Powders & Grains 93, Thornton (ed.) © 1993 Balkema, Rotterdam, ISBN 905410 323 X

Vertical oscillation of a bed of granular material

"C.E.Brennen, S.Ghosh & C.Wassgren
California Institute of Technology, Pasadena, Calif., USA

" ABSTRACT: A bed of granular material which is subjected to vertical vibration will
exhibit at least one sudden expansion at a critical acceleration amplitude. This sudden
expansion corresponds to a bifurcation similar to that exhibited by a single ball bouncing
on a vibrating plate. Theoretical analysis based on this model yields results which are in

accord with the experimental observations.
vibration levels.

1 INTRODUCTION

The vibration of granular materials is of interest
for a number of reasons. First, vibration is
sometimes used instead of an upward flow of
gas to fluidize a particle bed reactor and in such
devices it is clearly important to know the state
of the bed. Secondly, vibration is often used to
induce flow in recalcitrant bulk flow transport
devices such as hoppers and chutes. It is also
used to induce segregation of different density
and different size particles. Clearly knowledge
of how vibration affects these granular materials
provides important design information. As a
third incentive, we note that there has been a
growing recognition of and interest in the
granular state. In a recent review, Jaeger and
Nagel (1992) have summarized some of the
important issues, questions and applications of
knowledge of the granular state and highlight
the need for understanding the response to
vibration.

Several investigators have previously
examined the response of a bed of particles
subjected to vertical vibrations (see references)
and identified a number of states and transitions
between those states. Most investigators agree
that within the range of frequencies usually
explored (5 — 100 Hz) the phenomena are
relatively independent of frequency but depend
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Other bifurcations may occur at higher

strongly on the acceleration level, aQ2?/g, and
the bed thickness, h/d. In this paper we
describe the phenomena which were observed
to occur as the vertical acceleration of a bed of
material is increased and identify a transition or
bifurcation similar to that which occurs with a
single bouncing ball on a vertically vibrating
plate (Wood and Byrne, 1981 and Holmes,
1982). :

2 EXPERIMENTS

Experiments were carried out to investigate the
behavior of a bed of granular material subjected
to vertical vibration. The materials used were
A-285 glass beads with a mean diameter of
0.292 cm. Various quantities of these beads
were placed in a rectangular box with cross-
section dimensions of 11 cm x 13.2 cm which
was in turn mounted on an electro-mechanical
shaker and subjected to vertical vibration at
frequencies between 4 and 10 Hz with
amplitudes up to about 2.5 g. An accelerometer
was used to measure the acceleration level
accurately.

The box had a thick aluminum base and back
but the other three sides were made of lucite so
that the behavior of the beads could be
observed. Paper lids of various thickness were
placed on top of the beads leaving a clearance



of about 1 mm between the edge of the lid and
the walls of the box. When the box was
vibrated vertically, the bed of beads would
expand and the lid would float on the beads.
Fortunately, the lid proved to be quite stable
and would remain horizontal and centralized
with roughly equal spacing all around the
periphery. Because this spacing was smaller
than the diameter of the beads, all of the beads
would remain under the lid. A stroboscope was
used to examine the motion of the lid and the
beads during various parts of the oscillation
cycle. By this means we were able to observe
that the spacing, &, between the base and the lid
did not vary greatly during the oscillations. The
beads would bounce around below the lid but
because of the resistance to the flow of air
around the sides of the lid, the volume of beads
and air would remain almost constant during a
cycle of oscillation. Thus, using the strobe and
a scale attached to the exterior of the box, it was
possible to measure ‘the height, h, for each
operating condition.

Experiments were conducted by observing
the evolution of the bed of beads as the
vibration amplitude, @, was increased from zero
to the maximum of which the shaker was
capable. Such experiments were conducted
over a range of frequencies (4—10 Hz and Q
will denote the radian frequency) for various
quantities of beads and for lids with different
masses as follows:

Experiment ~ Bead Mass Lid Mass

No. (gm.) (gm.)
1 250 3.44
2 125 3.44
3 125 7.17
4 375 3.44
5 125 17.06
6 625 3.44
7 45 3.51
8 125 28.14

It should be noted that a single packed layer
of beads resting on the base of the box would
weigh 54 grams. Consequently the masses of
beads range from less than a single layer to
about eleven layers. The 45 gm. of experiment
7 was close to the minimum at which the lid
would remain horizontal for the duration of the
experiment.
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3 EXPERIMENTAL RESULTS

The results for the base-to-lid spacing, A, as a
function of vibration amplitude will be
presented in various ways but we focus here on
the expansion of the bed, #* = h-h,, where h,, is
the spacing at rest. For reasons which will
become clear, £* will be presented both as a
function of the acceleration amplitude aQ? (or
rather a€d?/g where g is the acceleration due to
gravity) and as a function of the vibration
velocity a€2. The typical behavior of the bed is
best illustrated by the results from experiment 7
which are presented in figure 1. The bed would
begin to expand at an acceleration amplitude of
about 1 g and this expansion would gradually
increase until a critical value of the acceleration
amplitude, (aQ%/g), was reached, which
appeared to be independent of frequency but to -
vary with both the mass of beads and the mass
of the lid. At this critical acceleration
amplitude the lid would rise quite abruptly and
then settle down at a substantially larger
spacing, i*. As illustrated in figure 1, further
increase in the acceleration would result in
further bed expansion but this was more gradual
than the expansion encountered during
transition. The top graph in figure 1 illustrates
the fact that the critical conditions appear to
occur at a given ' acceleration amplitude
regardless of the frequency. On the other hand,
the bottom graph in figure 1 illustrates the fact
that the supercritical conditions correlate with
the velocity amplitude, aQ, rather than the
acceleration amplitude.
Using the strobe, one could observe that prior to
the transition, the motions of the particles were
fairly uncoordinated. @ However, above the
transition the beads began to move as a block
which collided once per cycle with the base and
with the lid. The collision with the base seemed
quite inelastic and it appeared that the block
only left the base again when the acceleration of
the base exceeded ‘some critical value.
However it is also important to emphasize that
the block expands and contracts substantially
during each cycle being quite concentrated
while it is in contact with the base
but quite dilute while it is in flight.

In order to understand the fundamental
dynamics behind the above phenomena it is
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Figure 1. The dependence on the bed expansion, h-h,,
on the acceleration amplitude, 2Q2/g, and the velocity
amplitude, aQ (in m/s), for experiment 7. Various
frequencies as follows: 4 Hz= +,45Hz =X, 5Hz = O,
55Hz=A,6Hz=0,7Hz="

valuable to present the data non-dimensionally.
This is accomplished by non-dimensionalizing
the expansion as Q2(h-h,)/g and plotting this
versus the nondimensional acceleration
amplitude, aQ?/g. Examples from experiments
2 and 3 are shown in figure 2 in which the
subcritical and supercritical data clearly form
two distinct groups of points. Indeed the two
groups of points both appear to e close to
quadratic curves which imply that each group of
points correspond to a roughly constant value of
the inverse Froude number,

et _(e(h=n )"
: aQ

To examine this further, the inverse Froude
number is plotted versus the acceleration,
aQ?g, in figure 3 for the typical data of
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Figure 2. Dimensionless expansion (i-:,)Q2/g, plotted
against the dimensionless acceleration for experiments 2
and 3. Frequency key as in figure 1.

experiments 2 and 3. It seems particularly
noteworthy that the subcritical data corresponds
roughly to an inverse Froude number, Fr -1, of
between 0.5 and 1.0 and that the supercritical
corresponds quite closely to Fr -1 = 1.5 (recall
that the values of (h-h,) and a for some of the
subcritical data are quite small and this may
account for the larger scatter in that group of
points). ‘

4 THEORETICAL ANALYSIS

The analytical solution to the problem of a ball
bouncing on a horizontal flat plate performing
vertical oscillations (amplitude, a, and radian
frequency, Q) are of interest for several reasons.
First, the model could be considered appropriate
for individual particles when particle/particle
collisions are relatively rare, as, for example, in
the case where less than a single layer of
particles was used. Alternatively, in the case of
a larger mass of particles, the solution might be
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Figure 3. Inverse Froude number, [g(h-h)]'/2}/aQ,
plotted against dimensionless acceleration for
experiments 2 and 3. Frequency key as in figure 1.

considered applicable to the whole mass when it
performs a coherent periodic motion. In either
case, we shall consider that the particles bounce
off a lid which, by some unspecified damping
mechanism, is maintained at a constant height
above the oscillating plate. The Iid is however
entirely supported in the mean by the impulses
imparted by the particles; thus solutions will be
sought for various ratios of the lid mass to the
particle mass, £ The problem also requires
specification of the coefficients of restitution, &
and g, for the collisions with the plate and lid
respectively.

The dynamics of the ball bouncing problem
without a lid have now become a classic
example of the occurrence of bifurcations and
we shall see that this seems the probable
explanation for the experimentally observed
transition.

The first, simple solution which is useful is
that for no lid and for ep=0. The ball remains in
contact with the plate until the latter is
accelerating downward at an acceleration equal

to g. The maximum height, A, to which the
ball rises above the plate can readily be
identified parametrically as

2 2
Qghs = -(%[(x2 — X, )cos X, +sin X, —sin xz] . (D
where

2
. a
sinx, = g/aQ?; x,-x, =——(cosx, —cosx,)
g

This relationship between the dimensionless
"expansion,” Q2h¢/g and the acceleration ampli-
tude was obtained numerically and is identified
in figure 4 as the "no bounce" solution. Note
that it corresponds quite closely with the
subcritical experimental data (in figure 4 we
have used the data of experiment 2 as typical).
When one examines the specifics of this
solution for the range of QZa/g values of
interest here (less than about 2) one finds that
after becoming airborne the particle (or particle
mass) will return to impact the plate after less
than about 0.6 of a cycle. Even if €, were non-
zero and there were several small  bounces
following this impact there is more than
sufficient time left in the cycle for the particle
(or particle mass) to effectively come to rest on
the plate before the next occurrence of a
downward acceleration of 1 g Thus the
solution is valid for a range of &p.

The second benchmark which is of interest is
the periodic solution in which the particle (or
particle mass) bounces off the plate and off the
lid once per cycle of plate oscillation. In order
for such a periodic solution to exist, the relative
velocity of departure from the lid collision, u,,
the relative velocity of incidence on the plate,
u; (both wu, and wu; considered positive
downward), the relative velocity of departure
from the plate, u,, and the relative velocity .of
incidence on the lid, us, (4, and u; considered
positive upward) must be given by

Qu _ 2n(1+ f) %_21t8,,(1+f)

14 (1+8P) | 4 N (1+SP)
)]

%_: 2nf . Qu4=2neLf

g (1+e) g (1+g,)
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The solution is most readily obtained
parametrically by selecting the times # and ¢,
-during a cycle when collision with the plate and
the lid, respectively, occur. It then follows that

a?

=[2n(cos Qr, +cos Qs )]_1 X

[, - tz)(QT“’l+QTu3)

(3)

+{Q(, - 1)+ 2n}[%+%) ]

‘and that the expansion, h, defined as the
increase in the spacing between the plate and
the lid is given by

ﬁ:sithl—sith2+-SM
a 2 @

u, U
[—2— +—2+cos Qt, +cosQt,
aQl aQ

]

Thus the choice of two arbitrary values of
Q# and Qt, corresponds to a solution for
specific values of f and aQ 2/g and yields a
specific value for h/a. In addition one must
check to ensure that there are no unforeseen
overlaps between the particle and the lid or
plate during the oscillation cycle, Typical
results for this analysis are included in figure 4
(identified as the "with bounce"” solution) for
ep=0.25,e, =0and f=0.01, 0.1 and 0.2. Note
that for a given lid and given coefficients of
restitution there exist no periodic solutions of
this type for accelerations below a certain
critical level. It should be noted in passing that
there is a large variety of other possible periodic
solutions. For example there exist the
possibilities of one bounce for every two or
more plate cycles and of two or more bounces
in a single plate cycle. Alternatively the ball
might cycle through two or more types of
bounce before repeating itself.

It is important to point out that studies of the
dynamics of the much simpler system of a
single particle on a vibrating plate (Wood and
Byrne, 1982 and Holmes, 1982) have revealed a
system of bifurcations at different critical values
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Figure 4. Typical data (from experiment 2) compared
with the analytical solutions described in the text.

of the acceleration, Q2a/g. As the acceleration
amplitude is increased the first bifurcation
occurs at

CRITICAL —

Vn:(l—svs,,)

‘Y2
(Q d/g) 1+e,

5

The experimental data is clearly indicating that
such a bifurcation also occurs with the granular
mass. Though the analogy may only be of
qualitative value, it is nevertheless of interest to
observe that equation (5) yields (©Q2a/g)crrmicaL
= 1.88 when &p = 0.25, which is qualitatively
consistent with the current experimental data
since the effective g, for the mass of particles
may be as low as 0.25. We have chosen to use
€p = 0.25 to demonstrate the results of the
analytic calculations. : h

The above analysis is clearly consistent with
the following explanation of the observed
experimental behavior. At small values of the
acceleration just above 1 g, the data is
consistent with the simple, no-bounce solution.
However when the acceleration approaches the
critical or bifurcation value of Q2a/g a sudden
expansion of the bed occurs as the particle mass
begins to move as a fairly coherent whole,
bouncing off the plate once per plate oscillation
cycle.

In addition to the previous analysis, a
computer simulation was used to examine the
dynamics of a column of inelastic balls
bouncing on a sinusoidally vibrating plate. The
maximum separation height between the top



ball and the plate was recorded for various
af2?/g and €. For one ball, the simulation
resuits match the experimental data in the
subcritical region best when £=0. The
af2?/glcpimiear. and A* in the supercritical region
however is matched best when & = 0.327.
Additional simulations were performed for a
column of five balls. Although the simulation
results did not quantitatively match the
experimental data, the characteristic transition
still occurs for this ‘more complex system. It is
also of interest to note that several transitions
occur similar as in the case of just one ball.

CONCLUSIONS

A bed of granular material which is subjected to
vertical vibration will- exhibit at least one
sudden expansionn at a critical acceleration
amplitude. This sadden expansion corresponds
to a bifurcation similar to that exhibited by a
single  ball bouncing on a vibrating plate.
Theoretical analysis based on this model yields
results which . are in accord with the
experimental observations. Other bifurcations
may occur at higher vibration levels.
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