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ABSTRACT
Recent testing of high speed cavitating turbopump inducers has revealed the existance of more complex instabili-

ties than the previously-recognized cavitating surge and rotating cavitation. This paper explores one such instability
which is uncovered by considering the effect of a downstream asymmetry such as a volute on a rotating disturbance
similar to (but not identical to) that which occurs in rotating cavitation. The analysis uncovers a new instability
which may be of particular concern because it occurs at cavitation numbers well above those at which conventional
surge and rotating cavitation occur. This means that it will not necessarily be avoided by the conventional strategy
of maintaining a cavitation number well above the performance degradation level.

The analysis considers a general surge component at an arbitrary frequency, ω, present in a pump rotating at
frequency, Ω, and shows that the existence of a discharge asymmetry gives rise not only to beat components at
frequencies, Ω − ω and Ω + ω (as well as higher harmonics) but also to circumferentially-varying components at all
these frequencies. In addition, these interactions between the frequencies and the basic and complementary modes
lead to “coupling impedances” that effect the dynamics of each of the basic frequencies. We evaluate these coupling
impedances and show not only that they can be negative (and thus promote instability) but also are most negative
for surge frequencies just a little below Ω. This implies potential for an instability involving the coupling of a basic
mode with a frequency around 0.9Ω and a low frequency complementary mode about 0.1Ω.

We also examine how such an instability would be manifest in unsteady pressure measurements at the inlet to

and discharge from a cavitating pump and establish a “footprint” for the recognition of such an instability.

INTRODUCTION
Ever since the recognition of the POGO instability of liquid-propelled rockets more than forty years ago (Rubin

1966, NASA 1970), much attention has been directed at understanding the mechanisms for the promotion of insta-
bilities associated with cavitating pumps. The simple forms of POGO, of cavitation surge and of rotating cavitation
have been successfully studied and related to dynamic features in the performance of pumps such as the cavitation
compliance and mass flow gain factor (Brennen 1994).

However, recent experience in several space programs around the world has indicated that the preceding body

of knowledge and understanding may not be adequate or sufficient. Specifically, there appear to be other, more

complex instabilities associated with cavitating turbopumps that do not fit easily within the current understanding.

This paper explores one particular complex instability which is uncovered by considering the effect of a downstream

asymmetry such as a volute on a rotating disturbance similar to (but not identical to) that which occurs in rotating

cavitation. The analysis which follows uncovers a new instability which may be of particular concern because it

occurs at cavitation numbers well above those at which conventional surge and rotating cavitation occur. This means

that it will not necessarily be avoided by the conventional strategy of maintaining a cavitation number well above

the performance degradation level.

ANALYSIS
As is conventional (Brennen 1994), we consider unsteady linear perturbations in the total pressure, p, and mass

flow rate, m, given by

pi(t) = p̄i + Re
{
p̃i,ωejωt

}
(1)

mi(t) = m̄i + Re
{
m̃i,ωejωt

}
(2)

where j is (−1)
1
2 , the index i denotes a specific location in the fluid flow path, the overbar denotes a mean or

time-averaged quantity, a tilde denotes a fluctuating quantity, and Re denotes the real part. Implicit in the above
linearization is a summation of the fluctuating terms over all the frequencies, ω, of interest. Thus the complex
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Figure 1: Pump dynamic model with individual blade passage dynamics and an asymmetric discharge
inertance.

quantities p̃i,ω and m̃i,ω incorporate the amplitude and phase of the fluctuating total pressure and mass flow rate at
the frequency, ω, and the location, i.

It is both convenient and, nowadays, conventional (see Rubin 2004) to express the dynamic response of a cavitating

pump at the frequency ω by the relations

p̃2,ω − p̃1,ω = Gp̃1,ω − (R + jωL)m̃2,ω (3)

m̃2,ω − m̃1,ω = −jωCp̃1,ω − jωMm̃1,ω (4)

where the subscripts i = 1 and i = 2 refer to the pump inlet and discharge locations and G + 1, R, L, C and M are
known as the pump gain, resistance, inertance, compliance and mass flow gain factor. (Note the above differs slightly
from the original form proposed by Brennen and Acosta (1976) and used by Ng et al.(1978), Brennen et al.(1982)
and Brennen (1978, 1994) in measuring and analysing the pump dynamic characteristics in that m̃2,ω rather than
m̃1,ω is used at the end of equation 3. However, one form is readily transposed to the other.) Implicit in the above
model (equations 3 and 4) is the assumption of linear relations; we note that although non-linear effects undoubtedly
occur they are currently beyond our ability to analyse.

In this paper we focus on the following issue originally suggested by Rubin (c.1975). The flow through the pump

rotor consists of the sum of the flows through each of the blade passages. If all blade passages were identical at all

moments in time, we could write the corresponding transfer function for each of the blade passages (say K in number)

as

p̃2,ω,k − p̃1,ω,k = Gp̃1,ω,k − (R + jωL)Km̃2,ω,k (5)

m̃2,ω,k − m̃1,ω,k = −jω
C

K
p̃1,ω,k − jωMm̃1,ω,k (6)

where the additional index k = 1, 2, ...,K denotes the total pressures and mass flow rates in each of the K blade

passages. If this were all the dynamics to be concerned with then clearly the equations 5 and 6 sum to yield the

overall transfer function for the pump given by equations 3 and 4 where

p̃2,ω,k = p̃2,ω ; p̃1,ω,k = p̃1,ω (7)

m̃2,ω =
K∑

k=1

m̃2,ω,k ; m̃1,ω =
K∑

k=1

m̃1,ω,k (8)

However, the effect that we wish to focus on here is the fact that the discharge from a pump is usually quite
asymmetric. Often the discharging flow is collected in a single volute so that, at any instant in time, the flow exiting
from one blade passage may have much farther to travel than the flow from another blade passage. Of course,
inlet flows may also be quite asymmmetric. However, we should note the relative effects of inlet and discharge
asymmetries on the flows through an inducer or impeller as investigated by Bhattacharyya (1994). Bhattacharyya
found that inlet asymmetries have a remarkably small effect on the asymmetry of the flow through an inducer, even
when that asymmetry consisted of an abrupt right angle bend just upstream of the inducer inlet. On the other hand,
asymmetries in the discharge flow had surprisingly strong effects on the asymmetry of the flow through the inducer.
For this reason and for the added reason of simplicity, we confine ourselves here to asymmetries in the discharge.

The primary effect of simple discharge asymmetry such as produced by a single volute or by a right angle bend just

downstream of the impeller is that the effective length of each flow passage oscillates at the rotational frequency of the
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impeller, Ω. This means that the instantaneous inertance of each blade passage flow is oscillating at a frequency, Ω,

and with some amplitude which we will denote by L∗. Of course, the resistance will also oscillate but, for simplicity,

we neglect this effect (it is also much easier to estimate the magnitude of L∗). This additional dynamic effect is then

incorporated in our model of the pump as shown in figure . Each blade passage now has the original dynamics as

represented by equations 5 and 6 but with p̃2,ω,k now replaced by p̃M,ω,k where the location M can be consider to

be in the vicinity of the impeller exit from the blade passage, k; thus

p̃M,ω,k − p̃1,ω,k = Gp̃1,ω,k − (R + jωL)Km̃2,ω,k (9)

replaces equation 5 while equation 6 remains unchanged. As incorporated in equation 15, we then add the additional,

oscillating inertance, L∗∗, onto the original blade passage dynamics where

L∗∗ = Re
{

L∗ejΩt+j2πk/K
}

(10)

where L∗ is a real constant and the term j2πk/K incorporates the appropriate phase between the blade passages.

Note that the direction of this phase or time delay is consistent with an index or passage label, k, that increases in

the direction of rotation of the impeller. Note also that since

K∑
k=1

ej2πk/K = 0 (11)

the arithmetic means of the blade passage pressures at discharge (i = 2) and at the location i = M are identical.

For later use, we also note that in a given blade passage, k, the fluctuating mass flow rate at any general frequency,

ξ (specifically ω, Ω−ω, Ω + ω, or higher order combinations as anticipated below) namely, m̃2,ξ,k , must neccessarily

consist of a “surge” component, m̃2,ξ/K , which is identical and in phase for all blade passages plus a “rotating”

component, m̃φ,ξ ej2πk/K , which is caused by the downstream asymmetry. The phase of this second component must

vary with k in the same manner as the oscillatory inertance while the “magnitude”, m̃φ,ξ, is identical for all blade

passages. Consequently

m̃2,ξ,k =
m̃2,ξ

K
+ m̃φ,ξ ej2πk/K for ξ = ω, Ω, Ω− ω, Ω + ω, ... (12)

In addition, we can anticipate that the existence of fluctuating components at the frequecies, ω and Ω, will, through

the fluctuating inertance, spawn additional components at combination frequencies, Ω − ω, Ω + ω, as well as higher

harmonics and higher order combinations. Thus it becomes necessary to include flow fluctuations at frequencies, Ω,

(Ω − ω), and (Ω + ω) (and higher frequencies) as well as ω. Therefore, the flow rate in an individual blade passage,

m2,k(t), will need to be expressed by

m2,k(t) =
m̄2

K
+ Re

{
m̃2,ω,k ejωt

}
+ Re

{
m̃2,Ω,k ejΩt

}

+Re
{

m̃2,(Ω−ω),k ej(Ω−ω)t
}

+ Re
{

m̃2,(Ω+ω),k ej(Ω+ω)t
}

+Re
{

m̃2,(2Ω−ω),k ej(2Ω−ω)t
}

+ Re
{

m̃2,(2Ω+ω),k ej(2Ω+ω)t
}

+ higher harmonics (13)

Also, using the definition 1, the pressure difference difference, pM,k−p2, between the location i = M and the discharge,

i = 2, should be similarly written as

pM,k − p2 = p̄M − p̄2 + Re
{
(p̃M,ω,k − p̃2,ω)ejωt

}
+ Re

{
(p̃M,Ω,k − p̃2,Ω)ejΩt

}
+Re

{
(p̃M,(Ω−ω),k − p̃2,(Ω−ω))ej(Ω−ω)t

}
+ Re

{
(p̃M,(Ω+ω),k − p̃2,(Ω+ω))ej(Ω+ω)t

}

+Re
{

(p̃M,(2Ω−ω),k − p̃2,(2Ω−ω))ej(2Ω−ω)t
}

+ Re
{
(p̃M,(2Ω+ω),k − p̃2,(2Ω+ω))ej(2Ω+ω)t

}
+ higher harmonics (14)
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Now this pressure difference must be equal to the inertance, L∗∗, multiplied by the time derivative of the mass

flow rate given by equation 13 so that

pM,k − p2 = L∗∗




Re
{
jωm̃2,ω,k ejωt

}
+ Re

{
jΩm̃2,Ω,k ejΩt

}

+Re
{
j(Ω − ω)m̃2,(Ω−ω),k ej(Ω−ω)t

}
+ Re

{
j(Ω + ω)m̃2,(Ω+ω),k ej(Ω+ω)t

}

+Re
{
j(2Ω − ω)m̃2,(2Ω−ω),k ej(2Ω−ω)t

}
+ Re

{
j(2Ω + ω)m̃2,(2Ω+ω),k ej(2Ω+ω)t

}


 (15)

and therefore

=
L∗

2




Re
{
jΩm̃2,Ω,k e−j2πk/K

}
+ Re

{
jΩm̃2,Ω,k e2jΩt+j2πk/K

}

+Re
{
j(Ω + ω)m̃2,(Ω+ω),k ejωt−j2πk/K

} − Re
{
j(Ω − ω) ¯̃m2,(Ω−ω),k ejωt+j2πk/K

}

+Re
{
jωm̃2,ω,k ej(Ω+ω)t+j2πk/K

} − Re
{
jω ¯̃m2,ω,k ej(Ω−ω)t+j2πk/K

}

+Re
{
j(Ω − ω)m̃2,(Ω−ω),k ej(2Ω−ω)t+j2πk/K

}
+ Re

{
j(Ω + ω)m̃2,(Ω+ω),k ej(2Ω+ω)t+j2πk/K

}

+Re
{
j(2Ω − ω)m̃2,(2Ω−ω),k ej(Ω−ω)t−j2πk/K

}
+ Re

{
j(2Ω + ω)m̃2,(Ω+ω),k ej(3Ω−ω)t+j2πk/K

}

+higher harmonics



(16)

where the additional overbar above the tilde denotes the complex conjugate.

Thus the introduction of the additional, oscillatory inertance, causes the generation of other fluctuating flow

frequencies in addition to the basic frequency, ω, under consideration. Clearly, then, higher harmonics such as

(3Ω − ω), (3Ω + ω), etc. may need to be included in the right hand side of equation 14. However since we will not

pursue the solution for these higher frequencies those terms will be dropped from further consideration here. For

simplicity, we will retain only the terms that effect the frequencies ω, (Ω−ω) and (Ω + ω). It follows from equations

14 and 16 that, to first order,

p̃M,ω,k − p̃2,ω = −j(Ω − ω)
L∗

2
¯̃m2,(Ω−ω),k ej2πk/K + j(Ω + ω)

L∗

2
m̃2,(Ω+ω),k e−j2πk/K (17)

p̃M,(Ω−ω),k − p̃2,(Ω−ω) = −jω
L∗

2
¯̃m2,ω,k ej2πk/K + j(2Ω − ω)

L∗

2
m̃2,2Ω−ω,k e−j2πk/K (18)

p̃M,(Ω+ω),k − p̃2,(Ω+ω) = jω
L∗

2
m̃2,ω,k ej2πk/K + j(2Ω + ω)

L∗

2
m̃2,2Ω+ω,k e−j2πk/K (19)

Using these relations we can eliminate the intermediate pressures at the point M from the transfer function

equations 9 for the frequencies ω, (Ω − ω) and (Ω + ω). Then we substitute the decomposition given in equation 12

and generate an array of relations for the various fluctuating pressures and mass flow rates by summing the resulting

equations over the blade passages using the relations 7, 8 and 11. This yields

p̃2,ω − p̃1,ω = Gp̃1,ω − (R + jωL)m̃2,ω + j(Ω − ω)
L∗

2
¯̃mφ,Ω−ω − j(Ω + ω)

L∗

2
m̃φ,Ω+ω (20)

p̃2,Ω−ω − p̃1,Ω−ω = Gp̃1,Ω−ω − {R + j(Ω − ω)L}m̃2,Ω−ω + jω
L∗

2
¯̃mφ,ω − j(2Ω − ω)

L∗

2
m̃φ,2Ω−ω (21)

p̃2,Ω+ω − p̃1,Ω+ω = Gp̃1,Ω+ω − {R + j(Ω + ω)L}m̃2,Ω+ω − j(2Ω + ω)
L∗

2
m̃φ,2Ω+ω (22)

We note the two new terms in the first and second transfer function equations and the one new term in the third and
observe that these imply interactions between the frequencies. Specifically note how the fluctuating flow rate at the
frequency ω feeds into the (Ω − ω) frequency but not the (Ω + ω) frequency.

Additional important relations are obtained by multiplying each of the array of relations by ej2πk/K or e−j2πk/K

before summing. These manipulations yield relations for the m̃φ,ω rotating components of the fluctuating mass flow
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rates as follows:

m̃φ,ω =
j(Ω − ω)L∗

2K2(R + jωL)
¯̃m2,Ω−ω (23)

m̃φ,Ω−ω =
jωL∗

2K2{R + j(Ω − ω)L}
¯̃m2,ω (24)

m̃φ,Ω+ω = − jωL∗

2K2{R + j(Ω + ω)L}m̃2,ω (25)

m̃φ,2Ω−ω = − j(Ω − ω)L∗

2K2{R + j(2Ω + ω)L}m̃2,Ω−ω (26)

m̃φ,2Ω+ω = − j(Ω + ω)L∗

2K2{R + j(2Ω + ω)L}m̃2,Ω+ω (27)

and the following for the higher order surge components:

m̃2,Ω+ω = m̃2,2Ω−ω = m̃2,2Ω+ω = m̃2,3Ω−ω = m̃2,3Ω+ω = 0 (28)

Note the symmetry in the relations 23 and 24.

Using the above relations m̃φ,ω , m̃φ,Ω−ω and m̃φ,Ω+ω can be eliminated from equations 20, 21 and 22 so to obtain

the coupled transfer function equations for the frequencies ω and Ω − ω:

p̃2,ω − p̃1,ω = Gp̃1,ω − (R + jωL + Xω)m̃2,ω (29)
p̃2,Ω−ω − p̃1,Ω−ω = Gp̃1,Ω−ω − {R + j(Ω − ω)L + X(Ω−ω)}m̃2,Ω−ω (30)
p̃2,Ω+ω − p̃1,Ω+ω = Gp̃1,Ω+ω − {R + j(Ω + ω)L + X(Ω+ω)}m̃2,Ω+ω (31)

where the “coupling impedances”

Xω =
ωL∗2

2K2

{ωR − j(Ω2 − ω2)L}
{R − j(Ω − ω)L}{R + j(Ω + ω)L}

=
ωL∗2

2K2

{ωR − j(Ω2 − ω2)L}{R2 + (Ω2 − ω2)L2 − 2jωRL}
{R2 + (Ω − ω)2L2}{R2 + (Ω + ω)2L2} = Z(ω) (32)

X(Ω−ω) =
(Ω − ω)L∗2

2K2

{(Ω − ω)R − jω(2Ω − ω)L}
{R − jωL}{R + j(2Ω − ω)L} = Z(Ω − ω) (33)

X(Ω+ω) =
ωL∗2

4K2

(Ω + ω)(2Ω − ω)
{R + j(2Ω + ω)L} (34)

Note, again, the symmetry inherent in the impedances, Xω and XΩ−ω, such that they may be represented by the

single function, Z(ω), as defined on the right in the above equations.

PUMP TRANSFER FUNCTIONS
In conclusion we have determined the pump transfer function equations that should be used for the stability

analyses for the fluctuating pressures and mass flow rates:

• For the general frequency, ω, equation 29 (with equation 32) and equation 4

• For the companion frequency, Ω−ω, equation 30 (with equation 33) and equation 4 with (Ω−ω) replacing ω.

The consequences of the interactive dynamics unveiled here, the actual stability analyses, will, of course, depend
on the system within which the pump is operating. However, even without embarking on such a system-dependent
analysis we can investigate two consequences of the multifrequency transfer functions derived above, namely we can
examine:

• The pressures at various fixed circumferential locations upstream or downstream of the impeller since these are
the commonly used diagnostic measurements that are made during testing.

• The coupling impedances, Z(ω) and Z(Ω−ω), since this function, Z, is a primary factor effecting the stability
of the system in which the pump might be installed.
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PRESSURES DETECTED AT FIXED LOCATIONS
Commonly, pressure transducers are installed at a number of fixed circumferential locations in order to observe

and analyse the instabilities that occur within a cavitating inducer or pump. To examine the form of the pressure
fluctuations that the above flow would cause at a fixed circumferential location close to the impeller we choose to
examine the pressures at the blade passage outlet location i = M . The pressure fluctuations at other axial locations
close to the impeller (upstream or downstream) will have the same basic form and frequency components so confining
attention to i = M does not limit the applicability of the results which follow.

First we note that by using the expression 12 in equations 17, 18 and 19 (and using equations 28) the fluctuating

pressures at the frequencies ω, Ω − ω and Ω + ω in the frame of reference rotating with the impeller can be written

in the form:

Re

{(
p̃′M,ω − j(Ω − ω)L∗

2K
¯̃m2,Ω−ω ej2πk/K

)
ejωt

}
(35)

Re

{(
p̃′M,Ω−ω − jωL∗

2K
¯̃m2,ω ej2πk/K

)
ej(Ω−ω)t

}
(36)

Re

{(
p̃′M,Ω+ω +

jωL∗

2K
m̃2,ω ej2πk/K

)
ej(Ω+ω)t

}
(37)

where the primes denote modifications in amplitude that are inconsequential to the conclusions of this section; similar

expressions for the frequencies 2Ω−ω and 2Ω+ω are also needed because they contribute to the results below. These

fluctuations in pressure must then be translated into a fixed or non-rotating frame of reference. To do this we define

a set of non-rotating coordinates as follows: (1) an angular circumferential coordinate in the non-rotating frame,

θ∗ = Ωt +2πk/K and (2) time, t∗ = t. One of the complications of this coordinate transformation is that the second

terms in equations 35, 36 and 37 now need to be assigned to a different frequency. The resulting fluctuating pressures

in the fixed coordinate frame at the frequencies ω, Ω − ω and Ω + ω then take the form:

Re

{(
p̃′M,ω +

jωL∗

K
cos θ∗ m̃2,ω

)
ejωt∗

}
(38)

Re

{(
p̃′M,Ω−ω +

j(Ω − ω)L∗

K
cos θ∗ m̃2,Ω−ω

)
ej(Ω−ω)t∗

}
(39)

Re
{(

p̃′M,Ω+ω

)
ej(Ω+ω)t

}
(40)

Consequently the pressure fluctuations that would be observed at fixed, non-rotating circumferential locations near
the impeller as a result of the flow constructed in the preceding sections would have the following features:

1. The fluctuating pressures at the basic instability frequency, ω, will consist of a combination of a circumferentially-
uniform surge component plus a circumferentially-varying component with a single cell around the circumfer-
ence. The latter may be out of phase with the former.

2. The fluctuating pressures at the frequency, Ω−ω, will similarly consist of a combination of a circumferentially-
uniform surge component plus a single cell circumferentially-varying component. Depending on the phase
between the two components either the basic frequency oscillations or the complementary frequency oscillations
could appear to be rotating modes.

3. A fluctuating pressure at the frequency, Ω+ω, consists of a simple surge component without any circumferential
variation.

4. Higher harmonics, 2Ω − ω, 2Ω + ω, etc., and higher cell numbers (arising from terms with more than one
circumferential cell).

This paper is focussed on the interaction between the basic and complementary modes. We reserve comment on some

measured pressure recordings until the end of the following section.

THE COUPLING IMPEDANCE
Now examine the stability issue in more detail by focussing on the coupling impedance, Z(ω), defined in equations

32 and 33 and whose consequences are imbedded in equations 28 and 29. Note that Z(ω) is proportional to the
fluctuating inertance squared, L∗2. Indeed the presence of the ratio L∗/K , means that this coupling impedance,
Z(ω), is proportional to the square of the inertance of the entire flow in the mixing section downstream of the
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Figure 2: The coupling resistance function, Z∗, plotted against the frequency ratio, ω/Ω, for four values of
Q = ΩL/R.

impeller discharge and before the end of the asymmetry. (since inertance is inversely proportional to the cross-
sectional area of the flow). In the analysis that follows this factor appears as the parameter, L∗/KL, or the ratio of
the amplitude of the fluctuating inertance to the main pump inertance.

Next we examine the variation of the coupling impedance over the range of instability frequencies, 0 < ω < Ω,

in order to evaluate its consequences. From equations 32 and 33 we observe that if the real part of the coupling

impedance were to become sufficiently negative so that it overcame the pump resistance, R, and led to a negative

total resistance of the pump, R + Re{Z(ω)}, then instability at that frequency, ω, would be a likely consequence. To

investigate this further we examine the real part of the coupling impedance, Re{Z(ω)}, which, from equation 32, can

be written as
Re{Z(ω)}

R
=

1
2

{
L∗

KL

}2

Z∗(ξ) (41)

where ξ = ω/Ω and Z∗ is defined as

Z∗(ξ) =
ξ2

{
ΩL
R

}2
[
1 + (ξ2 − 1)

{
ΩL
R

}2
]

[
1 + (1 − ξ)2

{
ΩL
R

}2
] [

1 + (1 + ξ)2
{

ΩL
R

}2
] (42)

Values of Z∗(ω/Ω) are plotted in figure 2 for various typical values of the parameter ΩL/R. Note that Z∗ is
negative over most of the range 0 < ω/Ω < 1. This negative value could cause R + Re{Z(ω)} to become negative.
Consequently the potential for instability exists though the outcome depends on the magnitude of L∗/KL, on the
parameter ΩL/R and on the frequency, ω.

In figure 2 we have chosen to present results for a range of values of ΩL/R. Estimates of the magnitude of this
parameter from measurements of the dynamics of a particular cavitating inducer by Ng and Brennen (1978) and
Brennen et al. (1982) (see also Rubin 2004) yield values of ΩL/R that range between about 2 and 20. As another
data point we note that a typical value for a centrifugal pump from the measurements of Anderson et al. (1982) is
about 6. Within this range of ΩL/R it is clear from figure 2 that the most highly negative values of the coupling
resistance occur for values of ω just a little less than Ω and in the neighborhood of 0.9 ∗Ω. Thus the instability that
is most likely is one with a basic mode at a frequency a little less than Ω (say 0.9Ω) coupled with a complementary
mode with a low frequency like 0.1Ω.

We might also ask whether the magnitude of Re{Z(ω)} could approach the magnitude of R so that R+Re{Z(ω)}
could become negative. From equation 41 this depends on both Z∗ and L∗/KL. From figure 2 the magnitude of
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Z∗ can clearly be greater than unity. Moreover Anderson et al. (1982) measured separately the inertances of the
impeller (L) and of the volute (L∗/K) for a typical centrifugal pump and found them to be of similar magnitude.
Thus, at least in this single example, the magnitude of L∗/KL could be of order unity. Consequently, in the most
unstable range of frequency around 0.9Ω it is quite possible for −Re{Z(ω)} to exceed R and to cause instability.

In summary, the analysis predicts that if such an coupled instability were to occur for ΩL/R in the range 2 − 20
it would consist of a basic component at a frequency of about 0.9Ω coupled with a complementary component at
a frequency of about 0.1Ω. Unlike the conventional rotating cavitation or cavitation surge this instability is not a
dynamic instability like cavitation surge but rather a more basic quasistatic instability similar to compressor stall
(Brennen 1994). It therefore does not depend directly on cavitation though it is likely that cavitation compliance and
mass flow gain factor will enter the analysis when the system response is included in the analysis and that cavitation
is likely to encourage the onset of the instability by allowing flexibility for the growth of the surge component. But
the bottom line is that this coupled instability, being relatively independent of the cavitation number, could occur at
much higher values of that parameter.

The instability characteristics described in the preceding paragraphs precisely correspond with an unusual insta-

bility experienced during a recent liquid rocket engine test program. Pressure transducers in water facility tests of

that inducer demonstrated the presence of a basic component at 0.9Ω coupled with a complementary component at

0.1Ω. Moreover, the instability developed at cavitation numbers of the order of 0.04 to 0.1, well above the values at

which cavitation surge or rotating cavitation might be expected. It was also a function of the flow coefficient showing

a particular tendency to develop at flow coefficients below the design value.

CONCLUSIONS
Recent experience with rocket engine turbopumps has demonstrated that there exist instability modes in cavitat-

ing pumps/inducers that are more complex than the traditional rotating cavitaton and cavitation surge instabilities.

This paper investigates the possibility of such an instability that involves the coupling of a basic mode and a comple-

mentary mode. The instability is triggered, in part, by asymmetry in the pump discharge that excites surge within the

individual blade passages. It is shown that this leads to a “coupling impedance” that has a negative resistance over

a range of frequencies and can therefore lead to a negative pump resistance which could cause instability. Moreover

it is shown that in a likely parameter range for cavitating inducers, the most unstable case involves the coupling of a

basic mode at about 0.9Ω with a complementary mode at 0.1Ω. Furthermore, since the instability does not depend

essentially on the presence of cavitation (unlike the traditional cavitating surge) it could occur at significantly higher

cavitation numbers than surge or rotating cavitation. All of the characteristics of this non-traditional instability

described above were observed while conducting a recent series of liquid engine ground tests.
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