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ABSTRACT

Increasing use is being made of transmission matrices to characterize
unsteady flows in hydraulic system compoments and to analyze the stability of
such systems. This paper presents some general characteristics which should
be examined in any experimentally measured transmission matrices and a meth-~
odology for the analysis of the stability of transmission matrices in hydrau-
lic systems of order 2. These characteristics are then examined for cavita-
ting pumps and the predicted instabilities (known as auto-oscillation) com-
pared with experimental observations in a particular experimental system
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RESUME

L'identification et 1'analyse des critéres de stabilité des €Coulements
non-stationnaires dans les composantes hydrauliques se font de plus en plus
au moyen des matrices de fonctions de transfert.

Ce papier presente quelques caracterlstiques generales qui se doivent
d'etre con51derees en vue d' analyser une matrice de fonctions de transfert
obtenue experlmentalement de meme qu'une methodologle pour mettre en evidence
les critéres de stabilité associes a une matrice de deuxitéme ordre.

Ce scheme est part la suite applique aux pompes cavitantes et la
predlctlon des reglmes instables (connue sous le nom d auto~oscillation) est
comparee aux observations experimentales pour un systeéme particulier.



1. INTRODUCTION

Hydraulic systems involving components in which phase changes occur
often encounter instabilities which lead to large pressure and mass flow rate
excursions. The prediction of such instabilities and the design of ameliora-
tive hardware are usually hindered by a lack of knowledge of the dynamic re-
sponse of the components in which the cavitation, boiling or other phase
change process occurs.

In the present paper we present a general methodology for such problems
and consider its application to the common instability problems which are ex-—
perienced in systems involving cavitating pumps. Instabilities in such sys-
tems are often termed "auto-oscillation" and have been the subject of a num-
ber of studies (Refs. 1 to 15). They have been demonstrated to be system in-
stabilities caused by the "active'" nature of the dynamic characteristics of
a cavitating inducer. 1In the next sections we developed a characterization
for such activity and criteria for evaluating instability.

2. DYNAMIC ANALYSES OF HYDRAULIC SYSTEMS

The traditional procedures for the dynamic analyses of hydraulic sys~
tems involve the integration of the equations of motion in the time domain
particularly by the method of characteristics (Refs. 16 and 17). These have
the advantages that non-linear terms can be incorporated but the methods are
not readily adaptable to complicated flows of the kind that occur in many
hydraulic devices such as pumps and turbines. The alternative approach of
solution in the frequency domain has been used less often (e.g. Ref. 18); it
has the disadvantage that it is usually necessary to confine the snalysis to
small linear perturbations. However, more complex hydraulic devices can be
readily incorporated in such an approach; furthermore, experiments to mea-
sure the dynamic characteristics of such devices are most readily performed
by introducing perturbations over a range of frequencies and the results are
then presented as functions of perturbation frequency (e.g., Refs, 12,15,19).

Within the context of the frequency domain analyses which have prolif-
erated in recent years (e.g., Refs. 18,20,15) the vast majority have been
guided by electric network theory (e.g., Ref. 21) and have been confined to
systems in which the flow is completely described by two state variables,
usually pressure, p, and flow rate, ¢q, though total pressure, h, has
advantages over the former as will be demonstrated later. This corresponds
to so~called four terminal network theory in the electrical context and
transmission matrices for any component of the system are 2 X 2 matrices
which are functions of frequency, £, and the mean or time averaged.flows
in the component. For example, if the linear perturbations in total pres-
sure and mass flow rate are described by Re{heJ®t} and Re{melft} where
£ is time, j 1is the imaginary unit, Re denotes real part of and R and
m are complex in general then the transmission function, [T}, can be de-
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where subscripts 1 and 2 define values at inlet to and discharge from the
component; [T] is often referred to as the transfer function or matrix
though it should strictly be termed the transmission function or matrix.

It is important to note that such a description is confined to the
special class of hydraulic systems which can be broken down into components
such that the flow at each dividing point (not necessarily all points) is
characterizable by only two state variables. This confines the analysis to
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either (a) incompressible fluid flows (b) compressible fluid flows in which
the perturbations are barotropic : the pggturbation density, p, 1is direct-
ly related to the perturbation pressure, p and therefore is not an independ-
ent state variable (c¢) components whose inlet and discharge are single phase
flows of the type (2) or (b) though not necessarily the same phase (examples
are a cavitating pump with single phase liquid flow in and out, or an ideal
evaporator or condenser) {(d) two-phase flows represented by homogeneous flow
models since they are usually equivalent to (b).

General liquid/gas two phase systems do not however fall in this re-
stricted class since they usually require at least four state-variables (e.g..
pressure, gas flow rate, liquid flow rate and void fraction) for complete
characterization though some reduction of the order of the system can be
achieved with certain two-phase flow models (e.g., the drift-flux model ia
which the relative velocity is a function only of the void fraction). Very
limited data is available on transmission matrices of ordergreater than two.
Brown (22) presents a unified approach to such problems but the material is
confined to uniform systems in which the coefficients of the governing differ-
ential equations are independent of position; this eliminates all but the
simplest fluid systems or components,

The analysis in this paper is similarly confined to systems of order 2.
In the next section we present some of characteristics of these systems and
a methodology for stability analysis.

3. SOME PROPERTIES OF TRANSMISSTION MATRICES

It is clear that provided one can construct transmission matrices for
each of the components into which the hydraulic system is broken then one has
available a complete dynamic model of the system to use for stability and
transient amalyses. The major difficulty is usually a lack of knowledge of
the transmission matrices for complex hydraulic components. In this respect
one must rely on experimental measurements of the transmission functioms,
though sometimes such measurements may suggest analytical approaches as in
the case of cavitating pumps (Refs. 12,23,24). When faced with experimental-
ly measured transmission matrices it is often desirable to evaluate certain
properties of those matrices so that one can anticipate how that hydraulic
component might affect the dynamics of a complete system incorporating that
component .

One such property is the determinant, D, of [T]. The matrix ([T] dis
said to be reciprocal if D = 1 and the overall transmission matrix for any
parallel or series combination of reciprocal components is also reciprocal.
In the context of hydraulic systems it is readily shown that incompressible
flows within rigid boundaries (T3y; = 0, Top = 1) and with total head losses
vhich are functions only of flow rate (T;; = 1) are reciprocal. Furthermore,
an accumlator or surge tank envisaged as acting at a point
(Ty1 = 1, T3 = 0, Toy= -j8C, Ty = 1) and having a compliance C is recip-
rocal. Systems comprised of the above elements are amalogous to L,R,C net-
works and have the same properties.

As an addenda to this it is well-known and readily shown that any
uniform system of any order, N, has a determinant, D, given by

N
D = exp (jl ) Ym) (2)

m=1 N

vhere £ is the distance between statioms 1 and 2 and Z ¥y is the sum of
m=1 '

of the complex wave numbers corresponding to the N wave propagation speeds

in that system. Consequently, lD‘ is unity. Though series combinations



of such components retain the same property, gemeral parallel combinations do
not. For convenience we term such systems quasi-reciprocal since they tend
toward reciprocity at low frequencies.

The classifications passive or active transmission matrices are more
immediately relevant to the stability of the systems. A component is con-
sidered active if there is a possible state in which there is a net output of
fluctuation energy from that component and passive if no such state exists.
It is clear that if all elements of a system are passive then the system will
be stable. Furthermore, most hydraulic system elements are passive; indeed
L,R,C systems are always passive. In contrast, pumps or turbines may be
active since they represent possible sources of fluctuation energy, hence the
focus in the present paper.

We consider next the conditions for net gain or loss of fluctuation
energy in a component considering only those cases of incompressible inlet
and discharge flows it follows that %he time-averaged flux of fluctuatiom
energy into a hydraulic component AE is given by
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where ¢ is the fluid density and the overbar demotes the complex conjugate.
Substitu%ion for ﬁz,ﬁz from the transmission matrix yields the altermative

form — -
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A= T]_]_T?_l"i'Tz]_Tll = purely real (5
B = TppT12#T12To2 = purely real (6)
C = Ty1Tp2+T21T12 = complex in general . (7

Note that C 1is somewhat suggestive of the determinmant D; din fact
lc|2 = |p]2 + 48 . - (8

From this it is readily shown that the component is

(A) Conservative (i.e. AE = 0) for all modes of excitation
if and only if A=B =0 nd C = 1. Therefore not

only must it be quasi~reciprocal (|D| = 1) but also
T T Tap  Ta22
L= e L2 — = —=p . 9
Tn T12 Ty  Ta2
(B) Completely Passive (A§>0) for all modes of excitation if
and only if
A<O {10)
ID|2 + 1 = 2RE(C)< O . (11)

Note that these imply B< Q.



(C}) Completely Active (AE < 0) for all modes of excitation
if and only if

A>0 (1.2)

|D|2+1-2Re(c) <0 . (13)

In contrast to the completely passive or active conditions (B) and (C) if
{D|2+1-2Re(c) >0

the component can be either active or passive depending on the mode of execita-
tion encountered by the cowmponent in the system.

4. TRANSMISSION MATRICES FOR CAVITATING INDUCERS

Since a pump may provide a source of fluctuation enerpy it provides a
useful example and one for which transmission matrices have been measured
experimentally for a range of frequencies. The values of A,B,C,D have been
computed for transmission matrices obtained on two impellers (3 in. and & in.
diameter models of the low pressure oxygen pump in the Space Shuttle Main
Engine) in water over a range of operating conditions given by rpm, flow co-
efficient, ¢, (mean inlet flow velocity/tip speed, UT) and cavitation

;-p U2) and frequency. These have

number ¢ (net positive suction pressure/ 5 P07

been presented in Refs. 12 and 23.

Ir transpired that A was negative over the entire range of conditioms
though it tends to zero for low frequencies and at high cavitation numbers
(i.e. in the virtual absence of cavitation). This is to be expected since
T3y + 1 and Tp; - 0 under such conditions. Since A < 0 the pump is never
completely active. Thus the sign of the quantity G = [D{2 + 1 - 2Re(C)
which we will call the "dynamic activity" of the pump (note that G, 1l1like D
and C, is dimensionless) determines whether the pump is completely passive
(negative values) or whether it can be active (positive values). Numerical
values for the two pumps are presented in Fig. 1 and 2 as functilons of both
the actual frequency and a non-dimensional frequency based on tip-speed and
blad tip spacing.

In Fig. 1 data is presented for the 3 in. impeller operating at 9000 rpm
with a flow coefficient of 0.07 and five different cavitation numbers. The
case © = 0.114 has very limited cavitation and 0.040 represent a falr degree
of cavitation, o = 0.024 is on the brink of breakdown and o = 0.023 is into
breakdown. Note that the dynamic activity is slight until close to: breakdown
when it rises dramatically. Some subsequent decline in activity following
breakdown is also suggested. The data for the larger 4 in. impeller in Fig.
2 (6000 rpm, v = 0,07) demonstrates the same trend toward higher activity with
greater cavitating though the smallest cavitation number for which data was
obtained was 0,044, 1In both cases there is also a tyend toward higher activ~
ity at the higher end of the frequemcy range.

5. SYSTEM STABILITY

Stability of a complete hydraulic system is most readily assessed using
the same expression (3) for the net of gain of fluctuation energy; ([T] is
now the overall transmission matrix for the system.

If the problem involves an open system then it is only necessary to ap-
Ply one appropriate boundary condition on the fluctuating quantities to the
expression (3) or (4). A simple example would be a system originating from a
reservoir of constant total head so that f; = 0. Then it is clear from (3)
that the sign of AE 4is identical to the sign of Re(-K,/M,) and hence to the
sign of Re(-T;,/Top)which is the real part of the output impedance, ~T12/T22.
Thus the system 1is stable if Re(~Tj2/ } >0 and unstable in the reverse cir-
cumstances. Similarly a system dischafging with a constant total head (H»=0)
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Figure 1. The dynamic activity, G, Figure 2. The dynamic activity, G,

of the 3 in. impeller operation at of the 4 in. impeller operating at
9000 rpm with a flow coefficient, 6000 rpm with a flow coefficient, ¢,
¢, of 0.07 and various cavitation of 0.07 and various cavitation numbers,
numbers, o, as shown. o, as shown.

is stable if the real part of the input impedance, Re(~T;,/T;;) is greater
than zero.

When the system is closed it should be broken at any arbitrary point so
that subscripts 1 and 2 refer respectively to the conditions downstream and
upstream of the breakpoint. Then if the fluctuating flow rates across the
breakpoint are equated stability is determined by the sign of |

AE =

|§1|2 Ty [(1-T11) (1-T11)-T31T312)
5o Re { . } (14)
(1-T22)(1-T22)

L

which is readily computed from the overall transmission matrix {[T]. The
crucial term is therefore the numerator in the curly brackets; note that the
value of the determinant, d, of the matrix ([T]-[I] plays a central role
here and that the condition for stability can be reduced to

Re(dTo;) < 0 . (15)

Y

6. APPLICATION TO AUTO-OSCILLATION ANALYSIS

The transmission matrices for cavitating inducer pumps used in Section
4 were measured in a closed loop system designed for that purpose and called
the Dynamic Pump Test Facility (DPTIF) (see Refs. 11,12,15 and 23). A sche-
matic is included here as Fig. 3. 1In addition to the transmission matrices
for the cavitating inducers (denoted by [Y]) the dynamic characteristics of
the remainder of the loop have also been measured (Ref. 15). For the pur-
pose of assessment of the stability of this closed loop system it can be
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Figure 3. Schematic plan view of the Figure 4. Schematic of the dynamic
Dynamic Pump Test Facility used for model used for auto-oscillation pre-~
measuring the transmission matrices for-diction and assessment of the stabil-
cavitating inducer pumps (Refs. 11,12 ity methodology.

and 23) and for auto-oscillation

studies (Ref. 13)

divided into the four elements depicted in Fig. 4, namely (i) the pump (di)
inlet and discharge lines which are dominated by their impedances IU and ID

respectively which were measured as functions of Frequencty and various valve
settings (Ref. 15) and (iii) the large air bladder used for pressure control
which is dominated by its compliance, c(real).

With the arbitrary choice of the breakpoint, X(Fig. 4), just downstream

of the pump the transmission matrix [T] immediately follows and substitution
into the relation (14) yields

20 Aﬁ
|8 |

) Re (FG/HH) (16)

F= *z2'1+jszc(1UY21-Y22)- (17)

G = (1_Y11)(1_Y22)+Y21(1U+1D—Y12)+jnc[Y12+IUIDY21~IUY1l—IDYzzl (18)

H = (IU+ID)Y21—Y11+1+jnc(1UY21-Yzz) . (19)

Considerable simplification is effected by the observation tha? the air blad-
der compliance, ¢, 1is very large so that F,G,H are all cominated by the
terms involving jQc. Consequently

(\20
he = L

—_ (20)
|y |2 L (Y22-Ty¥21)

n,
AE . fIUYl 1+IDY22“'Y12-IUIDY2 1}
e -

Note that in the absence of cavitation since Y31~ }, Yoo+ 1 and Y2;> O
the sign of Ae is simply determined by the sign of Re(IU+ID4Y;2), that

is to say by the sign of the sum of the resistances of the lines and the pump.



Then if the pump resistance, Re(-Y;;), which is given at low frequencies by
the negative slope of the HQ characteristic of the pump, becomes sufficient-
1y negative (i.e. positive HQ slope) to cause the total resistance to be~
comé negative the system becomes unstable. Such cases are known and lead to
the surge phenomena observed for example in compressors (Ref. 25) and centri-
fugal pumps (Ref. 26).

However, it is clear from the form of (20) that in the presence of cavi-
tation a negative Ae can occur even when the resistance is positive (negative
HQ slope) depending on the other elements of the pump transmission matrix.

Values of Ae were computed using each of the experimentally measured
cavitating pump transmission matrices described in Section 4 and presented in
Refs. 11,12 and 23 plus appropriate experimentally measured inlet and dis-
charge line impedances. Due to variable valve settings in both the inlet and
discharge lines various combinations could be generated which produced the
same total mean flow resistance (matching the mean flow head rise of the pump
operating under the conditions at which the transmission matrix was measured)
but different impedance functions I (Q) and I_(R). In the present system
it was found that increasing the contribution of the total in the inlet line
tended to stabilize the system; such 2 trend was alsoc observed during ex~
perimental observations of auto-oscillation.
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Figure 5. The net energy flux, Ae, Figure 6. The net energy flux, Ae,

as a function of frequency for six as a function of frequency for four

cavitation numbers at which transmission cavitation numbers at which trans~

functions (A to F¥) were obtained for the mission functioms (C,D,G,H) were

3 in. impeller at ¢ = 0.07 and 9000 rpm. obtained for the 4 in. impeller at
¢ = 0.07 and 6000 rpm.

For a given distribution of impedances (namely that used during most of
the experimental observations of instability) the net energy flux, Ae,
varied with cavitation number as shown in Figs. 5,6 and 7. Figures 5 and 7,
show the behavior of the system with the 3 in. impeller installed and operating
at 9000 rpm, ¢ , 0.07 and 12,000 rpm, ¢ = 0.07; Fig. 6 presents Ae for
the 4 in. impeller operating at ¢ = 0.07 and 6000 rpm. All of these figures
show that the system is stable (positive Ae) when the cavitation in the pump
is minimal (large o). They also demonstrate that the system tends to become
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Figure 7. The net energy flux, Ae, as a function of frequency for three
cavitation numbers at which transmission functions (G,H and I)were
obtained for the 3 in. impeller at ¢ = 0.07 and 12000 rpm.

unstable in the higher range of frequencies as the cavitation number is de-
creased; however it remains stable at the lower frequencies.

7. COMPARISON WITH OBSERVATIONS OF AUTO-OSCILLATION

Experimental observations of the onset of auto—oscillation were also
performed for the conditions corresponding to Figs. 5,6 and 7 and are report-
ed in detail elsewhere (Refs. 11 and 15). Though the values of the onset
cavitation number, o,, from repeated runs performed by slowly reducing of
the cavitation number were rather scattered the frequency of auto—oscillation
was quite repeatable. Observed results for the 3 in. impeller at ¢ = 0.07
were onset conditions in the range Oy = 0.025 to 0,035 and at a reduced fre-
quency of 0.3 to 0.35 for both 9000 and 12000 rpm. For the 4 in. impeller on-
set occurred in the range o, = 0.05 to 0.06 and at a reduced frequency of
about 0.55. The predictions from Figs. 5,6 and 7 are qualitatively consistent
with these actual observations and thus provide a fair degree of substantia-
tion of the stability methodology. More accurate predictions would have re-
quired more transmission matrices giving wider coverage of the cavitation num-
ber spectrum. Finally, we note that the range of frequencies and cavitation
numbers at which auto-oscillation occurs could be anticipated from the cal-
culated "dynamic activities" presented in Figs. 1 and 2.

8. CONCLUDING REMARKS

This paper has provided some background on the analysis of the
dynamic response and stability of hydraulic systems of order two. It has been
shown that the potential trouble yhicha particular component might cause when
incorporated in a hydraulic system can be characterized by a quantity called
its "dynamic activity". Experimentally measured trausmission matrices for



cavitating inducer purps are used as an example to demonstrate that cavitation in a pump
can cause such a device to become dynamically active.

Finally a methodology for the analysis of stability of open or closed hydraulic systems
is presented. As an example this is applied to a system with a cavitating pump and the
predictions compare fairly well with the observed onset of instability (called auto-oscillation
in the context of cavitating pumps).
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