport and the only significant effect on the time-
averaged transport would be the modification of the porous medium diffusivity caused by
the tortuosity of the diffusion pathway within the sediment as suggested by [15]. This is
because when ¢ = 0 the fluid entering and leaving the bed has the same concentration at
all times and the net advective flux averaged over one cycle of the wave motion would be
zero. In their alternative approach, [18] associate the exchange of nutrients or contaminants
between the sediment and the overlying water with the total volume of liquid Q (per unit
surface area per cycle of the wave motion), that passes into and out of the sediment during
the passage of a wave (in the present notation Q = U/27?%); no mention is made of any
diffusive contribution. Moreover, the relation between that volume flux and the actual solute
transport is not clarified.

In taking a closer look at the sediment surface concentration, we shall not assume a priori
that cy—q is constant but rather that it may change depending on whether the instantaneous
advective flow is into or out of the sediment. We shall heuristically assume that cy—g is
correlated with the fluid velocity normal to the surface, namely vy—o (positive downward)
which we previously denoted by vy—o = —U sin# (note that for 0 < 6 < 7 the flow is up
out of the sediment whereas for 7 < 6 < 2x the flow is into the sediment) and that

Cy=0 = Eo + ¢ sinf (24)

(Note that when ¢ is positive the surface concentration is greater when the flow is emerging
from the sediment and less when the flow is into the sediment).

Consider first the half-cycle during which flow and solute are emerging from the sediment
into the overlying water in a lake, reservoir or ocean. After emerging it will be mixed by the
turbulence in the benthic boundary layer [25]. During that half-period a layer of thickness,
U /w would be ejected from the sediment. Therefore, the extent to which the surface concen-
tration will change during that half-period will depend on the ratio of U/w to the thickness
of the potential diffusion-reaction sublayer in the sediment, («/q’ )%. In other words it will
depend on the parameter, U/w(a/q’) 2 If that parameter is much larger than unity then the
change in the surface concentration will be comparable with the overall concentration dif-
ference, (coo — Cp) since the diffusion-reaction sublayer in the sediment would be rapidly
ejected and the surface concentration would approach co. On the other hand, if the para-
meter is much smaller than unity the surface concentration fluctuation will be much less.
Using the values for U and (« /q/)% from the preceding section and radian frequencies for
the waves of w = 0.6 — 6.0s~! leads to maximum coastal values of U/w(oz/q’)% of

2 x 10~* — 2 x 1073 and to shoreline values of U/w(a/q’)% up to 0.5 for the coarse sand.
We conclude that during the emerging flow half-cycle the surface concentration in the coastal
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zone and beyond will change very little but that the surface concentration in the shoreline
zone will change significantly.

Now consider the other half-period when the flow is into the sediment. Clearly a key
consideration will be the mixing in the benthic boundary layer next to the bottom of oceans,
lakes and reservoirs for that will determine the solute concentration entering the sediment.
This mixing has been the subject of much research and debate (see, for example, [14,27—
30]). It can be crudely modelled using a turbulent diffusivity, Dy, in the waters above the
sediment. This allows an estimate of the potential diffusion layer thickness in the water in
the absence of advection of (D, / w)% (averaged over an integer number of wave periods).
We seek the ratio of this to the thickness of layer ingested to the sediment during the same
period, namely U /w. If that ratio, (D;w) 2 /U, is small then the diffusive benthic layer would
be rapidly ingested and the surface concentration would approach the concentration in the
water above that layer. If, on the other hand, that ratio is large the surface concentration
fluctuation will be much less. Typical values of D, are the 3 x 10~ m?2 s~ measured by
[31] in Lake Kinnaret in Israel (see also [29]) and the 10~> m? s~! measured by [25] in the
Baltic Sea. Assuming D, ~ 107> m?s~! it follows that for the coastal zone with U values
of 4 x 107 ms~! (and smaller) and a radian wave frequency of @ = 0.6 — 6.0s~!, the
ratio, (D,a))% /U, is in the range 60 — 200 though with much larger values for smaller
U. On the other hand with subtidal shoreline values of U and with D, ~ 107> m?s~! the
parameter (D,w)% /U could be as small as 0.2 — 8; however since the effective “turbulent”
diffusivity in the shoreline zone is likely to be much greater than 107> m?s~! we estimate
that the effective value for (D, w) 2 /U at the shoreline is also likely to be very much greater
than unity. These values suggests a mimimal change in the surface concentration during the
sediment inflow half-period in both the coastal and shoreline zones.

We conclude from the preceding two paragraphs that the sediment surface concentration
varies by very little in the coastal zone and beyond but may change significantly in the
shoreline zone. Therefore, factoring in the respective t values, we conclude that the ratio of
the advective flux to the diffusive flux, given by Eq. 23 as 7¢/2(ceo — o), Will be large in
the shoreline zone (perhaps as much as 103 — 10* and therefore that solute transport at the
shoreline will be dominated by wave-induced advection. On the other hand, the wave-induced
advective transport in the coastal zone may be of the same order as the diffusive flux closest
to the coast but will rapidly decrease with water depth so that, in deeper waters, the diffusive
transport will dominate.

Parenthetically we note that, for simplicity, we have tacitly assumed similar grain sizes in
the coastal and shoreline zones. When these differ substantially, the different grain sizes need
to be included in evaluating the zonal sediment hydraulic conductivities and diffusivities and
the relevant zonal parameters in which they appear.

8 Concluding remarks

We have demonstrated that the wave-induced flux of a solute from submerged sediment
is not necessarily purely diffusive as suggested by [15] but can be dominated by a mean
or time-averaged flux induced by the advective fluid motion into and out of the sedi-
ment caused by the fluctuating pressures associated with wave motion. For convenience
we include the flowchart, Fig. 1, which illustrates the dominant processes and steps involved
in evaluating and comparing the diffusive and advective contributions to the flux out of the
sediment.
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Fig. 1 Flow chart indicating the dominant steps involved in evaluating and comparing the diffusive and
advective contributions to the flux out of the sediment
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Along the shoreline where the fluctuating bottom pressures are greatest, wave-induced
advection will dominate the mean, time-averaged transport of solute into or out of the sedi-
ment. In this zone, the time-averaged transport will therefore be dominated by the mechanism
suggested in the work of [18]. However, the present calculations also indicate that this advec-
tive flux decreases rapidly with increasing water depth so that further away from the shoreline
the advective flux becomes negligible relative to the diffusive flux and, consequently, the dif-
fusive flux dominates in deeper water where the calculations of [15] are therefore relevant.

Whether one can therefore assume that most of the solute transport occurs in the immediate
vicinity of the subtidal shoreline or whether it includes significant contributions from deeper
waters depends on the relative magnitudes of the concentration differences in the two zones.
Clearly, models of the mixing processes in the entire body of the lake, reservoir or ocean and
of the production/adsorption processes in the sediments at various depths will be needed to
determine the prevailing concentration differences that drive mass transport. It is unlikely that
these concentration differences would be similar in the subtidal shoreline and coastal zones.
The present paper indicates the appropriate mechanism for transport in the different zones.

As a footnote, we observe that the present analyses do not apply in the tidal or beach zone
where water is thrown above the mean waterline and mass transport occurs during backwash,
where tidal fluctuations also generate flow through the sediment and where freshwater runoff
may play a significant role (see, for example, [1,26,32]). Further work is needed to determine
the relation between the magnitudes of the mass transport in the beach zone and that in the
subtidal zone and in deeper waters.
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Appendix: Detailed solution of transport problem
The linear form of the governing Eq. 21 allows us to construct the following seperable solu-

tion which allows flexibility in applying an appropriate boundary condition at the sediment
surface:
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¢ —cCoo = (G0 — Coo)e ™ + Re{G(B)e™VT9s) 25)

in which i = (—1)!'/% and Re{} refers to the real part. The quantity ¢o will be seen to be the
time-averaged solute concentration at the sediment surface, and the real constants y and &
as well as the potentially complex function G () remain to be determined. Substituting the
expression 25 into the governing Eq. 21 and integrating yields
G@O) =exple(l —(y + i8)%)0 — (y +id)étcostd +En(y + i8)? sin (26)
+o 4 iV} (26)

where (¥ + iW) is a complex integration constant. In the present problem we are only
interested in solutions which are periodic in 6. It therefore follows that

y2i—82=1 (27)
Therefore the desired solution must be of the form
G(0) = exp{—y&tcosO + nésin (20) + @
+i[—28y60 — 86t cosO 4 2y 8&n sin (20) + W]} (28)

To use this solution to explore the flux of solute through the sediment surface we next need
to consider the boundary condition at that surface which we assume takes the form of Eq.
24. To conform with the required sin 6 fluctuation in Eq. 24 we need to choose

¥ =d+47/2 and 2y =1 (29)
so that, in combination with the relation 27, it follows that
y =[E+E + D267 and 8 =[26(5 + &+ DN (30)
Then
G =Ziexp{ —if* + Ensin (20) — y&T cosh + ), 31)
where
0" =60 — nsin (20) + 8T cos O (32)
and
€= Coo = (€0 — Coo)e > £ &PV (Ensin@h=Ery cosh) i (g* 1 55) (33)

which yields a surface concentration of
Cy:() — 50 :|: ed) e(f;'ﬂ sin (20)—yé&t cos ) Sine* (34)
and a surface gradient of
9 .
(ai) = (oo — Go) F €¥ €MD —VETCOSO) () Gin g% _ §cosf*)  (35)
S/ s=0
These lead to the following expression for the flux at the sediment surface:

F(0) = —U&sinf — (q'a)'/*(coo — o)
Fe® Ensin@O=yErcosO) 1y 6in g sin 6* — (¢'a)/*(y sin6* — Scos6*)]  (36)

Since £ <« 1 and én < 1 (see Sect. 8), it follows from the definitions 30 that
y~ (17262 and 8~ (1/26)? 37
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and that £y < 1 and £€§ < 1. Moreover, using the values of t estimated in Sect. 8 it also
follows that £6t <« 1 and £yt < 1. Then from Eq. 32, 0* =~ 6 and the second exponential
function in Eqgs. 33, 34, 35, and 36, is approximately unity. With these approximations the
amplitude of the surface concentration oscillation, ¢ = ¢® and therefore

F(0) = —U&ysinf — (¢'a)"/*(coo — ¢0)
—¢ [Usin @ sin6* — (q'a)'/*(y sin6* — 8 cos 6™)] (38)

so that the time-averaged flux into the sediment, F,is
F=—(q'o"(ceo—2c0)—E¢U/2 (39)

This includes the additional advective solute flux, —¢U /2, that is discussed in the main text.
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