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INTRODUCTION

To the present time much of the hydrodynamic analysis of
the locomotion of ciliated micro-organisms has concentrated on
the localized interaction between the cilia and the fluid medium.
In doing so most investigators have found it necessary to simplify
the larger scale flow and to consider "infinite sheet models' in
which the fluid flow solutions are purely harmonic and the wave
properties invariant in the rectilinear coordinate parallel to the
sheet. The resulting mean motion is purely unidirectional and
thus the hydrodynamic solution greatly simplified. Since these
"infinite sheet models'" conveniently termed the "envelope' and
"sub-layer'' models are discussed in detail by Blake and Sleigh
(1974a, b) elsewhere in this volume further amplification is un-
necessary. It is convenient, however, for our purposes to think
of these as fluid/cilia interaction models describing the local
interaction between the cilia and the fluid. The relative merits
of the two types of model and criteria which describe their re-
spective region of validity are discussed by Brennen (1974) and
by Blake and Sleigh (1974b).

In the present paper we will discuss some of the charac-
teristics of the flow around ''finite'' ciliated micro-organisms,
pointing out along the way those effects not experienced in the in-
finite sheet models but which are important in evaluating, say,
the propulsive velocity of a ciliated micro-organism. The only
previous solution for a 'finite' body to appear in the literature
seems to be that of Lighthill (1952), later modified by Blake
(1971a) in which traveling surface waves on a sphere (to use the
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""envelope' model) are approximated by combining two spherical
harmonic functions whose orders differ by one. But this solution
is very restrictive in terms of the permitted variation of wave-
form and wave amplitude over the body and its extension to non-
spheroidal bodies would involve prohibitive algebraic complexity.

Here we take a quite different approach to the rectilinear
propulsion of a ciliated organism and make use of some general
characteristics of the resulting flow illustrated in Figure 1 and
described in more detail by Brennen (1974)., The primary simpli-
fication arises from the observation that the unsteady components
of fluid motion resulting from the interaction between the cilia
beating so as to produce a metachronal wave (wave number,

k = 2m/\) and the fluid are attenuated like e~<Y with distance y
from the surface. Such attenuation can also be recognized in the
experimental measurements of Cheung and Winet (1974), It follows
that, if the metachronal wavelength, N\, is much smaller than the
overall dimension of the organism, a, i.e. ka » 1, then virtually
all of the unsteady fluid motions are confined to a thin layer sur-
rounding the organism. This we will term the oscillating~boundary-
layer. It follows that outside this layer there is a matching steady
flow around the organism created by its steady translation through
the fluid at a velocity, U. This exterior flow is termed the com-
plementary Stokes flow, since the Reynolds number Ua/v (v =
kinematic viscosity of the fluid) is generally very much less than
unity. A basic philosophy for the solution of the general hydro-
dynamic problem now becomes apparent. Equations will first be
derived which describe the properties of the flow within the oscil-
latory boundary layer as a function of the ciliary beat and the
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Figure 1. Schematic illustrating the application of the oscillatory
boundary layer technique.
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metachronal wave parameters. This will then be matched to the
complementary Stokes flow in order to determine the latter. If
the final objective is to evaluate the propulsive velocity, U, there
is however one final point which must be resolved. Clearly one
could add to the complementary Stokes flow any arbitrary Stokes
flow which in a frame of reference relative to the organism has
zero velocity in the neighborhood of the surface but which arbi-
trarily changes the velocity at infinity or propulsive velocity, U,
This arbitrariness can only be removed by application of the
condition that the total force on the organism be zero, a condition
fundamental to self-propelling bodies. In order to implement
this condition it is necessary to evaluate the surface stresses on
the organism from the oscillatory boundary layer equations {see
the section on Equations for the Oscillatory Boundary Layer).
The final step in the determination of the propulsive velocity will
then be the application of the zero total force condition.

It is worth pointing out that such a philosophy is independent
of the particular fluid/cilia interaction model which one chooses
to employ. Hence, though we shall confine ourselves here to the
development of boundary layer equations for the envelope model,
it should be appreciated that boundary layer equations for the
sub-layer model could also be developed and a similar procedure
adopted.

WAVEFORM AND WAVE AMPLITUDE

Since boundary layer equations for the envelope model of
fluid/cilia interaction are to be described here it is first necessary
to define the motions of that envelope in parametric terms. The
motions of a hypothetical material point on the envelope correspond
to the motions of a tip of a cilium and, through the conditions of
no-slip and impermeability, to the motions of the fluid element
at that point. This motion is comprised of displacements both
normal (coordinate, n) and tangential (coordinate, s) to the mean
surface. We shall make the assumption that the frequency, w,
of ciliary beat and therefore of the displacements is invariant
over the mean surface. Thus the metachronal wave can be decom-
posed into a wave of displacement normal to the surface (the n
wave) of amplitude, &n, and a wave of displacement tangential to
the surface (the s wave) of amplitude, As. Thus at any point,

s, on the surface it is necessary to define three wave quantities,
namely a wave amplitude, the ratio of the two amplitudes and the
phase between the s and n waves. The ratio of amplitudes is

defined by the parameter K(s) where

K =[]as]|? - |an|?1 /[ |as|? + |an|?] (1)
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so that K= +1 describes a purely tangential displacement (see
Tuck (1968)) and K = -1 a purely normal displacement (see first
order solution in Taylor (1951); all other combinations are con-
veniently bracketed in -1 < K< 1, We also define a phase angle,
6 _(s), where the n wave lags the s wave by (6,-m/2). Thus
the waveform is completely defined by K(s), 6_(s5); however, it is
also convenient from the mathematical point offview to define an
alternative waveform parameter, T(s), which is complex and
related to K, Gp by

_ o (3dT) _T-7)
K=-0m) tanep T @T-1) 2)

where the bar denotes complex conjugate and j is the imaginary
index. Figure 2 demonstrates how the locus of an envelope ele~
ment or ciliary tip varies with K and 6,. Finally we also define
a non-dimensional wave amplitude, A(s), such that

2

|as|? = A2r-1)@-1)/12; |An|? = A2@41)@F+1) /K. (3)

It is also convenient to define a length, £, as

20T +1) /K2 . (4)

2 = |as|? + |an|? = 24
Experience with particular cilium beat patterns (Brennen (1974))
indicates that in general £ is between 0.5 and 0.8 times the length
of the cilium. Hence { will be called the ""equivalent cilium
length'.

INFINITE SHEET

It is instructive to report here the results of the hydro-
dynamic solution for the case of an infinite sheet. Brennen (1974)
has shown that under the condition that the envelope wave amplitude
is small compared with the wavelength the solution of the unsteady
Stokes flow equations leads to a propulsive velocity

UJe = A2[r7-r-7-p" 1] (5)

1 1
where c is the metachronal wave velocity and ﬁ:{%[ 1+W2)E+1] }2
where W is the oscillatory Reynolds number, w/kZv. When the
latter is much less than unity, p—>1 and the solution is identical
to that of Blake (1971b). It is worth pointing out that in this case
the complementary Stokes flow is simply a uniform stream; more=
over from simple momentum principles (as pointed out by Taylor
(1951)) the mean or steady component of force on the infinite
sheet in the direction of motion must be zero if the fluid motion is
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Figure 2. Diagram demonstrating how the elliptic locus of a
surface particle varies with changes in the parameters K, 6 _.
Loci are shown for K = -1 to +1 in steps of 0.5 and for 6_= 0
to 2m in steps of w/2. The figure is correlated with the niean
surface horizontal, the fluid above it and the surface waves trav-
eling to the right. An example of a cilia tip locus (symplectic) is
indicated below.

unsheared far from the sheet. Thus, from the point of view of
the discussion in the introduction the infinite sheet is a degenerate
example in which the form of the complementary Stokes flow is
obvious, a priori, and the zero total force condition is satisfied
by implication.

The energy expenditure per unit surface area, F:I, required
to produce the motion is given by
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i = 2pkcZ A% g4 7] 6)

where p is the dynamic viscosity. Hence we may evaluate the
propulsive velocity per unit energy expenditure which when W =0
is simply related to the propulsive velocity divided by £2:

T T ES
wpg- - _l[_'r_ﬂ‘:"_‘_l_]. :%[ (l-Kz)zcos ep_K] (7)

.
(:kzﬂ2
and is a function only of waveform given alternatively by T or by
K and ep, Values are shown in Figure 3 and demonstrate an
antiplectic optimum at K = 1/A/2, 6_ =7 anda symplectic optimum
at K= -1/4/2, 8_= 0. Such results show little dependence on W

being virtually the same at W = 1; of course, W must be signifi-
cantly less than unity for the basic equations to be valid.

EQUATIONS FOR THE OSCILLATORY BOUNDARY LAYER

Equations for the oscillatory boundary layer can be devel-
oped by generalizing the infinite sheet solution to evaluate the
situation in which both the waveform, 7, and the wave-amplitude,
A, are slowly varying functions of position, s on the surface,
One then obtains the following boundary conditions, which the

85

Figure 3. The variation of the propulsive velocity, U/ckz'ﬂ2 or
wpU/E, with waveform type given by K, 6 _ for the infinite flat
sheet solution when W —>0. Contours for marked values of
U/ck22 or wpU/E are shown.
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complementary Stokes flow must obey on the mean surface of the
organism (Brennen (1974)):

a, = -cA’Z ; ®)

s

It

qn

5% (cAZZZ/k) (9)

where as W—=0

Zl-”r'r- T-7-1; 22—>3 -T7/2. (10)

Expressions for W # 0 are also given by Brennen (1974). Here
qg and q, are the components of velocity tangential and normal
to the mean surface. Thus, given the waveform, 7(s), and wave
amplitude, A(s) for a particular organism one can construct the
steady complementary Stokes flow which satisfies these surface
velocity conditions. This, of course, still presents a difficult
hydrodynamic problem, though the recent work of Blake and
Chwang (1974), Chwang and Wu (1974a, b) and others in the con-
struction of such solutions from distributions of fundamental singu-
larities can be most useful in this regard.

This complementary Stokes flow will, of course, still con-
tain an unknown velocity at infinity or propulsive velocity, U, which
must be obtained from the zero total force condition. For the
purposes of evaluation, it is convenient to divided the force on the
organism into two components (i) a force due to the complementary
Stokes flow, FC¢, which is readily evaluated in the conventional
manner and (ii) a force, FP, due to the particular solution within
the oscillatory boundary layer. It has been demonstrated {Brennen
(1974)) that the latter may be obtained by integration of the fol-
lowing tangential (0;) and normal (0,) stresses over the mean
surface:

3 2 _ B 2
o, = 5o (hcA®Z) 5 O = 5o (pea’Z) (11)

where as W—0

23»-23'(7-?) ; 24-»2(1-7F) (12)

Thus knowing T(s) and Af(s) the force FP may be obtained and,
from the condition FP + FC = 0, the velocity of propulsion, U
may finally be evaluated. Note that the stresses og, 0, and thus
the force FP are automatically zero in the infinite sheet case
since A and T are then constants.
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CONTRIBUTIONS TO THE PROPULSIVE VELOCITY

It is instructive, before passing to examples of the imple~
mentation of the method described here, to review and interpret
physically the hydromechanical contributions to the propulsive
velocity. All of the contributions to the steady motion occur as
quadratic combinations of terms involving the oscillatory motions.
The first and primary contribution in the envelope model which
has long been realized by Taylor (1951), Blake (1971a, b) and
others arises simply from the kinematic surface condition or, in
practical mathematical terms, from the quadratic combination of
first order oscillatory motions in the second term of a Taylor
expansion about the mean position of the surface. When W-—90
this is the only remaining effect in the infinite sheet solution (5)
and in the oscillatory boundary layer condition {(8), When W #* 0
there is an additional contribution from quadratic combinations
in the convective inertial terms for the Navier-Stokes equations
but since this is order W times the kinematic surface condition
contribution it is usually small,

An important result of the present method of analyzing a
"finite'' ciliate is to demonstrate the fact that an additional contri-
bution arises from the surface stresses (11) which contributes
(through the zero total force condition) a term to the propulsive
velocity which is of the same order as the kinematic surface con-
dition contribution. This additional effect is absent in the "infinite
models'' since there 0g= 0, = 0, Thus the application of "infinite
model" results to 'finite' micro-organism can be significantly in
error. Some simple examples will help to illustrate this additional
effect and to evaluate the magnitude of the error in infinite model
predictions.

PROPULSION OF AN ELLIPSOIDAL CILIATE

Some simple examples of the application of the oscillating
boundary layer theory to the propulsion of a spherical body were
given by Brennen (1974). Rather than beginning with some wave-
form, T, and amplitude, A, varying over the surface in some
specified manner, the examples were simplified algebraically by
assuming a complementary Stokes flow of the simplest form namely
a spherical harmonic function of the first order. Though this
implied certain functional restrictions on the variation of T and
A over the surface, further complexity was deemed unnecessary
at the present time since there is little observational information
on the variation of ciliary beat pattern with position on a micro-
organism. Two particular examples were explored; in the first
the waveform, T, remained constant over the surface and the
amplitude A varied in such a way as to allow matching through
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the relations (8), (9). The more realistic second example assumed
a uniform ''equivalent cilium length'', £ (equation (4)) while the
waveform, T, varied. It was most significant that in the neighbor-
hood of optimum propulsion, whether antiplectic or symplectic,

the contribution of the ''finite body terms'' mentioned in the last
section enhanced propulsion over that which would be predicted on
the basis of an "infinite model'.

In the present paper we present a further example by
applying the method to an ellipsoidal shaped ciliate propelling
itself in the direction of its major axis. The mean shape is as-
sumed to be a prolate ellipsoid given by

2 2
Ir_

t5 =1, a>b, e=(l-=) (13)

|N
™™

)
o
»

A tangent to the surface at ang pomt subtends an angle, ¢, with
the x axis given by tang¢ = -b2x/a2r. As in the sphere examples
we now choose the simplest complementary Stokes flow consistent
with our requirements. This is given in its most appropriate
form by Chwang and Wu (1974b), and is constructed using a uni-
form distribution of stokeslets of strength, a, oriented in the
negative x direction and a parabolic distribution of doublets whose
strength is represented by the parameter, B, along the interval
of the x-axis between the foci, x = ea. The resulting flow has
tangential and normal velocities on the surface given by

2 2
qq = costp[U +2?0' - 2((1-H3)Le - 2(1;6 ) @ - 2e BZ )] (14)
(1-e")
q_=-sinelU+2 2@ - £ @ - 28] (15)

(le)

where Lg = ﬂn{(l-l-e)/(l—e)}, U 1is the propulsive velocity and we
must find values for the unknowns U, a and B. Restricting
solutions to the case in which the ''equivalent cilia length'’, £ is
constant over the body it follows from equation (4) and the applica-
tion of the boundary conditions that

(TT=-T-T-1)

—aFTe - -Ecos¢. (16)
~TT/2 Fb
S - BT an

[ bzcosztp + azsinzsﬁ]E

where D is an arbitrary integration constant and the constants
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2

E=+—5>—[U-20@4p)L_ +2e+2p)] (18)
k L c

F- - szb [U - 2@+p)L +———9—] (19)
k ﬂ c (1-e )

The relations (16) and (17) imply certain functional restrictions
on the variation of T over the surface due to our choice of com-
plementary Stokes flow., However if Ty (or Ky, Opo) and T,

(or Ky, 6p ) repsectively denote arbitrarily selected waveforms

at the front (and rear) stagnation point and at the equator then it
is readily seen from equations (16) and (17) with the aid of the
relations (2) that E, F, and D are given by

(147 +T_ -T.7T.) 1
1 1711 2.2
E = . = (1-K7) " cos € - K (20)
(1+71'Tl) 1 Py 1
(3-1 .7 ./2)
00 1
D= —mr 7y "1 +5) @1
00
(3-717 /2) 1
1 7 2
F=—r—%—-D=—{(1-K7)? cos6_ - K.} (22)
(47 7)) 4 1 p, O .

A restriction on the choice of Ky, Gp is clearly necessary since

qg is zero at the front stagnatwn po1nt From equations (2) and
(8) this re uires that K = (1~ KO)?- cose Py

Finally, the component of force on the body due to the
complementary Stokes flow is simply given by integration of the
stokeslets so that F€ = lémpeaa. Thus upon integration of the
stresses (11) the zero total force condition becomes:

-m/2
2 .
bcos ¢ {8 2 o, .2
5= (A"Z,)-tan¢ 5—(A"Z,) }de
d‘IT/Z [bzcosz<p+a2sin2<p]i d¢ % 9¢ 4
(23)
- 8ea
(l—ez)%c

Substituting for A, Z,, Z,, making some use of the relations
(16) and (17) and integrating this becomes:
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wi-

- 2
14 ea i —e(l-
F=> where Se _sin e-e(l-e ) (24)

kﬂc(le)S e3

We therefore have three relations (18), (19) and (24) which can be
solved to find U, ¢ and B in terms of known quantities D and
F. Neglecting terms which are order (kb)'1 since our initial
restriction requires that kb be large the propulsive velocity
becomes after substitution for E and F from equations (20),
(21) and (22)

2.2 1
U k°f 2.1
F:—E—-[(Ge+He)(1-Kl)zcosepl-GeKl-HeKO] (25)
where
G, = {2e - (1-e )zn(fi‘?)}/Ze (26)
2., . -1
I—Ie:(l-e ){sin "e -e(l-e ) }{( (27)

This propulsive velocity is readily computed for any ellipsoidal
ciliate given the metachronal wave number, k, the ''cilium length'’,
£, the eccentricity, e, of the body shape and the ciliary beat forms
at the front (KO, 0 ) and at the mid section (K,, 6, ).

Po 1 Pl

When e—1 we find from equations (26) and (27) that
Ge™1 and He—>0 and hence we recover the infinite sheet solution
of the section on the Infinite Sheet (Figure 3). On the other hand
when e—0 and the organism becomes spherical G,>2/3 and
I—Ie—>4/9 and the solution of Brennen (1974) is obtamed Since
the latter has a functional relationship similar to Figure 3 but
with somewhat different optimum values of the propulsive velocity
at slightly different K, 8  positions it follows that the general
result (25) also has the same character as Figure 3., The first
step in finding the optima of equation (25) is clearly to give K,
GPO their optimum values of +1/A/2 and 0, 7 for antiplectic and

symplectic motion respectively. Then the optimum propulsive
velocities in the two directions clearly occur when Gpl =mw,0 and

K, =G /[(G +H )2 +G2]%
1 e e e e

and the value is
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22
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The values of IU/ckzl2 Iopt. and |K1 lo ¢ as well as
G, and H, are shown in Figure 4 as functions of ‘the ratio of
elliptical minor to major axes, b/a. We must conclude from this
figure that the shape of the organism has only a minor effect on
the propulsive velocity though the more rounded spherical body
is somewhat better due to the additional propulsive effect men-
tioned previously.

The experimental data presently available in the literature
is insufficiently accurate to allow evaluation of such difference,
A further and most crucial difficulty in such comparisons is the
fact that the present approach is based on the assumption of small
wave-amplitudes (or kf < 0(1)) for the envelope model; on the other
hand kf is generally much larger as indicated in Figure 5 which
represents an assimilation of data on four ciliated organisms from
many sources including Sleigh(1962), Parducz (1966), Jahn and
Bovee (1967), Machemer (1972), Tamm (1972), Winet (1973) and
Preston (1972)., The data and some non-linear considerations
suggest that the factor k2£2/2 in the present prediction for the
propulsive velocity is the linearized equivalent of (1 +k2£2)3 - 1;
as can be seen from Figure 5 such a functional dependence cor-
relates well with the observations,

THRUST PRODUCED BY RESTRAINED ORGANISMS

The ciliary propulsion system of a particular micro-
organism is clearly called upon to perform a number of tasks
and quite apart from evolutionary arguments one cannot conclude
that optimum rectilinear propulsion is necessarily the most im-
portant aspect of the propulsion system. Indeed the ability to
maneuver and accelerate may be of equal or greater importance,
A measure of such ability is clearly the thrust which an organism
can generate when its movement is restrained by some extraneous
agent. This thrust is readily computed from the equations of
the last section; setting U equal to zero the thrust, T, in the
negative x direction is

1
T = Zﬂpwklza[(l-ez)s ][(I—KZ)2 cos B - K]
e 1 Py 0
The first conclusion we rmust draw from this result is that the
maximum thrust occurs for ciliary beat patterns, KO, 6 , Kl’

6 which are different in general from those producing gptimum
1
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OPTIMUM PROPULSIVE VELOCITY AND OTHER QUANTITIES
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Figure 4. Variation of the optimum propulsive velocity, IU/ckZZZI,
for an ellipsoidal micro-organism with the axes ratio b/a and

the correspond1ng value of [K; | Also shown are the functions
Ge, Hy and (l-e )S the last bel%g proportional to the maximum
thrust which a restrained organism can generate.
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ke

Figure 5. Non-dimensional propulsive velocities, U/c, as a
function of wave amplitude, k{, with observations from a number
of ciliated micro~organisms.

rectilinear propulsion, Indeed the primary variation of T with
the beat pattern is given by the function (1 -K%)zcos 6_ which is
plotted in Figure 6 for contrast with Figure 3. Optimtm thrusts
for latent symplectic (T = positive) and latent antiplectic motion
occur at Kj= 0, Qp =0, KO =+ 1/A/J2 and 9p =7, 0 respectively

0
and the magnitude of T is

2 2
lT‘maX = (2 +2)mpekfall-e S,

- Finally and most significantly we observe the implications of
the eccentricity factor (1-e“)S_ which as shown in Figure 4 varies
from 0 for b/a =0 to2/3 at b/a = 1. Hence the surprising re-
sult that a more rounded or spherical organism is potentially
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1.O

0.5

1
Figure 6. Variation of the function (l-KZ)Ecos 6_ which is the
primary ciliary beat feature influencing the thrugt an organism
can generate when restrained from rectilinear propulsion.

better at accelerating and maneuvering than a more elongated or
"streamlined'" organism. In contrast to the shape effect on recti-
linear propulsive velocity which is relatively small, this effect

on the thrust is large and should be detectable in practical obser-
vations. By way of an indication of the magnitude of T we
calculate using a mass plus added mass that the initial acceleration
from rest of the organisms Opali?a and Paramecium should be of
order 1.5 and 100 body lengths/s“ respectively. Accelerations

of these magnitudes are consistent with observation.
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