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Abstract

Suppression of cavitation is a relatively common
goal of fluid engineers and therefore examples of bub-
ble nucleation suppression in other technological con-
texts are useful in suggesting ways in which such sup-
pression might be achieved. In this paper we describe
a remarkable example of bubble nucleation suppres-
sion achieved by a combination of the elimination of
nucleation sites and the reduction of bubble growth
time. The context is the invention of a device that
allows the injection of aqueous solutions highly super-
saturated with oxygen into the bloodstream without
the formation of significant gaseous oxygen bubbles.

Key Words: Nucleation, suppression, supersatu-
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1. Introduction

This paper describes a remarkable example of bub-
ble nucleation suppression. The context is a device
for the rapid delivery of large quantities of dissolved
oxygen to the bloodstream without the formation of
oxygen gas bubbles. The potential medical benefits of
a successful strategy of this kind are substantial and
multi-faceted. Deprivation of oxygen even for brief
periods of time such as occur during heart attacks
or strokes results in cell damage or death - and is
the primary cause of permanent physiological damage
during these events. Consequently rapid therapeutic
oxygen delivery systems could substantially enhance
the treatment, for example, of acute myocardial in-
farction or acute cerebral stroke. It may also find
application in a broad range of other medical treat-
ments.

The strategy discussed here has been described pre-
viously (Brereton et al.()). Tt involves the preparation
of a highly concentrated solution of oxygen in an aque-
ous solution under very high pressure and the injection
of this liquid into the bloodstream through a small
capillary tube or tubes. The innovation is the ability
to do this in a way that avoids the formation of sig-
nificant or measurable gaseous oxygen bubbles either
inside the capillary or in the highly supersaturated
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jet that emerges from the tube. This requires two
techniques. First the avoidance of nucleation within
the capillary over the distal length, [, for which the
liquid pressure is below the saturated pressure for the
particular oxygen concentration being deployed. And,
second, the avoidance of nucleation within the emerg-
ing jet. The jet mixes with the surrounding liquid
and thus becomes rapidly diluted. If this mixing time
is less than the time required for bubbles to grow to
significant size then the objective has been achieved.

Two basic strategies mitigate for success. The first
of these is to prepare and treat the interior surface of
the capillary in a way that minimizes the occurrence of
nucleation sites. The second of the strategies is that
of high fluid velocity. Inside the capillary tube this
leads to a large longitudinal pressure gradient which
implies a short distal length of tube for which the fluid
pressure is below the saturation pressure. Minimizing
the interior surface area below the saturation pressure
minimizes the chance of a nucleation site being acti-
vated. A second benefit of high fluid velocity is that
it maximizes the rate of mixing in the jet external to
the capillary.

2. Nucleation Sites

In aqueous solutions at normal temperatures, it has
been well established®) that nucleation begins with
small, micron-sized crevices in the solid surface in con-
tact with the liquid, a process known as heterogeneous
nucleation. This is distinct from homogeneous nucle-
ation which refers to the formation of bubbles in the
body of a pure liquid as a result of thermodynamic
fluctuations. The fact that heterogeneous nucleation
dominates in aqueous liquids at normal temperatures,
is simply a reflection of the fact that an applied ten-
sion will activate far more heterogeneous sites than
homogeneous sites.

In the context of the present devices, Brereton et
al.®®) theoretically explored the possibility of homo-
geneous nucleation. Subsequently, it became clear(®
that treatment of the interior surface of the capillary
tubes had such a radical effect on the nucleation phe-
nomenon that heterogeneous surface nucleation rather
than homogeneous nucleation was clearly the domi-
nant phenomenon. The current paper describes some



of those experimental observations and the conclu-
sions to be drawn from them.

3. Modelling Nucleation

Creech et al.(!) describe a fluid mechanical model of
the nucleation potential in these flows and we provide
a brief summary here. A key feature is the pressure
difference or “tension” which motivates nucleation in
the distal end of the capillary (internal diameter, d).
The tension, pssqr — p, is defined as the difference be-
tween saturation pressure, pssq:, and the local liquid
pressure, p, in the capillary. Under flowing condi-
tions this increases linearly with distance, x, along the
tube from zero at the critical location where p = pssat
(called the “saturation location”) to psset — De, at the
distal end of the capillary, p. being the ambient pres-
sure at the capillary exit. Since most of the capillary
tube flows considered here have Reynolds numbers,
Re; (defined as pVd/p where V' is the volumetric
mean velocity of the flow and p; and p are the liquid
density and dynamic viscosity) that cause the flow to
be in the laminar regime, it follows that the distance,
[, from the saturation location, z = 0, to the end of
the capillary, x = [, is given by

_ (pssat _pe)d2
= 32uV (1)

Note that in a 100um tube at a velocity of 4m/s and
an exit tension of 5M Pa (a typical Brereton et al.(?)
data point) the length [ is 0.39m.

Creech et al.() then consider a nucleation site on
the interior surface of the distal end of the capillary. A
bubble grows attached to this site due to diffusion of
gas from the liquid into the bubble. When it reaches
some critical size, the forces due to the flow around the
bubble exceed the surface tension forces holding the
bubble in place, the bubble breaks off and is swept out
of the capillary. The nucleation site is characterized
by a size R; because it begins to produce growing, vis-
ible bubbles when the tension exceeds the restraining
surface tension pressure, 25/R; (where S is the sur-
face tension). Therefore, only those sites larger than
a critical size, R;.(z), will be activated (produce bub-
bles) at the location, x, where
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and only those nucleation sites larger than
Sd?/16uV1I = 2S5/(pssat — Pe) get activated any-
where within the capillary. A few numbers provide
guidance on the magnitude of R;. in the present con-
text. For a d = 100um capillary tube at V' = 4m/s
and (pssat — Pe) = DMPa the values of R;. at
2/l = 0.25, 0.5 and 0.75 are respectively 0.112um,

Rw(x)

0.056m and 0.028um. These are very small nucle-
ation sites and some may be too small to produce
exit bubbles of observable size.

By considering the mass transport of oxygen into
the attached bubble, Creech et al.(!) arrive at a bubble
growth rate that leads to a bubble size, R(t), given by

R=C*(DV)} {7’"@2’;1)%}5 (3)

where C** is a constant of order unity, D is the mass
diffusivity of the dissolved gas in the liquid (D values
for Oy and CO, in water are 2.07 x 107?m?/s and
1.75 x 10~9m? /s respectively®), H is Henry’s Law
constant defined as the saturation pressure, pssq¢, di-
vided by the saturated mass concentration and p, is
the density of the gas at the local pressure, p.

The bubble growth phase will end when the bubble
detaches from the site. Creech et al.(!) determine the
departure radius, Ry, which can approach the radius
of the tube, d/2. Combining this expression for Ry
with equation 3 completes the model of the bubble
growth and departure from a nucleation site at a lo-
cation, x, in the capillary. Then, the frequency, f, of
bubble production from a site close to the distal end of
the capillary (where p ~ p. and py is the gas density
outside the capillary) would be given by

-2 1 Pl (pssat - pe)
f=CR 2(DV)?{i} 4
: i (4
where C' is some other constant of order unity.
Creech et al.(!) also examine the growth of bubbles
in the expanding jet issuing from the capillary.

5. Experiments

5.1 Equipment

A set of experiments was conducted to investigate
the onset of nucleation in highly super-saturated lig-
uid jets emerging from small capillary tubes. The re-
sults showed clearly that the condition of the inte-
rior surface near the exit from the capillary is a crit-
ical factor in the resulting behavior. Consequently
the material of the capillary, its roughness, coat-
ing(s) and preparation were important. The exper-
iments reported here focussed on drawn silica cap-
illaries with internal diameters ranging from 75um
to 325um though results are also described for some
polymer (PEEK and Teflon) capillaries. The silica
capillaries were cleaved in such a way that the end
appeared very rectangular and flat under microscopic
examination. Some which showed signifcant deformity
or irregularity were discarded. On the other hand the
PEEK capillaries were sliced with sharp razor while
being held in a jig.

The interior surface of the silica capillaries were pre-
pared in various ways. Some of the capillaries were



coated with benzalkonium heparin (BKH for short), a
biocompatible treatment designed for medical devices.
After pre-treating the surface with ethanol, the BKH
was laid down in a 10% solution in isopropyl alcohol
(aka 2-propanol). The capillary was allowed to dry as
the alcohol evaporated.

The experiments utilized various concentrations of
oxygen and carbon dioxide in distilled water (filtered
down to 2um) at normal temperatures. These solu-
tions were prepared under high pressure so that the
saturated pressures of oxygen employed varied from
0.17 to 6.41 M pa though the focus was on the higher
levels above 1.38M Pa. Experiments were also con-
ducted with carbon dioxide because its much higher
solubility would provide information on the impor-
tance of that parameter; COs saturated pressures
ranging from 0.41 to 3.37M Pa were employed. Note
that the Henry’s Law constants, H, for oxygen and
carbon dioxide in water at 25°C' are 2590M Pa and
70M Pa respectively(®). For later reference we also
note that the same properties for ethanol rather than
water are much samller being 249M Pa and 17M Pa
respectively(®) .

The experiments themselves were simple. Using
a special high pressure delivery system (US Patent
5,893,838) in which the flow rate could be carefully ad-
justed, the highly concentrated solutions were pumped
through the capillary tube whose distal end was sub-
merged in a large beaker of water (large so that dis-
solved gas build up did not result in nucleation in the
host liquid). Careful visual observation of the emerg-
ing jet determined whether or not nucleation was oc-
curing. Sometimes a microscope was used to aid these
observations.

5.2 Jet Visualization

The experiments showed that whether the flow
within the capillary tube was laminar or turbulent
could have a significant impact on whether or not nu-
cleation occurred. The usual Reynolds numbers for
transition in a tube range from 2000 to 4000 with
rougher tubes having lower values. In the current ex-
periments this transition could be readily investigated
by using alcohol rather than water as the host liquid
in the receiving beaker so that the emerging jet could
be readily visualized.

At low Reynolds numbers when the flow within the
capillary was laminar, the emerging jet was smooth
and grew very slowly with distance from the end of
the capillary as exemplified by figure 1. This observa-
tion may be strange to those expecting instability and
transition to occur just downstream of the exit. Such
would indeed be the case for a jet emerging from a noz-
zle with a relatively uniform velocity profile and there-
fore a strong shear layer at the jet surface. However,
these emerging velocity profiles are quite parabolic,
have no concentrated shear layer and are much less
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Figure 1: Frames from a normal video showing typical
laminar (left) and turbulent jets (right) emerging from
a 325um capillary.

unstable. Other capillaries (particularly the rougher
PEEK capillaries) did show transition to turbulence
though typically 10 to 15 jet diameters from the exit.

Irrespective of the nature of the jet, it was clear
that, above some Reynolds number, the flow within
the capillary underwent transition and emerged as a
turbulent jet. Such a case is shown in figure 1 where
the spreading angle, 6, is 25°, conventional for tur-
bulent jets. With many capillaries (but not all) this
transitional process would begin with a condition in
which the appearance of the jet would flip-flop back
and forth between the photographs in figure 1. As the
flow rate was increased, the turbulent jet configura-
tion occurred for a greater fraction of the time until
the laminar configuration ceased to appear. We note
that the frequency of flip-flopping, F', when converted
to a reduced frequency, Fd/V yielded values of the
order of 10™%.

Table I. Capillary Tubes.

Tube d Material  Transitional Values
(pm) V(m/s)  Re

B2 325 Silica 6.2 2020

C2 250 Silica 8.8 2210

H1 250 PEEK 6.8 1700

E2 100 PEEK 17-26 1700-2600

In the case of the PEEK tubes (which are hydrauli-
cally rougher than the silica tubes), the internal flow
transition occurred, as expected, at lower flow rates
and Reynolds numbers than in the silica capillaries as
can be seen in Table. The following data demonstrates
that all the transitional Reynolds numbers were in a
range close to 2000:

5.3 Nucleation Observations



It is convenient to begin the nucleation results by
describing a series of observations with a typical capil-
lary. Normally, the capillaries began the tests in a dry
state. Some (but not all) had been coated with BKH,
then dried and stored. The experiments were then be-
gun by connecting one end of the capillary to the high
pressure supply system and submerging the other in
the large beaker of distilled water. A flush of distilled
water was run through the capillary in order to purge
the system of trapped gas bubbles. The supply was
then switched to the highly concentrated solution of
Os or CO5. The initial supply pressure had previously
been adjusted to produce the desired flow rate. Most
often, if nucleation was going to occur it would hap-
pen almost instantaneously and persist as long as the
flow continued. If nucleation did not occur immedi-
ately, the supply pressure and therefore the flow rate
were sometimes raised or lowered in order to explore
whether or not that change would induce nucleation.

In many of the cases when nucleation occurred, the
capillary was subsequently disconnected from the sup-
ply and several ml of ethanol forced through it with
a syringe (for convenience we refer to this as “ethano-
lization”). Then the capillary would be reconnected
to the supply and the nucleation test repeated. In
the majority of the cases in which this was done, the
nucleation was completely suppressed - and the cap-
illary would run indefinitely without nucleation. This
was a most remarkable and dramatic phenomenon.
Sometimes nucleation could be initiated by increasing
the flow rate until the internal flow became turbulent
(turbulence seemed to promote nucleation). In such
cases, the nucleation would persist even when the flow
rate was decreased so that the flow became laminar
again. A similar regression was observed when the
nucleation-free flow caused by ethanol was stopped,
the capillary dried out and then reinstalled. It would
then revert to its nucleation behavior prior to ethano-
lization. Thus, once nucleation sites became active
again or were exposed to air, the benefit caused by the
ethanol would disappear. However, another ethano-
lization would reinstitute the nucleation-free effect.

While the explanation for this remarkable effect
may be tentative, it appears that, even underwater,
the ethanol preferentially wets the solid surface and
dislodges the tiny gas bubbles (nuclei) in the crevices
that cause nucleation. In addition, the solubility of
all gases in ethanol is much greater than in water so
the ethanol may also be eliminating nucleation sites
by dissolving the gas.

Ethanol also worked with the PEEK capilaries and
the BKH coating on the silica also inhibited nu-
cleation. Moreover, when a BKH coated capillary
failed, ethanolization had the restorative effect de-
scribed above. Indeed the ethanolized, BKH-coated
capillaries were the most remarkable performers of
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Figure 2: Six examples of high-speed video frames
showing bubbles about to exit a particular 250um cap-
illary. The distal end of the capillary is on the right.

all. TIsopropyl alcohol was also tried as an alterna-
tive to ethanol; it was less effective, working in some
cases but not in others. Some nucleating capillaries
could not be made non-nucleating by ethanolization
but, when these were examined through the micro-
scope, most were found to have large deformities or
cracks near the distal end.

5.4 High Speed Video Observations

High-speed videos were taken of the bubbles both
in the jet and in the capillary using a Redlake Imaging
Motionscope 8000S video camera. At 8000 fps it was
possible to discern individual bubbles both within the
capillary and in the jet. Figure 2 presents 6 exam-
ples of frames that include bubbles passing through
the distal end of a 250um BKH-coated silica capillary
with a 3.45M Pa O, solution flowing at 3.4m/s. The
bubbles appear as black shadows through the trans-
parent capillary wall. The four upper frames show
smaller bubbles, one of which is of the 2.5d variety.
The lowest frame shows one of the 10d bubbles dis-
cussed below. High speed videos were also taken of the
bubbles in the issuing jet; these showed faint images
of (t})le bubbles breaking up rapidly in the turbulent
jeth),

The high speed videos revealed rather different bub-
ble production patterns in the 250um and 325um cap-
illaries. We begin by detailing the observations of the
bubbles emerging from a particular 250um capillary
when the flow rate was such as to produce a fluid ve-
locity of 3.4m/s (figure 2). The smallest bubbles that
could be observed had various globular shapes with
volumetric diameters about 0.2d. The frame-to-frame
analysis suggested that these were being distorted by
the flow; sometimes it appeared as though this dis-
tortion led to bubble fission since the bubble actually
appeared to be a cloud of smaller bubbles. Bubbles
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Figure 3: Typical histogram of bubble size, s, where
s is 3.6 times the diameter of the bubble in mm when
that diameter is less than the diameter of the tube and
3.6 times the length of the slug in mm when the length
is greater than the tube diameter. This example is for
the same circumstances as figure 2.

smaller than 0.1d may have been present in the inter-
vening liquid but would have been difficult to resolve.
However, they did not seem to be present in significant
numbers or aggregate volume since the intervening lig-
uid appeared to be clear and transparent. The largest
bubbles that were observed exiting the capillary were
large slugs that occupied the entire tube width and
were about 10d long as illustrated in figure 2.

Additional observations are that a histogram of the
bubble/slug size (for example, figure 3) shows that
virtually all the larger slug bubbles lie within narrow
size ranges. Specifically, there is a regular series of 10d
bubbles and virtually no bubbles in the range 3d — 8d.
Another, less distinct peak occurred at 2.3d. Second,
the data showed that, after the passage of a large, 10d
slug, there was always an extended period when no
bubbles exited the capillary. In the specific case un-
der discussion, the bubble free interval following the
expulsion of a large 10d slug averaged 0.0018s in com-
parison with the typical interval between exiting bub-
bles of 0.0004s.

Using these observations we can construct a likely
course of events in the capillary. The large bubble-
free interval following 10d slugs suggests that there
is a single nucleation site quite far from the exit
whose detaching bubbles regularly sweep clean all the
other sites on their way to the exit. Since the subse-
quent bubble-free interval is 0.0018s and the velocity
is 3.4m/s this implies that this particular nucleation
site is at least 0.0061m from the exit.

Next we observe that the rate of production of 10d
bubbles is about 160 per second. In comparison, equa-
tion 4 predicts a rate of 176 per second from a single
site provided we take the reasonable value of C' = 2.
Finally, since the total number of bubbles exiting the
capillary is about 2500 per second, we can estimate

(using C' = 2) that the number of active nucleation
sites in this particular capillary is 14.

But why are the large slugs 10d in length? This size
could be the result of one or both of the following:
(a) the bubble detaching from the most upstream site
with a diameter of about 1d might collect additional
gas by aglommeration with the bubbles growing at the
other 14 sites and/or (b) the bubble simply expands
due to the decrease in the prevailing pressure between
the nucleation site and the capillary exit. However,
the latter mechanism is negligible since the pressure
change between the estimated site location and the
exit is only about a tenth of an atmosphere. It there-
fore seems likely that the bubble mostly grows to 10d
length by adding roughly 1d at each of the 14 sites it
passes on the way to the capillary exit.

We now examine how the pattern of events changed
when the flow velocity in this particular capillary was
decreased from 3.4m/s to 1.7m/s. At this lower ve-
locity, the dominant large slugs were 28d in length
rather than 10d. Again there was a bubble-free in-
terval following each slug but this was now 0.0035s
(compared with the average intra-bubble spacing of
0.0009s). However, at 1.7m/s, this bubble-free gap
again implies a nucleation site 0.006m upstream, in
good agreement with the observation at 3.4m/s. The
production rate for the large 28d slugs was 115 per
second and this again compares favorably with the
prediction of equation 4 with C = 2 which is 124 per
second. The total event rate is 903 per second and
this would suggest 8 active nucleation sites, somewhat
smaller than the 14 estimated from the 3.4m/s data.

In contrast to the 250um capillary, the bubbles ex-
iting the 325um capillary all appeared to have volu-
metric diameters in the range 0.5d to 1.2d, with vir-
tually no larger slugs. Perhaps there are no large
slugs because there is no dominant nucleation site far
enough upstream but it is otherwise hard to be sure
of the reason for the difference. The typical diam-
eter of the bubbles exiting the tube decreased with
increasing flow rate, declining from about 1.0d at a
velocity of 3m/s to about 0.5d at a velocity of 6m/s.
When the bubbles exit the capillary, they appear to
be substantially distorted by the flow and may even
be broken into fragments. Though the typical size
changed with increasing flow rate, the rate of eflux
of bubbles seemed to be independent of velocity, be-
ing about 1100 bubbles per second at all three speeds.
At the three speeds examined, the tension length, [, is
3.8m, 2.8m and 1.9m for velocities of 3m/s, 4m/s and
6m /s respectively. Thus, while the frequency of bub-
ble production from a single site may increase with
velocity in the manner suggested by equation 4, the
tension length and therefore the number of active sites
may be declining so as to keep the bubble production
rate constant. Using equation 4 with C' = 2, the rate



of 1100 bubbles per second suggests that there are a
total of about 8 active nucleation sites in this 325um
capillary.

We conclude that the observations of the bubbles
emerging from the capillaries are consistent with the
heterogeneous nucleation model. However, each capil-
lary has its own particular number of nucleation sites
and that is not capable of prediction by any current
theory.

5.5 Effect of Flow Rate and Gas Concentration

With each of the capillaries, the flow rate was var-
ied in order to determine whether nucleation preferen-
tially occurred over one particular range of flow rates
or, possibly, over some particular Reynolds number
range. Even though the length, [, and therefore the
surface area available for nucleation decreases with in-
creasing velocity, a decrease in the nucleation poten-
tial was not observed experimentally perhaps because
the range of flow rates over which experiments could
be performed was quite limited. As mentioned earlier,
the primary effect of flow rate occurred when the flow
rate was increased to that value at which the internal
flow became turbulent. As detailed by Creech et al.("),
over a wide range of different capillaries, gas concen-
trations and flow rates nucleation was often observed
to occur when flow rate was increased to Reynolds
numbers within the range 2000 — 3000, in other words
the range at which the internal flow transitions from
laminar to turbulent. Thus internal turbulence pro-
motes nucleation. Other than the effect of internal
transition, no clear influence of flow rate could be dis-
cerned.

Tests were also conducted with different gas con-
centrations with both O2 and COs. Since ethanoliza-
tion effectively re-initialized a given capillary, it was
possible to conduct repeatable tests on a particular
capillary with different concentrations of both Oy and
COs3. In the vast majority of cases, the high concen-
trations of Oy and C'O; behaved identically in terms
of whether or not nucleation occured in a particular
capillary. The most noticeable difference was that a
nucleating flow with COy produced higher void frac-
tions of gas than the flow with O5 for obvious reasons.
This supports the conclusion that the dominant factor
that determines whether or not macroscopic bubbles
are observed is the presence or absence of nucleation
sites rather than a critical concentration gradient of
dissolved gas.

6. Concluding Remarks

The experiments described in this paper con-
firm a remarbable phenomenon in which highly-
supersaturated aqueous solutions of gas may be in-
jected through a small capillary into an aqueous envi-
ronment without the formation of significant and/or

measurable gas bubbles. The experimental observa-
tions are consistent with a heterogeneous surface nu-
cleation model put forward by Creech et al.(). Of
particular note is the estimate that, in the successful
silica capillaries, the number of potential nucleation
sites is of the order of ten.

It is also clear that the treatment of the interior sur-
face of the capillary is critical to the success or failure
of the objective since it can effectively eliminate those
nucleation sites, though perhaps only when they are
so small in number. Several treatments are remark-
ably effective in this regard. One simple technique
that was deployed in the laboratory was to flush the
capillary with ethanol after it had already been filled
with an aqueous medium. Apparently, the ethanol
strips out or dissolves the nucleation sites and causes
them to become non-functional. This is an entirely
reversible procedure; allowing the capillary to dry out
re-establishes the functioning nucleation sites; and an-
other “ethanolization” will eliminate them again. A
medical device coating which has a similar though less
dramatic effect is a benzalkonium heparin (BKH).

Because of the sensitivity of the phenomenon to
surface treatment, each capillary is quite unique and
it is therefore difficult to establish the dependence of
the nucleation threshold on the fundamental flow vari-
ables, namely the capillary diameter, the flow velocity
and the gas concentration. In addition, the present
study established that when the flow (a) in the capil-
lary or (b) in the emerging jet transitions from a lam-
inar to a turbulent state this can trigger nucleation,
presumably because of the greater mass transfer which
occurs in the turbulent regime.
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