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LOCOMOTION OF FLAGELLATES WITH MASTIGONEMES
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Theoretical hydrodynamic analyses of the locomotion of flagellates with mastigonemes are presented and particular
comparison is made within experimental data on Ochromonas malhamensis. The first part of the paper analyses
locemotion assuming the mastigonemes are rigid and maintain a fixed and normal position relative to the flagellum.
The predicted propulsive velocity of 60 um/sec for Ochromonas agrees well with the observed values of 55-60
pm/sec. It is shown that the propulsive system of Qchromonas represents a compromise between the need for
efficient rectilinear propulsion and the need to manoeuvre and accelerate. The effect of rigid mastigonemes which
are maintained at non-zero angles to the flagellar normal is also calculated and demonstrates a significant degrada-
tion of performance when this angle is greater than about 10°.

The latter part of the paper investigates the more complex but more realistic situation in which the mastigonemes
flex during the motion according to the instantaneous hydrodynamic forces imposed upon them. The cyclical
flexing history of a mastigoneme with passage of a flagellar wave and the consequent velocity of propulsion are
obtained for a variety of geometric configurations and structural mastigoneme stiffnesses. It is demonstrated that
thete exists a relatively small transition range in the values of mastigoneme flexibility below which the mastigonemes
are essentially rigid and above which they become totally ineffective hydrodynamically so that the flagellum can
be regarded as essentially smooth. Since the transition value of the modulus of elasticity is about 5 dynes/pm? (or
stiffniess of 3.5x 10719 dyne cm?) for the mastigonemes of Ochromonas it would appear that the actual value must
be in excess of this. Comparison is made with the structural properties of the micro-tubules in eukaryote cilia and
flagella and with proka:{syote flagella. The latter comparison suggests that the mastigonemes of Ockromonas are
just rigid enough to produce the observed propulsive effect.
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1. INTRODUCTION

During the past twenty years much progress has
been made in the theoretical analysis of the loco-
motion of flagellated micro-organisms. Following
the early work of Taylor (1951, 1952) and Hancock
(1953), Gray and Hancock (1955) derived two very
useful approximate formulae for calculating the
tangential and normal forces, dF, and dF,, acting
on element (length ds) of a long thin cylindrical
filament moving through a viscous fluid with tan-
gential and normal velocities, V, and ¥, relative
to the fluid. The relations are

dF, = —CyV,ds, C; = 4nu/{(In(2A/R)~ %}
dF, = —C!Vds, C! = CIJ2 (1)

where p is the dynamic viscosity of the fiuid, R is
the filament radius and A a wavelength of the
flagellar motions. These formulae have been used
by many authors including Gray (1958) and Carlson
(1959) to predict the locomotion due to planar
waves propagating along a flagellum. More recently
Chwang and Wu (1971) have extended their use
to investigations of flagella with helical waves.

The present paper is concerned with a distinc-
tively different situation. It is known that the
flagellum of many species have appendages in the
form of thin, lateral projections called masti-
gonemes (Pitelka, 1963). The observations of
Pitelka (1963) and Pitelka and Schooley (1935) on
one such organism, Ochromonas, indicated that the
mastigonemes are quite rigid and are solidly con-
nected more or less normal to the flagella. Sub-
sequently Jahn, Landman and Fonseca (1964)
observed that Ochromonas, propagated planar
waves along the flagella from base to tip in the
manner indicated in Figure 1. The resulting pro-
pulsion was in the same direction as this wave
propagation and hence contrary to the direction
of propulsion expected in the absence of masti-
gonemes. Thus Jahn, Landman and Fonseca (1964)
rejected Pitelka’s (1963) suggestion that the masti-
gonemes merely supplemented the hydrodynamic
effect of the flagellar wave and, in explaining the
major propulsive effect of these appendages, quali-
tatively ascribed it to the rowing action of each
mastigoneme as the flagellar wave passed by. One
qualitative and approximate way of including the
effect of the mastigonemes in a hydrodynamic
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analysis was suggested by Jahn, Landman and
Fonseca (1964) and later implemented by Holwill
and Sleigh (1967). This model considered that the
role of the mastigonemes can be envisaged as
increasing the effective tangential resistive coeffi-
cient, €/, on the flagellum so that the effective ratio
C//C! is much larger than would occur for the
basic “smooth” flagellum. The potential effect of
such an increased value of C//C, was demon-
strated by Taylor (1951) in his pioneering paper.
Holwill and Sleigh (1967) confirmed that propul-
sion would be in the same direction as the propaga-
tion of the flagellar wave when the effective %ﬁ/ X
became greater than unity. Indeed they employed
their measured swimming speeds in an inverse cal-
culation to obtain an effective value of this ratio
in the neighbourhood of 1.8; comparison of sessile
and swimming organisms and other evidence also
cansed Holwill and Sleigh to conclude that the
majority of the mastigonemes must be aligned in
the plane of the flagellar wave.

TRAVELLING PLANAR WAVE OF
THE FLAGELLUM

DIRECTION OF
Pl i A
PROFULSION

N va'
HEADDN N 3 / /

- FLAGELLUM
MASTIGONEME RIGIDLY
ATTAGHED AT NORMAL
TO FLAGELLUM
Figure 1. The flagellar/mastigoneme propulsion systera.

FIGURE 1 The flagellar/mastigoneme propulsion system.

"The objective of the present paper is to present,
first; a more detailed fluid mechanical analysis of
the mastigoneme/flagellar system of propulsion and
to evaluate this system and its optima in the light
of previons experimental observation. This analysis
will then be modified to allow study of the struc-
tural requirements on the mastigonemes which are
necessary for propulsion. It will be demonstrated
that mastigonemes must be quite rigid with a fairly
large modulus of elasticity, E, in order to achieve
the observed propulsive velocity. Theoretically,
smaller values of £ would cause the defiections of

the mastigonemes under the applied hydrodynamic
load to be quite large with a consequent reduction
in performance of the propulsion system and
eventually a reveision to an effectively smooth
flagellum.

2. HYDRODYNAMIC VELOCITIES AND
FORCES ON THE MASTIGONEMES

We concentrate attention on the motion of a pair
of mastigonemes in a frame of reference (x, y) in
which the head of the organism is fixed (Figure 2).
The wave number, wave velocity and amplitude of
the wave propagating along the flagellum in the
+ve x direction are denoted by k(= 2=/A), c and a
respectively. It follows that lateral motion of a
general material point, B, on the flagellom at x = x4
is given by

Yo = asin k(xy—ct) = asin 6 )]

" where ¢ is time and k(xq—ct) is denoted for con-

venience by 6. Assuming that a mastigoneme
remains attached at a normal to the flagellum at
the point B the coordinates of a general material
point C on the mastigoneme, distance s from B,
are denoted by x,, y. where

X, = Xg—=SSing
Y, = asin §+s cos ¢ 3)

where ¢ is the slope of the tangent to the flagellum
at B so that

tan p = ka cos ¢

and hence ¢ defines the angular inclination of the
mastigonemes. It follows that the velocities of the
material point C in the x and y directions are
respectively

0 = — sk?ac sin 0 ®
‘ [1+k2a? cos? 8]
3.2 N
v, = _kaccosg_skaCCOSOSmB ©

[1+k2a2 cos? 0]

If in addition the organism is propelling itself with
velocity ¥ in the positive x direction then, in the
above frame of reference, the fluid has an additional
velocity ¥ in the negative x direction. Consequently

. the velocities of an element of mastigoneme, length

ds, relative to the fluid are (4,+ V) and v.. By
resolving these into components normal and tan-
gential to the element, employing viscous resistive
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FIGURE 2 Geometric and hydrodynamic variables in the model of the flagellar/mastigoneme propulsion system.

coefficients for the mastigoneme C’ and C7 des-
cribing the clemental forces in those directions and
resolving the forces on the element back into
components in the x and p directions, dF, and dF,
we find

dF, = Ct{—(u,+ V){1 = (L —y) sin® p}
—uv, sin @ cos (1 —y)]
dF, = Ct{—(u .+ V)Y1—y)singpcos e
—v,{1-(1—y)cos?> p}] (7)
where ¥ = C?/C%. The resistive coefficients which
seem to be most appropriate to this situation are
those developed by Burgers (1938) and more
recently by Chwang and Wu (197§) for long thin
ellipsoids of length 2b and radius », namely

C7 = 4my/(In(2b/r)+ 1) ®
T = 2ap/(In(2b]r)~ ) ®

Unnecessary complexity in the present case is
avoided by observing that A/r)>>1 for a pair of
mastigonemes where b and r are respectively the
mastigoneme _length and radius so we may set
v =~ 1/2 without introducing significant error. Sub-
stituting this and the expressions for u, and v,
Egs. (7) become

(V+c)k?a® cos? 0
2[1 +k2a? cos? 6]
sk2ac sin 8 ]

dF, = c;’;[— V+

—_— 0
[1+k2a? cos® 02 (10)

(V+c)kacos 8
2[1 +k%a? cos? 6]
sk3a*ccos dsind
[1+%2a? cos? 0]3
Integrating (10) from s = —b to 5 = +b, that is

dF, = C% [kac cos f—

(In

over the length of the pair of mastigonemes
emanating from B on either side of the flagellum
we obtain the total instantaneous force in the
positive x direction, 2F,, on this mastigoneme pair as
2F, = 2bC’,’,’[-— V+Q/;—c)

k2a? cos* k(xq—ct) (12)

(1 +k2a? cos? k(xq—ct)),

Finally integrating over one cycle in time, 2x/ke,

the average force in the positive x direction per
mastigoneme pair, 2F,,, becomes

(V+o) ]
(1 +k2a?)

2F, = bc;';[- Vic— (13)

3. FORCE BALANCE ON THE ORGANISM
AND VELOCITIES OF PROPULSION

It remains to evaluate the forces on the other com-
ponents of the organism, before we can construct
the condition of zero total force and thus obtain
an expression for the propulsive velocity, ¥. The
force on the flagellum, F;, can be assessed in the
conventional manner mentioned in the introduc-
tion; it corresponds precisely with Holwill and
Sleigh’s (1967) result for a smooth flagellum with
CHICL = 2, ie.

1 4 e T M U O I

F; C,,L[ (V—i—2 2[1+k2a2]*] (14
where L is the length of the flagellum and C} is
given by (1). When the ratio of the mastigoneme
length to their separation distance is large we shall
see that this flagellar force contributes negligibly to
the results. Though this is often the case, the force
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F; will nevertheless be included for the purposes of
completeness. Finally the force on the head, 7, is
assessed by assuming a roughly spherical shape of
radius A4 so that F, = 6wulVA. Then setting
F,+ Fy+ NF, = O where N is the number of masti-
gonemes, the velocity of propulsion, ¥, becomes

v_ [(1-+k2a?)t 1]

¢ (A+2¢+4B). | 12 o
[ 2 i +1}
where « = CIL/12npA, B = C7hN/12mpnA. Hence
it is clear that if bN>>L the force on the flagellum
can usually be neglected and « set equal to zero in
the relation (15).

Eq. (15) in combination with the definitions (8)
and (1) for C" and C; therefore allowskevaluation
of the propulsion of a flagellated organism with
mastigonemes once the geometric lengths A, a, b, ¢,
r, L, A, R, the number of mastigonemes, ¥, and the
flagellar wave velocity, ¢, are known. The result
clearly shows why propuision with mastigonemes

(13)

TABLE I, Measurements on Qchromonas m
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is generally opposite in direction to that without
mastigonemes since when B>«, V/c is positive
whereas when 8 = 0, V/c is negative.

The optimizations of ¥/c with regard to «, B are
quite simple since the latter quantities must always
be positive. It is readily established that maximum
negative propulsion is provided when 8 = O and
o is as large as possible; that is with a long smooth
flagellum and no mastigonemes. On the other hand
maximum positive propulsion is established when
« is as small as possible and B as large as possible;
this corresponds to a thin flagellum with as many
long mastigonemes as possible. The latter condition
must however be qualified by uncertainty in the
validity for the resistance coefficient approach
when the mastigonemes are tighly packed. Such
simple optima are clearly a result of the fact that the
net flagellar forceis always in the negative x direction
whereasthe net mastigoneme force isalways positive.
It follows that all intermediate physiologies are less
effective from a propulsion standpoint.

alhemensis by Pitelka and Schooley

(1955), Jahn, Landman and fonseca (1964) and Holwill and Sleigh (1967},

Quantity

Pitelka and
Schooley (1955) & Fonseca (1964)
3,9

Jahn, L.andman Holwill and

Sleigh (1967)

fAverage Head Kadius, A (um.]
Flagellar Length, L {um.)
Flagellar Radius, R (um.)

Flagellar Wavelength, £ (ym.): Basally

At tip

Average

Flagellar Wave-amplitude, a (um, ): Basally
At tip
Average

Flagellar Wave-{requency, (Hz)

Flagellar Wave Velocity, c (um/sec)

Mastigoneme length, b (um,’)
Mastigoneme radius, r ([J.m) 0
Number of mastigonemes per um of flagellum 10

Number of mastigonemes, N
Propulsive velocity, V {um/sec)

kas hasally
at tip
average

kb: (average)

o

B

r

Vic

1,
. 0075

8 19. 8
0,125
4.0
9.0
70
0,65
1.25
0.95

68.4

480
1,1
0.01
16,4

320

55 - 60

0.8
200
3

80

1. 02

0. 87

0.95

1o

0.79

5,05

0.2
0,114-0, 125
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4. OCHROMONAS

Numerical values quoted by Pitelka and Schooley
(1955), Jahn, Landman and Fonseca (1964) and
Holwill and Sleigh (1967) enable a theoretical
estimate to be made for the propulsive velocitics
of Ochromonas malhamensis. Table 1 lists these
values together with the resulting non-dimensional
quantities ke, kb, «, B and V/c. Only Holwill and
Sieigh (1967) present data which is sufficiently
complete for the purposes of comparison with
theory and hence the present paper will utilize those
values. (It should, howeverf, be noted that com-
parison of some of the data reveals significant
differences.)

The predicted value of ¥/c based on the observed
values of ka (average) kb, « and § is 0.125 (see
Figure 3). The corresponding propulsive velocity,
V, would be 60 pmfsec which compares most
favourably with the observed swimming speed of
5560 pm/sec.

s
=08 7
os}. =02 / 1§ Jzo
yd T ;
T
ANy
- -

rs|<
3
—~
>
F-a
T 5
-2
P
g
B
~
~
~ /
~
4 {
. =
o =
2 5
m
e
-3
0063
m
e
ky
2

~-
\\‘.
N =
~
\
O\
3 3

1302
<]

021 ) —'/
//' YL ///’
o =

ot} K
Vv

0.5

\
N
\\;
‘OI(‘I

/ ;5[ &
/7
1 L . <o 4o
0 0.5 [Re] 15 20

NCMN-DIMENSIONAL WAVE AMPLITUDE, ke

FIGURE 3 The propulsive velocity, V, efficiency, %, and

zero velocity thrust, P, as functions of the non-dimensional

wave amplitude, ka, for « = 0.8,T' = 0.2, kb = 0.8 and 1.0.

The point A is apparently the operational mode for Ochro-

monas malhamensis; B is a modificd operational point dis-
cussed in the text.

In evaluating this result it should be noted that
LZbN and hence x<p for Ochromonas; thus the
contribution of the flageliar forces is smalil and the

result would be little changed by setting « = O.
In addition the value of 8 is not particularly sensi-
tive either to r or the factor 4 in the denominator
of the definition of C?!. Furthermore the resulting
value of V/c is most sensitive to the value of ka
and relatively insensitive to the accuracy in com-
puting B. Thus one must note that agreement
between experiment and theory is really limited by
the accuracy with which one can estimate ka; a
rough estimate of all the other geometric lengths
is all that is necessary. In this regard it is worth
observing that according to the observations
Holwill and Sleigh, the value of ka varies much
less than ecither k£ or @ as one progresses from the
base to the tip of the flagellum.

5. ENERGY EXPENDITURE

It is clearly of importance to establish the rate at
which an organism must do work on the fluid in
order to move at the propulsive velocity, V. The
instantaneous rate of working of the mastigoneme
element, ds, of section 2 is given by dW, where

AW = —(u,+V)dF,—v dF, (16)

which upon substitution for ., v., dF, and dF,,
integration over a mastigoneme pair and then over
one cycle in time yields the following mean rate of
work done by a mastigoneme on the fluid, Wwu, as

_ ey [zm ( 1 +I—'j) "1 (1 +k2a2)4]

A2 k2a?k*h? [ c)\?
e
“ V% +3(1+k2a2)* V] {an
where V/c is given by the Eq. (15).

Similarly the mean rate of cxpenditure of energy
by the flagellum is

_GiLv? a1 (1 L p2,2y-4
=5 [I+(1+V) [1—(1+k2a®)

k2a? [ c\?

(7] oo
and that of the head is Wy = 6wuAV2. Thus the
total rate of work done on the fluid and hence the
energy expenditure by the organism, Wy, is readily
computed. Since a primary objective of the pro-
pulsion system is to move the head, it is both
convenient and instructive to present this as an
efficiency,, defined as the ratio of the work done
in moving the hcad, Wy, to the total work done,

Wm

We
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Wy. This may be written in terms of ka, kb, «
and B as
1 Wy

. 6WAV2 (1+f/+2,3)+(3—-04)(1-f )

2 k2a

{(1+k2a?) =1} = (9c—a)( )

Bk*a’k2h? ( ¢ )

Let us examine how this efficiency will change with
properties of the pxopulsiqn systen1. Specifically we
will {irst consider its var; ipn with the wave ampli-
tude, @ (o1 ka), and the length of the mastigonemnies,
b (or kb), while the other properties of the system
(4, C,, blr, N, k, «, etc.) retain some given valte.
Since § involves b it must be replaced in (19) by
kb/T' whete T' = 12mudk/NC®. Figure 3 then
demonstrates how the propulsive velocity, ¥/€ and
the cfficiency, ». vary with ke and kb for the case
of I' = 0.20 and « = 0.80 values appropriate to
Ochromonas malhamensis. First of all one must
remark that the efficiencies, %, are very small, even
in comparison with other means of micro-organism
locomotion (¢f. Chwang and Wu, (1971). Ttis how-
ever notable that for a given kb there exists a value
of ka for which the efficiency has a maximum value.
In particular when kb = 1.0 (a value appropriate
to Ochromonas malhar zenszs) maximum efficiency
occurs at about k¢ = 1.5. But this organism does
not appear to operate at such a point of optimum
efficiency. Instead the data indicates that it operates
at the point 4, Figure 3,with a value of ka of about
0.95 and thus the propulsion system would appear
to be somewhat inefficient in this regard. To illus-
trate this one need only observe that the same
forward velocity may be obtained at an operational
point such as B of Figure 3 with a significantly
increased efficiency simply by an increase in ka
and a corresponding decreasc in kb. The answer
to this apparent dilemma may lie in the rather
limited view we have taken of the duties which the
propulsion system may be called upon to perform.
More specifically, maximum steady translational

velocity may xor be the most important feature of

propulsion for the organism. The ability to man-
oeuvre and accelerate may be of comparable
importance. Now a measure of this ability is clearly
implied in the thrust which the mastigonemes can
develop when the organism is held at rest. This
thrust, P, is immediately obtained from the equa-
tions of scction 2 by setting ¥ = 0; then

P

Values of this non-dimensional thrust are also
plotted in Figure 3. Now observe the consequences
of the modification of the propulsion system from
A to B; though this results in somewhat more
eflicient rectilinear propulsion it also causes a
significant reduction in the thrust, P, and hence a
reduced ability to manoeuvre and accelerate. It
would thus appear that the propulsion system of
Ochromonas represents a compromise in achieving
not only a fairly efficient means of rectilinear trans-
lational motion but also a substantial ability to
manoeuvre and accelerate. It is however necessary
to qualify such purely hydrodynamic arguments
by noting that important biological constraints
should be included in any complete study of the
optimization of the propulsion system.

6. MASTIGONEMES NOT PERPENDICULAR
TO THE FLAGELLUM

Since mastigonemes may not be precisely normal
to the flagelium it is clearly important to establish
the sensitivity of the results to deviations from this
geometry. First we examine the effect of masti-
gonemes which are not perpendicular to the flagel-
lum but are held at a fixed angle, 8, to the flagellar
normal. Proceeding through an analogous calcula-
tion for such a case and neglecting the force on the
flagellum for simplicity the propulsive velocity V
becomes

vV _ [(1+k2a®i—1]
¢ (3+§—cos 23) 1)
I +h2q?)?
2 cos 26 (I+k%a%)! +1

Hence deviations, 6, in either direction, i.e. away
from or towards the head, have the same effect.
Using the values of £ and ka for Ochromonas, this
result indicates that the ratio of the velocities of
propuision for 8 = 10°, 20° and 30° to the velocity
of propuision when the mastigonemes are normal
to the flagellum are respectively 0.87, 0.76 and 0.56.
It follows that if the mastigonemes were held rigidly
at an angle of more than about 10° from the local
normal to the flagellum the organism would experi-
ence a significant degradation in its propulsive
ability. One should point out that the validity of
the result (21) may be doubtful for larger values
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of 8 due to the resylting structural and finid
mechanical interference between the mastigonemes.

7. FLEXIBLE MASTIGONEMES

In the real physical situation the hydrodynamic
forces on each mastigoneme will cause these
organelles to bend and to flex at their junction with
the flagellum. Little evidence exists of any active
mechanism controlling the motion of the masti-
gon@mes themselves and hence we shall assume
that the response of each mastigoneme to these
hydrodynamic forces is a purely passive one,
depending only on the elastic properties of the
organelle and the junction. Then, since the forces
vary with time the orientation or angle of the masti-
goneme to the flagellum will change during the
passage of a flagellar wave. In the present section
we will attempt to determine the effect of such flex-
ibility on the propuisive velocity of the organism.

\ MASTIGONEME

\ , MASTIGONEME

\ 4 MODEL
4s POSITION

BENDING

MOMENT,M__

FIGURE 4 A sketch showing the notation used in dis-
cussing flexible mastigonemes.

However in order to effect some reduction in the
algebraic complexity which such an analysis pre-
sents we will assume that the ff(ibiiity of both the
mastigoneme and the junction can be combined in
a “composite junction flexibility”. This is at least
qualitatively justified since the mastigoneme itself
will experience the greatest bending moment and
therefore the greatest bending close to the junction.
Our model (Figure 4) will then consist of approxi-
mating the configuration of the mastigoneme by a
straight line whose angle to the flageliar normal, e,
is at any instant governed by e = M/E* where £*

is the *“composite junction stiffness” and M is the
bending moment at the base given in the usual
manner as

b

M= Jde,, (22)
0

where, as befere, dF, is the force normal to an
element o5 of the mastigoneme.

Consequently the position and velocity com-
ponents of the mastigoneme element are

X. = Xo—ssin(p—e€); y. = asinbf+scos(p—e);

_ dp Oe .
U, = S<6_t 51—} cos (p—e);

Jdp  0O¢| .
== — s §—glEP_CEL —¢
v, kac cos é{at at} sin (p—e)

where, ¢ is still defined by tan ¢ = ka cos . These
equations are generalizations of (3), (5) and (6).
Evaluating F, as before and subsequently the bend-

ing moment, M, the resulting differential equation
for e becomes

2¢E*  (V+c)kacos 0sin e
C"h? [14-k%a® cos? 0]F
(=V+ck*a® cos® f) cos e
[1+k%a? cos? 0]
2bk*acsinf  2b be
1+k%a%cos? 6] 3 Ot
In order to proceed we shall limit the analysis to
those cases for which the stiffness E" is sufficiently
large so that ¢ is a relatively small angle. Then
defining a dimensionless parameter T = b*cC/E™

and taking T < 1 we may write the following expan-
sion solution for .

€ = Teq+T%, +0(T?) (24)

23

where

7
——+k%a* cos? 0)
¢

, k?ba sin 8 (25)

€ =
’ 2 +k%a? cos? 6F | 31 +k2a cos” 0]

V €,
—enl— = /] °
eo{c : l}kacos b (26)

Al+katcos® 9} 3 o6

In fact it is readily demonstrated that the solution
of (23) represented by (24} (25) and (26) is a good
approximation even when T if of order unity pro-
vided the angle ¢ is smail. This solution then defines

€ =
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the flexing motion of the mastigoneme as a function
of 8 = k(xy—ct), that is with the passage of a

flagellar wave; ho wever it contains the propulsive
velocxty, V, which is as yct undetermined. Note
that ¢ has both oscillatory parts and a non-zero
mean.

Now the incremental force JF. on the same
element of mastigoneme in the positive x direction
is given by

dF, = C:;'[V{ —1+4sin? (p—e)}

o9 _0e .
%T{at a}cos(np )

- kac cos 6 cos (p—e¢) sin {p— E)I an

Our solution (24) for « must then be substituted
into this and the force dF, integrated {rom s ==
to s = b to obtain the total force, F. on a masti-
goneme in the positive x direction. Subsequently
this force is integrated over one cycle ip time to
obtain the mean value, F,, of F.. Though this
procedure is algebraically coroplicated the basic
idea is simple. The final result is a power series
in T. The zeroth order term is identical to the F,,
defined by Eq. (13). The terms which are first order
in 7 vyield no contribution to F,,. Hence the need
for the second order in the cxpansion (24}; up to
this second order the result for F, is

(-’-/H)

2F, V \e
beC™ ¢ * (1+k2a?)
AV
Ta(Zw1} (241 ( -----
CTe (c F ( ) )

TEla -+k2é2)§
-HO( ) +26 Y i14-k2a (2Z+3>
C

(1 +k%a?)t

2k2b2 2
({ 4—1‘2 2) (1 FhZaty

L )(1 ka4 (28)
e /]

Th> forces on the head and flagellum must be

added to NF, and the sum cquated to zero. Using

the same definitions as before these other forces

are respectively given by

= —3- (29)

and

,i/
, (— -%-1)
_ ANV, (30)
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Finally we obtain the following equation which
must be soived for Ve:
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The numerical solution of this Cq:,m.UOI vielded
V/e as a function of the parameters ka, kb, «, 8
zm_d T. Since, typically, a<€f we shall for simplicity
present solutions only for ¢ = 0. Figurc 5 presents
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FIGURE 5 Thz tuatie of the propuisive veiocity dus to
flexible mastigonen ¥, w that for rigid mastigonemes, Vo,
plotted ag he roa-dimensional wave amnlitude, ke, for
B=35«= various values of &h and the mastigonei
flexibility, 7- small angular defie v thoory 1S
aumerically azcurate for points to the kft o i
indicated by ;.
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values of the ratio of the propulsive velocity, V, to
that for rigid mastigonemes, V,, plotted against ka
for various kb and T when B takes the value of 5.0
relevant to Ochromonas malhamensis. Within the
relevant ranges of values for ka and kb it is clear
that the propulsive effect of the mastigonemes is
significantly impaired when they are flexible
enough for T to be about unity or greater. Further
results are presented in Figure 6 where V/V, is

1.9y

08

02

s
[} 0.5 [Ks) 1.5 EX
MASTIGONEME FLEXIBILITY , T

FIGURE 6 The ratio of the propulsive velocity due to
flexible mastigonemes, ¥, to that for rigid mastigonemes, Vo,
plotted against the mastigoneme flexibility, T, for ka = 0.9
and various values of kb and B. The small angular deflection
theory is only numerically accurate for points to the left of a
position indicated by 3.

plotted against T for various kb and B when ka
takes a value of 0.9. This primarily shows that the
results are virtually independent of 8 provided this
is greater than about unity. In particular from the
point of view of Ochromonas for which kb1,
ka=0.9 the propulsive velocity is reduced by 3%,
129, and 309 for values of T of 0.5, 1.0 and 1.5.

Since the observed velocity of Ochromonas (55~
60 um/sec) is within 109, of that predicted for
rigid mastigonemes (60 pum/sec) one can conclude
that there is little such degradation of performance
for this organism. Hence it would appear that the
relevant value of T for Ochromonas is less than
unity.

Having obtained values for V/c, the correspond-
ing angular deflections, e, of the mastigonemes can
be computed from Egs. (24), (25) and (26) as
functions of the position/time variable 6 = k(x,
—ct). Typical deflection patterns are shown in
Figure 7 for ka = 0.95, kb = 1.0, = 5and o = 0
(values relevant to Ochromonas malhamensis) and
for two values of mastigoneme flexibility, T. For a
particular mastigoneme (i.e. fixed x,) the instants
when a peak, a trough and nodes of the flagellar
wave are passing this mastigoneme are also identi-
fied for convenience of interpretation. Values of

PASSAGE OF FLAGELLAR WAVE

NODE &PEAK ‘NOBE ‘TROUGH NODE

kas 0.95
kb= 1.0
e=0
B=5

ANGULAR DEFLECTION OF MASTIGONEME, « (degrees)

1 1 )
(] /2 T 3m/2 2r

POSITION OR TIME, B=k{xe=c)

FIGURE 7 The angular deflection of the mastigonemes, ¢
(in degrees from the flagellar normal), as a function of 6, i.e.
with x, position at fixed time or with the passage of a flagellar
wave past a particular mastigoneme. Deflection for ka =
0.95, kb =1, B = 5, « = 0 and two values of mastigoneme
flexibility, T, of 0.5 and 1.0.

the deflection at these instants are then plotted in
Figure 8 as functions of the non-dimensional wave
amplitude, ka, for kb=1, =5, « =0 and a
variety of mastigoneme flexibilities, I.
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FIGURE 8 The angular deflections of the mastigonemes,
(in degrees from the flagellar normal), at the passage of a
peak in the flagellar wave (8 = #/2), at the passage of a
trough (0 = 37/2) and at the passage of the node points
(6 = 0, 7) as a function of the non-dimensional wave ampli-
tude, ka, for 8 =5, « = 0, kb = 1 and various values of
the mastigoneme flexibility, T; T = 0.5, ~-~=--- ; T = 1.0,
y T= 20, —— = —,

Finally we should recall that the numerical
accuracy of the small deflection theory used here is
restricted to fairly small values of e. In order to
record this limit in the figures, a nominal maximum
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value of |¢| of 25° was selected and the correspond-
ing regions of doubtful numerical accuracy recorded
in Figures 5 and 6.

Despite this restriction all the numerical results
indicate that for values of T greater than about 2
the propulsive effect of the mastigonemes has virtu-
ally vanished. In this limit it would seem eminently
reasonable therefore to conclude that the propul-
sion system has reverted to an effectively smooth
flagellum.

8. PRACTICAL ESTIMATES OF THE
FLEXIBILITY PARAMETER T AND
IMPLICATIONS OF THE ANALYSIS

In order to obtain some estimates of a practical
value of T we note that according to its definition
E* would be given by AET/b for a loaded cantilever
of length b, stiffness E7, second moment of inertia /
and modulus of elasticity, E. For a uniformly dis-
tributed load, A =% Hence E* is rather insensitive

to the distribution of the loading and we shall
choose A = 4 as a representative value. Thus an
estimate of the value of the flexibility parameter T
can be obtained from

T = Tpch®/ EI{In(2b/r) + 4} (32)

where for a homogeneous cylindrical rod¢ we
would set J = Tfr4/4, r being the radius of the
cross-section. Choosing vaiues of ¢, b or r relevant
to the propulsion of Qchremonas malhamensis and
an aqueous viscosity, u, of 10-*% dyne sec/um? it
follows that 7" = 3.45x10-16/E] where EI is in
units of dynes cm?. Stiffnesses, EI, of biological
fibres are often used in preference to the moduli of
elasticity, E, since one is approaching the level of
single molecular bonds. Wevertheless it is worth
noting that the above value corresponds to T=
4.39/E where E is in units of dynes/pm? if we take
a value of I =8x10"° pm* caiculated from
I = T(r*4/4. Note that this would be close to the
values of T of 13 x10~° pum? calculated by Holwill
(1965) for a micro-tuble in the flagella of Strigo-
monas oncopelti. Since we concluded in the last
section that the value of T for Ochromonas masti-
gonemes must be less than unity this places lower
bounds of about 4 x 10~ dyne cm? and 5 dynes/
pm? on EJ and £ respectively.

To put these values in perspective it is instructive
to compare them with estimates of the structural
properties of single muscle {ibres for which Bozler
(1957) quotes a value of E = 0.6 dynes/pm? and

of single fibrils or micro-tubules in cilia and flagella.
Rikmenspoel (1966) and Brokaw (1972) both esti-
mate the overall stiffness of the flagella of sea
urchin spermatozoa at about 10-!'* dyne cm?
which, if one neglects the possibly significant
strength of the structural links between the micro-
tubules, leads to a value of E of about 0.8 dyne/um?.
Similarly Rikmenspoel and Sleigh (1970) estimate
E for the fibrils of the gill cilia of Sabellaria and
Modiolus at about 0.4 dynes/um?. Somewhat larger
values for the overall stiffness of cilia in the neigh-
bourhood of 5x10-12 dyne cm? are suggested by
Harris (1961) and by Brokaw (1966) and would lead
to elastic moduli of the microtubules of the order of
10 dynes/pm?. Recently, however, Baba (1972)
inferred very much larger values for cilia stiffness
from his experimental data; Brokaw (1972) has
questioned the degree to which the active elements
in the cilia contribute to Baba’s measurements.
Finally, a comparison with prokaryote flagella seems
even more relevant since a typical bacterial flagellum
has a diameter (order 0.02 um) comparable with that
of the mastigonemes. Fujime, Maruyama and
Asakura (1972) recently obtained a stiffness, EJ, of
20x 10-16 dyne/cm? for bacterial flagellum by
quasielastic scattering of laser light; this corres-
ponds to a value of about 40 dynes/pm? for E.
Thus the lower bounds on the stifiness, EI, and
elastic modulus, E, of 4x10-'® dyne cm?® and
5 dynes/pm? for the mastigonemes of Ochromonas
indicated in the present paper are consistent with
the structural properties of similar organelles. The
closest analogy is with bacterial flagellum and if
mastigonemes do indeed have a similar rigidity
then they will be just stiff enough to provide the
observed propulsive effect. 1t should also be noted
that significant changes in 7 can be accomplished
by variation in the viscosity of the medium in
which the organism is moving. Thus it is quite
possible that an experimental study of an organism
such as Ochromonas in mediums of various vis-
cosities would yield considerably more information
on the structural properties of mastigonemes.
Finally we should also observe that T is most
sensitive to the thickness of the mastigonemes, 7,
being inversely proportional to its fourth power.
Thus reducing this thickness by about a haif can
increase T by a factor of ten and could result in a
complete crossover from the region of effectively
rigid mastigoncmes to the region in which the
latter are totally incffective. Holwill and Sleigh
(1967) note that the hairs on the flagellum of
Euglena are much thinner than those of Ochro-



LOCOMOTION OF FLAGELLATES 000

monas. Assuming roughly the same structural
properties we can conclude from the results of the
present study that these hairs would be very flexible
and hence have little or no propulsive effect.
Indeed no reversal in swimming direction of
Euglena is observed and the flagellum is effectively
“smooth”.
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