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1 Introduction

The purpose of this paper is to present further data on the

dynamic transfer functions for cavitating inducers. The-

earlier experiments of Ng and Brennen [1] presented measured
transfer functions for a 7.6 ¢cm diameter model of the low
pressure oxidizer turbopump in the Space Shuttle Main
Engine (SSME). In a later paper [2] a theoretical model of the
unsteady cavitating flow in an inducer was presented which,
despite many approximations, yielded transfer functions
which exhibited many of the qualitative dynamic charac-
teristics of the experimental measurements. For the purpose
of more detailed quantitative rather than qualitative com-
parison, it was necessary to assume values for two scalar
quantities which are crucial to the model. One of these (K in
reference [2]) essentially represents the mean compressibility
of the bubbly cavitating flow; the other (M in reference [2]) is
the factor of proportionality between the fluctuating angle of
attack at the inducer inlet and the fluctuating rate of
production of cavitating bubbles in the neighborhood of inlet.

This paper presents further experimental measurements of
transfer functions specifically for larger, 10.2 cm diameter
inducers. A number of inducers were used but presentation
here will be confined to the results for a 10.2 cm model of the
SSME inducer. Comparison with the results for the
geometrically similar 7.6 ¢m inducer allows some limited
evaluation of the effects of scale on the transfer function
elements (and on K and M). Furthermore, the more extensive
data base and the improvement in the quality of the data
permit a more critical examination of the theoretical ‘‘bubbly-
flow’’ model and lead to a more definitive recommendation
for the empirical constants K and M.

Like the previous experiments, the present results were
obtained in the Dynamic Pump Test Facility which has been
previously described in reference [1]. For the present ex-
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sets of results compare well and lend further credance to the theoretical model. The
best values of the two parameters in the model (K and M) are evaluated and
recommended for use in applications.

periments an alternative working section was constructed to
accommodate 10.2 cm impellers. However, the same volute
was used for both impeller sizes. Furthermore, new dynamic
instrumentation was added in the form of electromagnetic
meters to supplement the earlier measurements of fluctuating
flow rate (see Fig. 1). As previously discussed (references [1]
and [11]) the measurement of the fluctuating flow rates (2 to 4
percent of the mean flow rate) into and out of the pump are
the most critical aspect of these kinds of experiments. As
described in reference [11], the modified Foxboro elec-
tromagnetic meters (EMM) provided significant improvement
in the dynamic data over that obtained with the laser doppler
velocimeters (LDV). This was due primarily to the fact that
the EM meters provide a true integrated measure of the in-
stantaneous volume flow rate [3] in these unsteady flows.
Such a measure is difficult to achieve with the point velocity
measurements using the LDV, particularly in the presence of
oscillating flow boundary layers. Some details on both the
steady calibration of the EM meters and an in-line com-
parison of the dynamic performance of the EMM and LDV
are included in reference [11].

2 Steady State Inducer Pump Performance

The difference in performance between the two
geometrically similar inducers was investigated and found to
be caused by differences in the efficiency of pressure recovery
in the volute. The latter was not scaled up but merely
modified at inlet to accommodate the 10.2 cm impellers. The
resulting difference in the slope of the performance curves ata
flow coefficient, ¢ = 0.07 (for which dynamic transfer
matrices were obtained) causes some difference in the
‘“‘resistance’’ component (real part of Z,,) of the transfer
matrices for the two impellers; further discussion on this is
delayed until Section 5.

The cavitation performance of the 10.2 c¢m impeller is
presented in Fig. 3. Comparison of this data with the
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Facility
cavitation performance of the 7.6 cm impeller (see Fig. 4 of
reference [1]) indicates that the curves are merely displaced
vertically due to the differences in pressure recovery in the
volute and that the essential nature of the cavitation effect is
unchanged. Also shown in Fig. 3 are the mean flow conditions
at which dynamic transfer matrices were obtained; these are
identified by letters which will be used for identification in
later figures.

Both steady state performance data and dynamic transfer
functions were also obtained with various prerotation
inhibiting devices installed several diameters upstream of the
inducers. The effects of these devices are reported briefly in
reference [11].

3 Dynamic Transfer Matrices

The dynamic transfer matrices reported here use the
definition described previously ([1], [2])
Pll

hy— ZP,) (h
ZP,  ZPy, ) | m,
where &, /1 are nondimensional fluctuating total pressure and

mass flow rate guantities which are complex in general.
Subscripts 1 and 2 refer to inlet and discharge quantities. The
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transfer matrix [ZP] is a complex function of the mean flow
conditions (¢, o) and the reduced frequency, w

The experimental and data reduction methods used to
obtain [ZP] matrices between the inducer inlet and the volute
discharge were similar to those described by Ng and Brennen
[1]. However, two differences should be noted. First, the
addition of the electromagnetic flow meters allowed separate
evaluation of transfer matrices using the simultaneous
measurements from either the EM meters or the laser doppler
velocimeters. Second, in order to accommodate the discharge
EM meter, the downstream smoothing section between the
volute discharge and the downstream LDV was considerably
shortened and strengthened. This significantly reduced the
corrections which were originally used by Ng and Brennen [1}
to obtain the pump transfer matrix, [ZP], from the overall
measured [Z] matrix. Furthermore, all the corrections
described in that previous paper are smaller in relative
magnitude for the 10.2 cm impellers than for the 7.6 ¢cm
impellers. The net result is a substantial improvement in
accuracy over the transfer functions previously presented for
the 7.6 cm impellers.

The presentation of the transfer functions is similar to that
employed previously. The real and imaginary parts of the
elements of [ZP] are plotted as solid and dashed lines,
respectively, in graphs against reduced frequency, w. All of
the transfer functions presented here for the 10.2 cm impeller

Nomenclature
ay;; = coefficients in the polynomial M = parameter of bubbly flow i - lt}:;:l ig?;%?izgt{ %’:E{IUT
fits to the transfer matrices model pressure rise -+ ;)UZ
A; = inducer inlet area m = nondimensional fluctuating p = water density r
F = blade passage frictional re- mass flow rate, m*/pUrA; o = cavitation number. inlet
sistance parameter m* = fluctuating mass flow rate pressure minus vapor E)ressure
h = inducer blade tip spacing N = integer power and subscript = 1/2 ol
h = nondimensional fluctuating U, = mean axial velocity at inducer = r.atio ot? ingucer axial length to
_ total pressure, A*/1/2pU% inlet blade tip spacing
h* = fluctuating total pressure Us = inducer tip speed Q = radian pfrequency of per-
I,J = dummy subscripts equal to 1  ZP;, = inducer pump transfer matrix turbations p
or2 v = blade angle at inducer inlet tip _ :
Jj = imaginary unit e = fractional length of blade @ = reduced frequency /U7
K = parameter of bubbly flow passage containing bubbly Subscripts 1 and 2 on 4 and # refer to

model mixture
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the inlet and discharge quantities.
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Fig. 2 Noncavitating performance of the 7.6 cm and 10.2 cm diameter
models of the low pressure oxidizer inducer pump in the SSME at
various rotating speeds. Also shown are some full scale data [4]. Un-
certainties are about +0.002 on the ordinate and +0.001 on the ab-
scissa.
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Fig. 3 Cavitation performance at the 10.2 cm diameter model at
various flow coefficients taken with a uniform honeycomb in the inlet
flow. The points at which transfer functions were obtained are in-
dicated by the letters, A, C, D, G, and H. Uncertainties are about +0.002
on the ordinate and abscissa.

were obtained from the EMM flow rate measurements,
though simultaneous LDV transfer functions were also ob-
tained in all cases. As discussed previously, the EMM transfer
functions were believed to be superior; one comparison of

EMM and LDV transfer functions is included in reference
[11].

4 Comparison of the Transfer Matrices for the Two
Sizes of Impeller

Figure 4 presents the measured transfer functions for the
10.2 cm impeller at ¢ = 0.07 and various cavitation numbers.
The latter range from o = 0.37 for the point A at which there
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Fig. 4 Transfer matrices for the 10.2 cm impeller at ¢ = 0.07, a
rotating speed of 6000 rpm and various cavitation numbers as follows:
(A) 0.37, (C) 0.10, (D) 0.069, (G) 0.052, and (H) 0.044. The real and
imaginary parts are denoted by the solid and dashed lines, respec-
tively. The quasistatic resistance from the slope in Fig. 2 is indicated by
the arrow.
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Fig. 5 Polynomial curve fits to the 10.2 cm impeller transfer matrices
of Fig. 4

was little cavitation, down to ¢ = 0.045 for the pont H at
which there was extensive cavitation and the impeller was on
the verge of breakdown. For purposes of clarification and
comparison with similar graph for the 7.6 cm impellers
(Brennen [2]), polynomial fits were made to these data of the
form

Ny

ZPy= Y, ayy o)V %))
N=0
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Fig. 6 Polynomial curve fits to the 7.6 cm impeller transfer matrices
obtained at ¢ = 0.07 and a rotating speed of 9000 rpm by Ng and
Brennen [1]. The cavitation numbers are (A) 0.51, (B) 0.11, (C) 0.046, (D)
0.040, and (E) 0.023. The quasistatic resistance from the slope in Fig. 2
is indicated by the arrow. (Reproduced from reference [2]).

where Ny, = Ny; = Ny = 3, N, =5, and agy, and ag,, were
set to zero in order to satisfy quasistatic continuity of mass
[9]. Some of the resulting smoothed transfer functions are
presented in Fig. 5. The comparable figure for the 7.6 ¢m
impellers was included in reference [2] and is reproduced here
as Fig. 6. In that figure the letters do not refer to the points in
Fig. 3, but to those in Fig. 4 of reference [1].

The trends with cavitation number which were discussed in
references [1] and [2] are similar for the two impellers. It is
quite clear that in both cases a quasistatic model would only
be appropriate for reduced frequencies less than about 0.1.
Though a more detailed comparison will be included as part
of the correlation with theory in Section 7, the following
comments should be made on each of the ZP elements.
Beginning with the impedance, ZP,,, it is clear from Figs. 5
and 6 that the trend of the resistance (or negative of the real
part of ZP,,) correlates fairly well in both cases with the
quasistatic resistance which can be obtained from the slope of
the performance curves in Fig. 2. However these initial values
differ in the two cases, not because of scale, but due to dif-
ferences in pressure recovery in the volute as discussed in
Section 2. Furthermore, it is apparent that under non-
cavitating conditions the resistance in the 10.2 cm impeller
increases more dramatically with frequency than in the 7.6 cm
impeller. The reason for this is not clear but it may be a
property of the flow at discharge and in the volute rather than
a property of the inducer itself. Incrementally, cavitation
causes a decrease in the resistance at higher frequencies
although this is more marked with the 7.6 c¢m impeller. The
inertial component of the impedance (negative of the
imaginary part of ZP),) is larger for the larger impeller.
Cavitation causes incremental decreases in this component at
higher frequencies which are similar for the two impellers.

Turning to the other three components, it should be stressed
that in theory all of them should be zero for a completely rigid
system, an incompressible fluid, and no cavitation. Apart
from some unexplained discrepancies in ZPy,, this appears to
be the case for both impellers. For example, nonzero values
for ZP,, and ZP,, can be attributed entirely to the presence of
cavitation. The comparison of Figs. 5 and 6 indicates good
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Fig. 7 The determinant, D, for the transfer matrices of Fig. 4. Real and
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Fig. 8 Comparison of the low frequency inertances, —aqqz, for the
two impellers and equaton (9)
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Fig.9 Comparison of the low frequency compliances, — a421, for the
two impellers and equation (10) with K = 1.3 and 0.9

agreement between the two impellers insofar as the pressure
gain term (ZP,;) and its variation with cavitation number are
concerned. The imaginary part of ZP,, which is generally
termed the compliance increases with ¢ in the expected
manner in both cases. However, the larger impeller yielded
negative real parts for ZP,; which did not occur for the
smaller impeller. Finally, the general character of the in-
cremental changes with cavitation number in the mass flow
gain term (ZP,,) are similar in both cases.
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Fig. 10 Comparison of the low frequency mass flow gain factors, —
aq22, for the two impellers and equation (11) withK = 1.3, M = 0.8, and
0.95

The significance of the determinant, D, of [ZP] + [I] has
been discussed previously ({11, [2], [6]); the deviation from a
value of unity presents some measure of the extent to which
the dynamics of the pump have become potentially active. The
determinants of the 10.2 cm impeller transfer matrices of Fig.
4 are plotted in Fig. 7. This exhibits the same features
discussed previously for the 7.2 cm impeller [1]. Without
cavitation the determinant is indeed unity; increasing the
amount of cavitation results in progressive departure from
passive dynamics. It has recently been demonstrated that
serious system instabilities can result from this trend of in-
creasingly active dynamics at lower cavitation numbers [6].

All of the above results were obtained close to the design
flow coefficient, ¢ = 0.07 and at an ambient temperature of
21°C. Some transfer functions were obtained at other flow
coefficients (up to 0.076) and temperatures (up to 74°C) to
investigate both off-design and thermodynamic effects. Only
minor variations in the transfer functions were observed.

5 Comparison with the Bubbly Flow Model

The bubbly flow model yields theoretical transfer matrices
given by equations (35) through (38) of reference [2]. They are
functions of geometrical parameters, the flow coefficient, a
blade-passage friction parameter, the mean length of the
cavitating region (a surrogate cavitation number parameter)
and, of course, the reduced frequency, . In addition, it is
necessary to assume values for the two parameters K and M
described in the Introduction. The purpose of this section will
be to compare the model with experimental results described
above. To begin with, however, it is instructive to confine
attention to a comparison at the lower frequencies. The
complicated expressions for the theoretical transfer matrices

reduce at low frequencies to the following approximate
relations:

ZP,, = K¢ Fe+joKre{coty+(1 —e/2)F+é/siny}]  (2)
ZPy; = —2jwr/sin?y—2coty—2F 3)
ZP; = —jwerK/2 @)
ZPy = —jwer{M/$—K¢/sin’y} (5)

These expressions include only the terms of order (jw)® and
(w)! resulting from an expansion for small w (the third order
terms are long and involved and will not be repeated here).
Correlation with the polynomial form (1) used to fit the data

yields the following relations which must presumably hold if
the model has value:
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Fig. 11 Comparison of the low frequency slope of the imaginary pant
of ZP {4, (@111) for the two impellers and equation (7) with K = 1.3, F =
0
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Fig. 12 Comparison of the terms of order (jw)? in ZPqq, (agq4) for the
two impellers

ag, = KéFe &)
ay; = Kre{coty+ (1 —e/2)F+ ¢/sin’y} @)
apy = —2coty—2F 8)
@y, = —2r/sin’y &)
ay = Kre/2 (10)
@, = —T1e{M/p—~Kp/sin’y} (11)
With these expressions, a three-way comparison will be

made between the values for the ay;, coefficients derived from
the experiments on 7.6 cm and 10.2 cm impellers and the
values calculated from the expressions (7)-(11). For this
purpose note that the impellers have a blade angle at the tip of
y=9° and a geometric value of 7of 0.45.

The simplest component to start with is the inertance, —
a,;,, which is plotted against cavitation number in Fig. 8.
From equation (9) the theoretical first order term with 7 =
0.45 yields a value of 37. It can be seen from the experimental
data that the actual inertance first decreases somewhat as the
cavitation number is lowered and then increases at lower
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Fig. 13 Transfer functions calculated from the complete bubbly flow

model with ¢ = 0.07, v = 9deg, 7 = 0.45,F = 1.0,K = 1.3,and M =
0.8. Various cavitation numbers according to ¢ = 0.02/¢ are shown.

cavitation numbers. Although the first order term in the
theory is a simple constant, the complete expressions indicate
similar theoretical trends with cavitation number (see
reference [2] and Fig. 13). Note that the two impellers yield
similar results. However, the value of 37 is probably low due
to the neglect of the fact that the cross-sectional area of the
flow is decreasing through the impeller as the hub radius
increases; this would yield higher values for the inertance or a
higher equivalent value of 7 of about 0.6.

The observed experimental relation [2] between o and ¢ =
0.02/0, permits comparison of the compliance, —a,,, and
mass flow gain factor, —a,,,, which are presented in Figs. 9
and 10. Both figures indicate consistency between the two sets
of experimental results even though the older data for the 7.6
cm impeller is more scattered. They are also consistent with
the trend exhibited by the theoretical expressions (10) and
(11); it would appear that K and M values of about 1.3 and
0.8, respectively, best fit the data.

The slope of the imaginary part of ZP,,, (a,,,) is presented
in Fig. 11; the term involving F in the relation (7) has been
omitted for this purpose and, not unexpectedly, the resulting
theoretical line in Fig. 11 is on the lower side of the ex-
periments. The magnitude of the zeroth order real part of
ZPy,, (ag1y) is small, positive, and increases with decreasing o
in both theory and experiment. In practice, however, the real
part of ZP;, is dominated by terms of order (jw)* and higher
as can be seen in Figs. 5 and 6. It is therefore more useful to
present plots of the experimental values of a,,, as has been
done in Fig. 12. Here again the results of the experiments for
the two impellers are similar.

Finally, the complete bubbly flow model has been used with
¥ =9deg, 7r=045,¢6 =007, F=1,K = 1.3, and M = 0.8,
to produce the complete transfer function depicted in Fig. 13
for purposes of direct comparison with Figs. 5 and 6.

The value of Fis unimportant and could just as well be set
equal to zero; resulting changes in the transfer matrices are
minor, the most obvious being an increase in the w — 0 in-
tercept of Re(ZP,;) as Fis increased.

Comparison with Figs. 5 and 6 reveals quite similar
qualitative trends in virtually all of the elements of the
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transfer matrices. The most notable exception is the Re(ZP,,);
this component, however, is usually rather unimportant in
determining the stability of a hydraulic system (reference [61).

6 Conclusions

Dynamic transfer functions for two geometrically similar
impellers, 7.6 and 10.2 cm, have been obtained compared,
and analyzed. Within the data scatter there is little evidence of
any effect of size or speed apart from that implicit in the
nondimensionalization of total pressures, mass flow rate, and
frequencies. The quality of the 10.2 cm impeller data is better
than the previous-data for the 7.6 cm impeller because of
improved flow rate measurements using the EM meters.

The data for both impellers has also been compared with
the predictions of the bubbly flow model (reference [2]). This
comparison documents values of 1.3 and 0.8 for the two
unknown constants (K and M) implicit in the model. It then
appears that the bubbly flow model has considerable merit
and yields theoretical transfer matrices within the ex-
perimental uncertainty.
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Statement of Uncertainties Not Given in Figure Captions

Uncertainties in the measured transfer functions presented
in Fig. 4 were evaluated using methods described in reference
[1]. Ordinate error bars based on both (i) the influence of
individual measurement scatter, and (ii) the influence of
individual excitation modes on the resulting transfer func-
tions, were evaluated for each point plotted in the figure. The
results were similar to those presented in reference [1]. The
uncertainty in the polynomial fitted transfer functions of
Figs. 5 and 6 is evident from the comparison with data from
which they were derived. The possible scatter in Fig. 7 is a
direct result of the possible error in Fig. 4, and is + 0.05 at
most. The ordinate scatter in Figs. 8, 9, 10, 11, and 12 is self
evident. ’
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