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1. ABSTRACT

This paper is concerned with the unsteady, dynamic behavior of hy-
draulic systems and, in particular, with the dynamic characteristics of in-
ternal flows involving phase-change and two-phase flows. This emphasis is
motivated by the large number of different flows of this kind which exhibit
"active' dynamic characteristics (see Section 3) and therefore have the
potential to cause instability in the whole hydraulic system of which they are
a part (see Section 4). We begin, first, with a discussion of the form and
properties of dynamic transfer functions for hydraulic.systems. Then, fol-
lowing the discussion of a number of examples we present an analysis leading
to the transfer function for a simple phase-change and demonstrate its "active
dynamic character.

2. HYDRAULIC SYSTEM TRANSFER FUNCTIONS

Traditionally, unsteady flow problems in hydraulic systems have been
tackled inthe time-domain utilizing the method of characteristics [1]. Such
methods are often convenient for relatively simple flows for which the differ-
ential equation can be constructed with some degree of certainty. On the other
hand with a few notable exceptions [2, 3] little use seems to have been made of
the other classical approach namely construction of the problem in the fre-
quency domain. One of the underlying themes of this paper is that such an
approach can have significant advantages in the analysis of complex, unsteady

- flows. However, unlike the time domain methods they are limited in practice
to small amplitude pertubations on some mean flow. -

The basic approach is analogous to that of electrical network analysis.
The pressure, p, and mass flow rate,  m, at every point in the hydraulic
system are subdivided into mean flow components, p and m Whlch arg in-
dependent of time, t, and small linear fluctuating components, P and m, for
each frequency, Q:

p =5 +Relped™ ; @ =15 + Relmel M} (1)

where j is the imaginary unit, Re denotes the real part and P, m are com- :
plex in general, Alternatlvely, it is often convenient to use the total pressure,
h, and to similarly subdivide it into h and f.

The next step is to identify the transfer functions, [Y] or [X], for
each element of the hydraulic system; this relates the fluctuating pressures at
inlet to the element. p, (or f,) and rnl, to the fluctuating quantities at
discharge, P,(or hp) and mg:
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%%}: [Y]{% ] or {% }= [X]F} (2)
my my mg my,

Clearly once [X] or [Y] is known the other can readily be constructed; in
some cases the |¥] formulation is more convenient, in others the [X] form-
ulation is preferable. In either case the transfer matrix consists of four
complex elements which will, in general, be functions not only of frequency
but also of the mean flow conditions within the hydraulic element. If these
transfer functions are known for each element in a hydraulic system then one
could (i) perform stability analyses (ii) investigate transient response by
inverse Fourier transforms and (iii) design appropriate corrective hardware
to mitigate problems in stability or transient response.

The major task is therefore to identify the transfer functions for
devices such as pumps, evaporators, etc. Before proceeding to discuss some
examples it is instructive to examine some basic properties of transfer func-
tions. ~.

3. SOME TRANSFER FUNCTION PROPERTIES

Some basic properties of transfer functions known from four-terminal
network analysis for electrical systems [4]:

(i) If the hydraulic element under consideration is entirely conserva-
tive with no internal dissipation or production of flow energy then
it can readily be demonstrated that the elements of [X] must
satisfy the relations

- - = ‘ = 3
Ky =dXy; 3 Kyp=-dXyp ; Xp = -dXp 5 Xgpp = dXp (3)

where d is'the determinant of [Xl and is complex in general
and the overbar denoctes the complex conjugate. It follows that

fal=1. . (4)

For example the transfer function for frictionless compressible

fluid flow in a uniform pipe of length, £, [5] has

d = exp(2jQ4M>/T(1-M®)) where U is the mean fluid velocity and

M is the Mach number.
(ii) It is important to note that if |d|= 1 (i.e.the system'is
reciprocal) then it does not necessarily follow that the system is
conservative. For example, any composite system comprised of
discrete passive elements which are either resistances, R, in-
ertances, L, or compliances, C has d =1 yet energy is dis-
sipated. Furthermore, for many simple single phase flows with
conventional fluid mechanical dissipation (such as compressible
pipe. flow with friction) it transpires that |d|= 1, though this
may not be true in general.
It follows from (i) and (ii) that a hydraulic component which has
the potential for being dynamically active will exhibit the property

ldl#1 . (5)

In this paper we shall examine the characteristic transfer functions for some
potentially active hydraulic components involving two-phase flow.

~—
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4. DYNAMICS OF FLOW WITH PHASE CHANGE

There are many practical and experimental observations of hydraulic
system instabilities connected with flows involving phase change or two-phase
‘flows. We will mention here just a few examples for illustrative purposes.
Instabilities associated with evaporators and boilers are well known; though
they have been the subject of dynamic testing [6, 7] complete transfer func-
tions have not as yet been obtained. Instabilities associated with condensing
flows have also been observed, most recently in the context of nuclear re-
actor safety systems. "Condensation oscillations' have been reported in the
testing of emergency core cooling systems, pressure relief systems and
pressure suppression pool operation. For example in the last case [8] steam
escaping in drywell of a B, W, R. will expand down through-vent pipes into
a pool of water (Fig. 1). Following the initial drywell air-venting period,
the steam condenses at some interface in the vicinity of the submerged vent
pipe exit. It has, however, been observed that this flow can be quite unstable
leading to large amplitude motion of the interface in and out of the vent pipe
exit; large amplitude pressure oscillations accompany this so-called '"chugg-
ing" phenomena [9,10]. Somewhat similar oscillations were observed many
- years ago in the context of underwater jet propulsion using condensable gases

11]. .

[ Furthermore, instabilities are frequently encountered in hydraulic
systems involving pumps or turbines which are cavitating. One example of
this kind is the "auto-oscillation'" phenomenon associated with the operation
of cavitating inducer pumps [12 =17]. Briefly when the overall mean pres-
sure level in the system is reduced until the cavitation in the pump is suf-
ficiently extensive, the system of which the pump is a part can becomeun-
stable, resulting in large pressure and mass flow rate fluctuations within the
entire system. This behavior is the result of changes in the character of the
dvnamic transfer function for the pump when cavitation becomes sufficiently
extensive [16,17,18].

Recently we have conducted a series of experiments designed to mea-
sure dynamic transfer functions for cavitating pumps [16,17,18,19]. The
purpose was to provide some knowledge of the dynamic characteristics of
such flows so that instabilities, such as the POGO instability [20,21] endemic
to all liquid propelled rockets, might be more readily understood and ana-
lyzed. Some typical results are presented in Fig, 2 (see [16] for further
details). The four elements of the matrix, [ZP] =[X] - [I], (defined for
non-dimensionalized fluctuating total pressures and mass flow rates; [I] is
the unit matrix) are plotted against frequency (also non-dimensionalized;
actual frequencies ranged from 4 —»42 Hz.) for a three inch diameter model
of the impeller of the low pressure oxidizer pump in the Space Shuttle Main
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Figure 1. Schematic of BWR pressure suppression system.
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Figure 2. Dynamic transfer functions for a cavitating axial inducer pump.
The real and imaginary parts of each of the matrix elements are shown by
solid and dashed lines respectively and are plotted against a reduced frequen-
cy. The lines are polynomial curve fits to experimental data of reference
[16]. The data was obtained at a flow coefficient of 0.07 and a pump speed of
9000 rpm. In the curves' A= E the extent of the cavitation is progressively
increased (see [16,18,19]):

REAL & IMAGINERY PARTS OF D

o 0. 0.2 0.3 0.4 3as
NON - DIMENSIONAL FREQUENCY ,w
Figure 3. The real and imaginary parts of the determinant, d, for the

results of Fig. 2.

Engine. The real and imaginary parts are displayed by solid and dashedlines
respectively; for clarity the data is replaced by polynomial curve fits for
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different degrees of cavitation in the pump; the extent of cavitation increases
through the curves labelled A to E. Though the dynamics are quite complex
it can be observed that in the absence of cavitation the data suggests a single
non-zero element ZP;; which represents the non-cavitating impedance of
the pump. This non-cavitating impedance is roughly comprised of a real
resistance and an imaginary inertive component increasing with frequency;
similar non-cavitating results were obtained by Anderson, Blade and Stevens
[22] for a centrifugal pump.

One of the most significant results from these experiments involved the
determinant, d, for these transfer functions (Fig. 3). Inthe absence of
cavitation d was close to unity. However, even a modest amount of cavita-
tion was sufficient to cause substantial departure from unity as indicated in
Fig. 5. This property of cavitating pump flows clearly indicates why auto-
oscillation occurs. Furthermore, these experimental results also demon-
‘strate that some of the older dynamic models for cavitating pumps [21, 23]
which were based on combinations of discrete resistive, inertive and com-
pliant components (and would therefore have d = 1) were inadequate.

More recently we have proposed a simple bubbly. flow model [19] which
does remarkably well in reproducing most of the basic trends in the transfer
functions of Figs. 2 and 3. This model strongly suggests that the active
nature of the dynamics arises from the fluctuating production of cavitating
bubbles in the vicinity of inlet to the inducer. Though the situation there is
even more complex than in condensers or evaporators it seems evident that
the dynamic response of this partial phase change is a most significant part
of the overall dynamics. One tentative conclusion which can be -drawn from
all of these examples is that many two-phase flows are capable of exhibiting
Yactive' dynamic characteristics. If we could synthesize the transfer func-
tions for such flows and couple them with the transfer functions for the rest
of the hydraulic system then we have available the ‘necessary analytical tools
for dealing with those instabilities.

Of course, even under stable conditions many of the nominally steady
flows described above are very complicated and not readily amenable to
theoretical synthesis (e.g. evaporator, cavitating pump). Consequently,
detailed unsteady analysis is often prohibitively complicated. Nevertheless,
one of the purposes of this paper is to show that very crude and approximate
models of these flows with phase change still indicate qualitative mechanisms
through which they may exhibit active dynamic behavior. In the next section
we briefly derive the transfer function for a very simplistic phase change.
This could be used as a first approximation in synthesizing the dynamics for
condensing or evaporating flows.

5. PHASE CHANGE TRANSFER FUNCTION

Consider the characteristic flow with phase change represented in
Fig. 4; it is assumed that any steady velocity of the phase change interface
has been removed by a suitable Galilean transformation. . Then the origin of
the coordinate, =x, in the direction of flow is the mean position of the inter-
face and the analysis which follows is spatially one-dimensional.

The purpose here is to isolate the transfer function of the interface
alone. In order to eliminate incorporation of the dynamic effects of the single
phase flows on either side of interface (since these will be manifest in
the transfer functions for those single phase flows) we shall consider the
transfer function between two fixed boundaries, 1 and 2, in the two different
phases which are considered to be infinitesimally close to the origin, x = 0.
Since the analysis is purely linea r the amplitude of the fluctuation in the
position of the interface can be considered infinitesimally small in order to
realize this configuration.

It is convenient to define phase 1 (x <0) as that in which the mean flow
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Figure 4. Schematic of the non-inertial x-coordinate system used in the
dynamic analysis of a phase .change,

is toward the interface (the 'upstream!' phase) and phase 2 (x>0) as the
"downstream'' phase; the subscript, i=1 or 2, will designate character-
istics of the two phases at the boundaries 1 and 2.

The fluid velocities, ui;, mass flow rates per unit cross-sectional
area, my, pressures, p;, and densities py, are divided info meanh and
Tuctuating components in the manner of equations (1). The interface velocity
vp, and temperature, T, are similarly represented as

vp = Re{¥ Y t} s Te =T + Re{ﬁ;eJQt} . (6)
Clearly it follows that
. Pr=P2=Pr and P, =P =Dr ‘ (7)

where pp is the interface pressure. Furthermore, if the interface condition
follows the saturated liquid/vapor line then by the Clausius-Clapeyron relation

’EP :(p_v£> ﬁp (8)
Te

where p, is the mean saturated vapor density and £ is the latent heat at the
mean interface temperature, TF., or pressure, pp.

It follows from consérvation of mass that my =pju; =m,= bsup and,
moreover, if mP represents the fluctuating mass flow rate relative to the
interface then

M, = 03 (U - Vp) + TPy = pa(Ue - Ve) + e

my = m, +0,Vp . 9)

m, = M, + pave

Now the unsteady heat transport in the vicinity of the phase change
must be considered in order to obtain one final relation for .Tp in
terms of m,. For this purpose we assume that the frequency of the oscilla-
tions is sufficiently large so that the thermal convection terms of the equation

governing heat transport in the neighborhood of the interface are negligible
and the unsteady thermal transport is governed by

2 .
: (10)

fmon

o~ FT y>0, i
e b {Y<0,i

where D;, D, are the thermal diffusivities of the two phases and y isa
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modified coordinate measured relative to the instantaneous position of the
interface (and is thus not the same as x). A much more complete analysis
for lower frequencies at which the convective heat transport must be included
will be presented elsewhere [5,24]. However, the present assumptions cover
many problems of practical interest. It follows that the solution of equation

(10) in the two phases is
1
z
=T exp(lﬂ)(é-) > » vy <0

Toexp <—(1+j)<2%2>—év> sy >0

By equating the fluctuating enthalpy fluxes into and out of the interface the
desired relation is obtained:

(11)

mp = ST} . (12)
where .
14) (Q¥= % — 5
5= (f_gﬁ (’2‘) {P1ceyDE + P2 craDsd : (13)
and cpy, 1= 1,2 are the specific heats of the two_phases It is of value to
point out that since the saturated vapor density, p,, is many orders of

magnitude less than the saturated liquid density, p. (unless the tempera-
ture, Tp, 1is close to the critical temperature for the fluid) then

S ~(14j) (Q TPLCP‘-DL . (14)

The transfer matrix, [Y], for the interface follows directly from

(7),(8),(9) and (12):
Y11= 1 > le: 0

Vor - TSy Ba (15)
1P & P1

6. DISCUSSION OF THE PHASE-CHANGE TRANSFER FUNCTION

The dynamic characteristics of a phase change are thus functions only
of the frequency, (), and the mean interface temperature T, since, given
the latter, the saturated liquid and vapor properties p,,py, Cps Cpyr Dy, D, and
£ may be determined. One other physical consideration may however cause
exception to this statement. If the thermal diffusivities are governed not by
molecular diffusivity, but by turbulent m1x1ng on the scale of the unsteady
thermal boundary layer thickness, (D_/Q)%, then the effective turbulent dif-
fusivity will be determined by factors other than (0 and T,. This problem
will not be addressed here, but we shall examine the 1mpllcat1ons of a turbu-
lent mixing length, 4 = D,_/u,_

Another s1mp1e way of representlng the dynarmcs manifest in the
transfer function (15) is by means of the model presented in Fig.5. It is
readily demonstrated that whether phase 1 is liquid and phase 2 is vapor or
vice-versa (i.e. whether the mean flow is condensing or evaporating) the in-
terface dynamics can be represented b;/; a mass flow rate amplifier of am-
plification p_ /g, and an 1rnpedance I** to ground, whose admittance per
unit area of the interface, G¥, is given by
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Figure 5. A model of the dynamics of a phase-change at high frequencies.
The mass flow rate amplification is such that mg= pym,/p,.

L
e - 1 2
cre CTL -I)CPL_T_PDE(l'Fj)(%) &£ (16)
o \Py )

where the simplification (14) has been ernployed Notice that this impedance
is neither resistive nor compliant but varies with frequency like (jQ)~
such an impedance is characteristic of unsteady diffusive processes and
implies a '"receding memory".

If the molecular thermal d1ffus1v11:y of the liquid is used then

G*= M¥(1+H)NQ/2)® where
. — 1
M = _CP;TE (3__L B} )_kL >2 (17)
& Py el

and k; is the thermal conductivity of the liquid. If on the other hand turbu-
lent mixing dominates the thermal diffusion then the admittance per unit total
mass flow rate, G¥* , 1is given by

G**— GL(14) (QJZ ) ;G = _C..EL-;-.T_P(_p__'-. -1} . (18)
U pL£ Py

»

For the purposes of demonstrating the large effect on the interface
dynamics of changes in the mean interface temperature, the crucial quantities
0L /Py, M* and G have been presented in Figs. 5,6 and 7 as functions of
Tp for various liquids. The non-dimensional temperature used, namely
8 = (T,-T1)/(T: -Ty), is one which roughly spans the interval between the
triple point temperature, Ty, and the critical point temperature, T, for
each fluid. For water, sodium, ethane, oxygen and hydrogen these end
points to the nearest degree Kelvin are (273, 647), (371,2733), (90,305),
(54,155) and (14, 33) respectively. For Freon-12 and mercury arbitrary
values of (115,385) and (234, 1823) were used for the purposes of presentation.
The primary purpose of Figs. 5,6 and 7 is to show that if the mean interface
temperature increases both the amplification factor and the admittance de-
crease dramatically except close to the critical point temperature.

Returning t6 the original purpose, we observe that the transfer func-
tion for the interface has a determinant whose magnitude is not unity. Con-
sequently the presence of a phase-change in a hydraulic system could cause
that system to be unstable over a range of flow conditions and frequencies. It
is important to note that, though the value of d for the phase-change trans-
fer function is dominated by p./py, the potential "active' character of the
entire system of which the phase change is only ompe part will depend on both
the amplification, p_/py, and the impedance, I

It should also be pointed out that a more complete analysis-of the
transfer function for a phase change has been completed [5]. Among the .
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Figure 6. Ratio of saturated liquid to Flgure 7. Values of M* in units of

vapor densities, p./py, for various sec®®/m for various saturated liquids
fluids as a function of the interface as functions of the interface
temperature. temperature:

features which are delineated in this more complete study is the lower limit
of frequency for which the above analysis is relevant (particularly the as-
sumptions implicit in equation (10)). A typical measure of this lower limit is

H (Perimeter of flow)
(Area of ﬂow)

Q >
PaCpz
where H is the typical heat transfer coefficient in the downstream phase to
the walls containing the flow.

Finally, we also observe that the dynamics of a condensing phase
change may be radically affected by the presence inthe vapor phase ofa second
""contaminant' gas which is relatively insoluble in the liquid. Such a con-
taminant gas will tend to accumulate just upstream of the phase-change and
inhibit the rate of condensation of the vapor. This will clearly affect the
dynamic transfer function for the phase-change. Indeed an analysis of the
effect of such a contaminant on the dynamics of a condensation interface has
been completed [24]. This shows that the major effect of a small mass con-
centration, &, of contaminant gas is to supplement the impedance, ¥, by
a . second ”contarnlna.nt” impedance IEF, If B denotes the ratio of the mole-

_cular weight of the contaminant to that of the vapor then it transpires that for
small o: . .
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where T is a quantity which is a function of the interagace temperature, T,
and the thermal and mass diffusivities. Values of T based onmolecular dif-
fusivities are presented in Fig. 9 as functions of Tr for two particular fluid
systems namely air contaminating a water vapor condensation and argon
contaminating an oxygen condensation. The results based on turbulent dif-
fusivities are similar [24]. Thus if B is of the order of unity it follows that
the impedance due to the contaminant in these two fluid systems is generally
negligible if the mass concentration is less than about 0.1%. At low tempera-
tures mass concentrations of the order of 1% cause the dominant impedance to
be I¥¥; at higher temperatures relatively larger concentrations of contamin-
ant are required to have the same effect.

7. CONCLUDING REMARKS

In the present paper we have attempted to outline some of the basic
features of the unsteady dynamics of flows with phase-change. The analysis
in the preceding two sections leading to the transfer function for a phase-
change can only be considered a first attempt to understand the hydraulic
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system instabilities so often associated with such flows. Clearly the actual
‘form and configuration of most real phase-changes are usually much more
complex than the simple form assumed here. In such cases the present ana-
lysis can only be considered to provide guidelines as to the form which the
transfer function might take. What is really needed are some basic experi-
ments designed to measure the transfer functions in these more complicated
cases.

Despite these qualifications, the present analysis clearly indicates
why systems with a single phase change (such as the B. W.R. suppression pool
system) can become unstable. Indeed if the rest of the elements in such a
system are reciprocal the determinant of the composite system made up only
of the series combination of the elements (but not parallel combination) will
have a spectral radius equal to that of the phase change transfer function.

' There are two other points which require consideration in dealing with
more complex flows such as those in a cavitating pump. Firstly, since the

blade passage flows represent parallel combination of transfer functions it
should be noted that though a series combination of reciprocal elements

(ldal = 1) leads to a composite with the same property the same is not nec-
essarily true for parallel combinations (though it will, of course, be true if

the elements are conservative as well as reciprocal), The second point con-
cerns the determinant of a system in which there is phase change to vapor fol-
lowed later by the reverse (as in a cavitating flow); for a pure series combina-
tion the composite determinant should have a spectral radius of unity if all

the single phase flows are reciprocal. It is clear from these remarks that the
basic reasons underlying the active natufe of cavitating pump flows are less
readily understood and that further analytical studies are needed. )
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