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A simple “cell” method for concentrated suspensions has been
used to construct a model for the rheological behavior of blood.
The model includes the physical properties of the suspending
medinm, red cell membrane and red cell fluid content. Predic-
tions of the gross viscosity of red cell suspensions are found to
agree very well with experiment in the cases of hardened red
cells (or normal red cells at very low shear rate) and of normal
red cells in the asymptotic limit of high shear rates. The behavior
at intermediate shear rates requires a knowledge of the visco-
plastic properties of the membrane and a number of membrane
models are investigated. Of particular interest is a plastic mem-
brane which employs a membrane yield stress obtained from
other experiments and whose results are qualitatively in agree-
ment with the viscometric data at these intermediate shear rates.

his paper is motivated by a desire to construct

a model for the gross rheological behavior of
human blood (and red cell suspensions) which in-
cludes the physical properties of the constituents of
that suspension; namely, the plasma, or exterior fluid
viscosity, the mechanical properties of the red cell
membrane and the rheological properties of the red
cell contents. As Cokelet™ points out  this has been
the aim of many recent investigations.

One of the primary difficulties in a physical rather
than empirical approach is the fact that blood is es-
sentially a concentrated suspension of red blood cells;
that is to say the volumetric concentration, ¢, in terms
of the ratio of volume of red cells to total volume is
outside the range which can be handled by the sophis-
ticated dilute suspensions theories (see Happel and
Brenner®) derived from the original work of Ein-
stein®. The comparative lack of hydrodynamic theory
on concentrated as opposed to dilute suspensions can
be ascribed to the difficulties in dealing with par-

ticle/particle interactions. The precise fluid mechanics

of this situation is almost prohibitively complicated
especially when the particles thmeselves change their
shape in response to the fluid forces, as blood cells do.
We are thus forced by necessity to seek some sim-
plified fluid mechanical model which will preserve
the essence of the motions while dispensing with
features which we might judge to be of lesser im-
portance. Only by comparison with experimental ob-
servation can such a model be justified or improved
upon.

Of the theories which do exist perhaps the best
known and most widely used are the ‘“cell” methods
employed by Simha®, Happel®, Kynch® and others
derived from the pioneering works of Taylor” and

On a employé une simple méthode dite “de globules” pour
les suspensions concentrées, en vue de construire un modéle
destiné 3 déterminer le comportement rhéologique du sang. Le
modeéle comprend les propriétés physiques du milieu de suspen-
sion, une membrane pour globules rouges et la teneur en fluide
de ceux-ci. On a constaté que les prévisions de la viscosité brute
des suspensions de globules rouges concordaient trés bien avec
les résultats expérimentaux dans les cas des globules rouges
durcis (ou des globules rouges normaux, lorsque la vitesse de
cisaillement était trés faible) et des globules rouges normaux
la limite asymptotique de vitesses élevées de cisaillement.
L’étude du comportement du sang 3 des vitesses intermédiaires
de cisaillement exige la connaissance des propriétés visco-
plastiques de la membrane; aussi, at-on examiné un certain
nombre de modéles de membranes. Une membrane qui sest
avérée particuliérement intéressante est une plastique, ot I'on
emploie Veffort d’affaissement d'une membrane qu’on a obtenu
dans d’autres expériences; ses résultats concordent qualitative-
ment avec les données viscosimétriques aux vitesses intermédiaires
de cisaillement.

Oldroyd®®. More recently Gal-Or?® and Yaron and
Gal-Or“Y have envisaged “cell” models as represent-
ing the ensemble average or typical velocity field sur-
rounding a suspended particle (or red blood cell). This
velocity field is comprised of a component due to the
mean flow of the suspension plus localized influences
due to motions of individual particles. It is assumed
that the average hydrodynamic effect on one particle
of the presence of all the other particles is equivalent
to that of a spherical boundary, radius b, enclosing
the particle as depicted in Figure 1. When the total
volume of fluid is shared between particles this re-
quires that the volumetric concentration, ¢, be given
by y* where y = a/b and a is the ensemble average
of the particle radii. Various boundary conditions
on the outer spherical “cell” have been suggested;
we shall follow Simha, and Yaron and Gal-Or“" in
assuming zero particle disturbance velocity on r = b.

Despite their rather crude nature, “cell” methods
have provided surprisingly successful and useful
models for predicting the effective characteristic
viscosity of concentrated suspensions®. Since the
“cell” flow can only be considered as qualitatively
characteristic of the fluid motions due to individual
particles in the real suspension, this success is un-
doubtedly due in part to the fact that the effective
viscosity is computed by integration over the volume
of “cell” fluid to obtain the total dissipation; many
imperfections may be minimized by such integration.
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Figure 1 — Schematic of the “cell” method
geometry.

It is with this success in mind that this paper at-
tempts to construct a “cell’” model for blood flow
which incorporates many of the important physical
features of the erythrocyte and its contents. Before
proceeding it should however be noted that more
sophisticated theories are presently being developed
for concentrated suspensions by Batchelor®®, Saff-
man®, Batchelor and Green“® and others. The re-
search is presently limited to undeformable spherical
particles; however, it is clear from these works that
there may be important differences between the
characteristics of models which assume that the par-
ticles are arranged in a regular array (including “cell”
models) and those which agsume a random distribu-
tion of the particles in the dispersion. Such differ-
ences arise when the fluid mechanical results are
dominated by two-particle-interactions between close
neighbors, a situation which is excluded when a regular
array is assumed. In a dispersion, the effect is fo
alter the functional dependence of the sedimentation
rate on concentration™®', In a suspension of neutrally
buoyant particles similar effects are indicated for the
effective viscosity but occur in higher order terms in
concentration®®. A somewhat different approach was
taken by Frankel and Acrivos“® who restricted their
attention to the lubrication films between particles.
The neglect of the possibility of such close neighbor
interactions in existing “cell” models represents a
deficiency which one might hope could be overcome
in the near future while still preserving the simplicity
of the method.

Contrary to some earlier experimental reports it
has now been fairly well estabished that the plasma
or exterior fluid in which the red blood cells are sus-
pended is, to all intents and purposes, Newtonian
(e.g., Cokelet®™ and Brooks, Goodwin and Seaman”).
We will concern ourselves with flows in which the
typical velocities are much greater than the sedi-
mentation velocity for red blood cells so that the
latter can be regarded as effectively neutrally buoyant.
The red blood cell or erythrocyte consists of a mem-
brane filled with a solution of hemoglobin and various
salts. This interior fluid is also Newtonian and the
viscosity as a function of hemoglobin concentration
has been fairly well documented (Cokelet and Meisle-
man®®, Chien, Usami and Bertles", Wells and
Schmid-Schonbein®” and Dintenfags®??’), This vis-
cosity is commonly some five or ten times that of
the exterior fluid.
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The nature of the red cell membrane and its de-
formation stress/strain relationship is much less well
established; a recent review article by Gitler®® on
the plasticity of biological membranes indicates the
complexity of this general subject. He concludes that
recent evidence suggests that biological membranes
are quasi-fluid structures in which the constituent
molecules are restricted only in an overall bilayer
packing arrangement. In the present paper the results
of some simple viscoplastic models for the membrane
will be compared with experiments. One property of
the red-cell membrane on which there is some data
is the force requlred to distort the erythrocyte and
this is used in section T.

At rest the red blood cell is shaped like a bi-con-
cave discoid which for human blood has a maximum
thickness of about 2.4 microns and a diameter of
about 8 microns. However in a flow situation this
shape is rarely recognizable and the red blood cell is
continuously deforming like a flimsy liquid-filled
balloon. Such deformations clearly create motion of
the interior fluid and the dissipation within this flow
must be included in evaluating the effective viscosity.
Thus a necessary aspect of the solutions of sections 6
and 7 will be the velocity components creating dis-
tortion of the shape of the red blood cell. An exact
treatment of such a situation seems algebraically
prohibitive; thus in the spirit of the statistical ““cell”
methods we shall attempt to construct a characteristic
solution which is more readily handled. In doing so
we shall in fact only solve the flow for a particular
instant at which the shape happens to be near-
spherical but in which the velocities are such that
distortion is taking place. Indeed this would be the
potentially exact zeroth order solution for small de-
formations from a mean spherical shape. However in
comparing the results with the experimental meas-
urements on blood flow we will also consider the
solution as characteristic of the actual large deforma-
tion flows.

Red blood cells in quiescent plasma suspension tend
to form aggregates known as rouleaux which may
persist in flows at low shear rates with consequent
rheological effects. The present paper will not deal
with problems of aggregation. Fortunately however
aggregates do not form in suspensions of red blood
cells in saline. Thus, while valid comparison of theory
and experiment at low shear rates is proper for saline
suspensions, caution must be exercized in comparing
with the plasma suspension. Further comment in this
regard is delayed until section 8.

Fluid motions

The basic “cell” model is shown in Figure 1 and
the formulation of the fluid motion is similar to
those of previous ‘“cell” methods. The red cell mem-
brane is at r = a, the fluid “cell” boundary at r» = b.
The flow in the exterior region, 3; will consist of a
gsimple shear flow velocity v (shear rate ¢) plus a
particle disturbance velocity »’. The Reynolds num-
bers of these motions is assumed to be much less than
unity so that they are Stokesian; that is they obey
the equations of creeping flow and are additive so
that the total velocity in 3¢ is v = v® 4+ . The
motion in 3; within the red cell is denoted by »®.
Defining spherical coordinates (r, 6, ®) as shown,

the components v., ve, v+ 0f v are then

o =grcos®sin@cos @i (1
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v(00) = g3qrcos® (cos?f —sin@)......... ... .ol 2)
vg)) =3grsin®cos . ........ ... .. 3)

With these is associated a uniform, constant pres-
sure p™. The general solution of the incompressible
creeping flow equations in terms of spherical har-
monics is given by Lamb®’, However, due to the
boundary conditions to be applied at r = b only the
harmonics of orders -8 and 2 can have non-zero coef-
ficients so that appropriate general forms for v and
pressure p™’ are

1Y = (64r3 + 2Cr 4+ 6Er—=2 — 3Gr%)
cos P sin fcosh..... (4)

Do (5BAr® + Cr + Gr*) cos ® (cos?@ — sinzg). . ... (5)

vg) = — BA® + Cr + GrHsindcosh............ 6)
PO = u (42472 + 12Er3) cosPsinfcos f.......... M)

where p. is the viscosity of the fluid in the exterior
region and A, B, C, and D are constants to be deter-
mined.

In the interior of the red cell terms corresponding
to 7% or r* cannot be permitted due to their singular
behavior at the origin so that the components of the
interior flow will be of the form

v® = (6K + 2 Lr)cos®dsinfcosf............... (8)
(2) = (5Kr3 + Lr) cos ® (cos?§ — sin2g).. e (9)
1}5? = — (K + Lrysin®cos@.................. (10)
P = ue(42 Kr2) cosdsinfcos @ +P.......... .. 11

where p. is the viscosity of the contents of the red
cell, K, L are constants to be determined and P is a
hydrostatic pressure difference which may exist be-
tween the interior and exterior of the red cell.

General expressions for the components of the
stress dyad 7r. acting upon the exterior of a spherical
surface in 1ncompress1ble flow will be required later
and these -are

T = _p+2“‘

1 9v. , 9% i

B 1 v, 0y Ty
Ty = M [rsinOSinCD 33+ ar r] -(14)

In all of the cases treated in this paper the conditions
taken to apply on the fluid boundary, r = b, are those of
Simha®, namely that the disturbance velocities oV,

2§, vV are zero. From the Equations (4) , (5) and (6)
these lead to
GaS = — BAGEYT — CY 5. oo (15)
6Eq™3 = — 21Aa%y=% —5CY3... .. ... ... .. (16)

so the unknown constants G, F may be eliminated
and all further expressions for the exterior flow will
contain only the unknowns A and C.

The effective viscosity of the concentrated sus-
pension, u*, is obtained from energy considerations
as the ratio of energy dissipation within the total
“cell” system to the energy dissipated in the simple

total ‘“cell” system is most easily obtained from its
equality with the rate of work done on the boundary,
r=>, and this is found to yield

Wy = 1 2172 Aa2/g 4+ 5C/a. .o an

It remains to discuss in detail the conditions on the
red cell membrane interface; these conditions will
eventually lead to expressions for (4a’/q) and (C/q)
and therefore to values of the relative viscosity ratio

Red cell membrane rates

The kinematic condition relating the fluid velocities
on the interior and exterior surfaces of the red cell
membrane in conjunction with the viscous flow con-
ditions of no-slip requires that

FO 4 T pmg = B rma e oo (18)

Substituting the expressions (1) to (10) for the
velocities, one finds that K and L must be given in
terms of A and C by

4Ka? = Aa*{4 + 21775 — 2577} + 5C{y=8 — v=5} .(19)
4L = 2q — 105Aa? (Y5 — v=7) + C(4 — 25Y~3 + 2177%) (20)

and the membrane velocities may then be written as

(1)r=g = Viacosdsingcos§.................... 2n
(vg)r=a = Voacos®cos20........................ (22)
(0g)i=a = — Vzasin®cos @.......................(23)
where
Vi= g+ Aa? {6 ~2177% + 16777|
+C2 —5y3 373 ... (24)
Ve=g/2 +54a{1 =77} +C1 7. (25)

In terms of conventional membrane or shell theory
(Fligge®®) it follows that the membrane strain rates
€99, €spand éyq are

. 1 X .

€08 = - ggo + T = (Vi — 4V3] cos @ sin 20/2...(26)

. 1 g, o, vgcot @

o2 = Tsing 9@ T a
={Vi—2Valcos®sin20/2....................(27)

c 1 (fsing 4 ( % 1 dvg

e = 3 [ a 00 (sin&) +asin0 EX:) ]

=Vesin®sing.............. ........... (28)

Membrane stresses

To complete the picture, the forces acting upon the
membrane are also required; external forces are due
to the viscous stresses from both the interior and ex-
terior flows. If 3. 3 3 denote the externally im-
posed stresses on the membrane in the three directions
then their net values are simply

Se=a® 4+ x® 7™ (29
3o = 7r(1) +7r(0) —rfng .......... e (30)
T = (1) +7r 7r§2. ......................... (31

The R.H.S. can be evaluated from the equations of
the last section to yield

S = — Py + Pycos®sinfcosf........... . (32)

shear flow which would occur in the absence of any Zo = Pacos®cos2f...... St (33)
particle or red cell. The energy dissipation of the Te=—Pscos@sind........... ... . .. ....(3%
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where it is found that

Po/pr = 2¢(1 — N) )
+ Aa?—6 4 126y=% — 1207 + A(12 + 273y—% — 285777) /2]
1 Cid + 3073 — 25775 1 M — 8 + 6573 — 5775)/2]. . (35)

Py/p = g1 = N) . ; .
+ Aa?[16 — 21775 + 407" — N(32 4+ 637y~% — 95v~7) /2]
+ C[2 — 5773 + 8y™5 — N4 + 157% — 1977%)/2]....(36)

the constant A .denoting the ratio of internal to ex-
ternal viscosity, pe/ .

‘The fundamental stress equations for a spherical
(or near spherical) membrane or shell can be found
in any elementary shell theory text (e.g., Fliigge®’);
they relate the internal membrane stresses o, o,
and 7se to the imposed stresses 3., s and 3s as fol-
lows

) dog 1 O97sa _

~aZg/t = 36 -+ sn g 9o + cotf(og — os) (37)
_ 0Tee 1 dos

—aZe/t = 30 + Snd 90 4+ 279a cot §.....(38)

A Jt = Gg + 0o . ... (39)

where t is the membrane thickness which is assumed
constant throughout.

The solution of these equations given the forms
(82)— (84) of 3., S, 3. is relatively straightfor-
ward; with the restriction that the stresses must be
everywhere finite the resulting solution is

tog = — aP,/2 + a (P2 — 2P3) sin 20 cos /8. .. ..(40)
{6p = — aP1/2 + a (3Ps + 2P3) sin 20 cos /8. ...(41)
{ Top = a (Ps + 2Ps) sin @sin ®/4.................(42)

These then are the shell theory stresses within the
red membrane itself where P, P; are given by 35
and 36.

Limiting cases — hardened red cells

Before proceeding to more complex cases it is of
value to examine two simple limiting solutions of
particular interest:

(i) the case in which the forces on the membrane
are so small or the membrane so strong that
it 1s virtually undeformed during the flow
process,

(ii) the case (or cases) in which the forces on the
membrane are very large compared with its
ability to resist.

It is anticipated that case (1) may occur in blood
and red cell suspensions when the shear rate is small
or for suspensions of hardened red cells whereas (ii)
may be the case when the shear rate is very large.

Case (i) corresponds simply to the problem of solid
spherical particles and the result is obtained by
setting the strain rates given by (26)— (28) equal
to zero. Thus ¥V, =V,=0 and Equations (24) and
(25) yield two equations for the unknowns (Ae’/q)
and (C/q). When these are substituted into (17) the
resulting expression for the effective viscosity is, of
course, identical with that of Simha* for solid
spherical particles:
e =1+ 10v3 (1 — ¥7) : .

/(4 — 2573 + 4275 — 2577 + 4y10). (43)

For small concentrations, ¢ = v°®, this reduces most
satisfactorily to Einstein’s classical result for very
dilate solutions, namely as

Y8 =0, u*/ug — 1 + 250, .. ... I (44)

For concentrated solutions the expression (43) has
been found by Simha'®, Happel® and others to agree
surprisingly well with experimental measurements
desvite the approximations of the “cell” approach.

[n Figure 2, the theoretical result (43) is compared
with the experimental measurements of Chien,
Usami, Dellenback and Gregersen® on hardened red
cells in water and of Brooks, Goodwin and Seaman®?”
on hardened red cells in isotonic saline. The result is
very satisfactory although there is some deviation at
higher hematocrits or concentrations; this may be
due to particle/particle interactions which are not
included in the ‘“‘cell” approach. Cokelet compares
the same experimental values with an empirical
formula due to Landel®” of

W = (1 — @/par)=52

where ¢u is the maximum packing concentration. The
degree of agreement is comparable.

It might be expected that suspensions of normal
red cells would approach the same relative viscosity
as the shear rate became very small. The isotonic
saline suspension data of Brooks, Goodwin and Sea-
man”” suggests that the shear rates at which this
occurs is indeed very small (probably significantly
less than 1 sec™) and may decrease with increasing
hematocrit or concentration. The search for this trend
must be confined to suspensions in which aggregates
do not form at low shear rates; as mentioned in the
introduction the presence -of rouleaux in plasma sus-

S0 T T T T E
40} HARDENED RZID CE!L SUSPENSIONS /,’:l é——- )
sof 0 A ey B“KA /// b Fi'gure 2 — Comparison of Equation (43) & ’ T ' T ,'/1
& BROOKS, GOGDWIN & "y with data for hardened red cell suspen- g
2o . SESZ:,:ME‘?:;) v ~ sions by Chien, Usami, Dellenback and SOLID PARTICLES ~ ’
- -—==- CORRECTED FOR o Gregersen (1967) and Brooks, Goodwin 10— -
: VAND EFFECT s f and Seaman (1970). _\i I é;,‘((js;\\ ,’/ j1
2 ; / ]
T : g —_ , b
r L > 2 £osh a ]
g 1 ° B Figure 3 — Normal red cell suspensions at g v P o
E L { i high shear rates. A symptotic data of : .k P -
£ i | Brooks, Goodwin and Seaman at high c A
é T / shear rates. (i) in plasma (A = 5): ® and g o ’,»/\/ _ |
c o £ 1 (i) in saline (A ~ 10): A. Theoretical A
’ 3 predictions using Equation (47) with /.(// \,\i:‘:}sq (47
T ~ B X =5 and 10: — —. Also shown are the | /{1 1 ( 1 ]
line for hardened red cells from Figure o or oz 03 T os 0306
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I 1
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o o1 GF: o3 o3 o o6 for A==10 (- - -).
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pensions would invalidate the comparison with the
present theory. Thus the asymptotic values which
would permit this particular trend to be established
have not as yet been documented experimentally.

Liquid droplets

The second limiting case to be examined is that
in which the membrane has no resistance to deforma-
tion. This however has two subcases both of which are
of interest.

The first subcase corresponds to the problem of liquid
droplets for which Taylor(” examined the problem of
dilute suspensions. Here the interfacial or surface tension
forces are assumed sufficiently large so that the interface
does not deviate from its prescribed spherical shape. The
first condition is therefore that (2( + #(0), __ = 0 or from
(21) that Vi = 0. The second condition is that shear
stresses on the interface should balance. that is that 2
= 2p =0 on7s = g or from (33) and (34) that P; = 0.
Then the conditions V; = 0, P; = 0 permit solution for
(Aae?/q) and (C/q) and lead to an effective viscosity
u*

M1

- 4 + 1077 + 10M1 — ¥D)]ys

4 ~ 1073 + 10,.)/7 . 4710 ...............
[+ A4 — 2573 4 425 ]
— 2577 + 4y19)

where, as before, \ is the ratio of internal to external
viscosity or X = us/pu. Note that when X is large this
precisely approaches the Equation (48) for solid par-
ticles. Also when the concentration, ¢ =+°, is small
it reduces to

=1+ v 0+ 5N /A + N (46)

which is precisely Taylor’s” result for a dilute sus-
pension of spherical liquid droplets. Further note
that as the concentration or v approaches unity the
expression (45) indicates that p*/ us will approach
infinity. This might be described as a direct result
of not permitting any deviation from the spherical
shape; a suspension of particles of fixed shape might
be expected to have an infinitive viscosity as the con-
centration approaches its maximum value. In prac-
tice such limits are more complex since high con-
centrates often extract suspending fluid from a nearby
source (perhaps a static portion of the suspension)
thus reducing the concentration locally, a process
termed volumetric dilatancy, and permitting flow in
that neighborhood. -

When the interior and exterior fluids are considered
to be separated by a membrane rather than an inter-
face the stresses in that membrane, given by Equa-
tions (40)— (42), become relevant. Then it is clear
that in the limiting case when the membrane is in-
finitely deformable, the appropriate conditions should
be those of zero membrane stress or P; = P, = P, — 0.
The condition P; =0 leads no further than the pre-
scription that the hydrostatic pressures of the interior
and exterior be identical. However, the condition P, —
P; = 0 along with the relations (35) and (36) lead to
an effective viscosity

u*

M

-1+ 10N — D16 4+ 19v7 + 19A(1 — Y))]y3

- <96 + 4003 — 67275 + 45077 4~ 76710 )

.. (47

+A(17847573 — 12677542577 — 152710)
+A%(76 —47573 +798Y5 — 47577 +-76710)

When the suspension is dilute this reduces to

=14+ A =0/G 42N o (48)

which, as expected, again reduces to Einsteins formula
(4) when ) is large. However, (48) does differ from
Taylor’s result; most significantly when the interior
and exterior viscosities are identical (A = 1) the sus-
pension viscosity given by (47) takes that same value.
This is clearly the correct result since an infinitely
deformable membrane was prescribed and the re-
striction on spherical shape has not been employed. In
the case of A =1, the membrane is then merely a
material gurface in the pure shear flow, g, of an ef-
fectively homogeneous medium.

This second sub-case seems more appropriate to
the case of blood flow at shear rates which are suf-
ficiently high to completely dominate the resistive
ability of the red cell membrane. Indeed there is, as
expected, a wide disparity between the results for
Equation (45) and for Equation (47) as indicated
by the single comparison included in Figure 3.

The results of the theoretical expression (47) will
thus be compared with the effective viscosities of red
blood cell suspensions in saline and in ACD plasma
as measured by Brooks, Goodwin and Seaman®?, They
found that at high shear rates of about 500 sec~! the
effective viscosities of their suspensions had closely
approached asymptotic values and the data clearly
suggests that further increase in shear rate would
cause little change. These asymptotic values are
plotted in Figure 3 (the viscosity of the saline at
25°C is 0.96 cp and that of the plasma was about
1.70 cp (Seaman‘®®)). It should also be noted that
Brooks, Goodwin and Seaman“” conclude that rouleaux
will not be present to any significant degree at these
high shear rates so that direct comparison of theory
and experiment should be valid in this respect.

The content of the red cell is primarily a solution
of hemoglobin in saline. The Newtonian nature and
viscosity of such solutions has been well documented.
experimentally by Chien, Usami and Bertles™, by
Cokelet and Meiselman®® and by Wells and Schmid-
Schonbein®”. At normal hemoglobin concentrations.
of around 32% by weight (Dintenfass®*) the vis-
cosity of the solution is expected from the experi-
mental data to be in the neighborhood of 9 centipoise.
But the relevant value of A\ for use in Equation (47)
will also depend on the viscosity pa of the suspending
medium. Thus the appropriate value of A for the saline
suspension is about 10 whereas that for the plasma.
suspension is about 5. Values from Equation (47)
for both A are shown in Figure 8 and agree most
satisfactorily with the experimental measurement. As
before the only significant deviation seems. to occur
at the highest hematocrits and probably for the
same reason suggested in section 5. .

Erythrocyte suspensions at arbitrary shear rate

Having established some validity for the theory in
the two limiting cases of hardened red cells and red
cells at high shear rates it is of interest to try to
complete the analysis in an attempt to predict the
properties of red cell suspensions at moderate or tran-
sitional shear rates. For this purpose some model. of
the properties of deformation of the membrane is re-
quired. That is to say some constitutive equation.
which would enable the membrane stresses (Equa-
tions (40)— (42)) to be related to the strains and
strain rates (Equations (26) to (28)) thus leading
to an effective viscosity which would be a function of
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the constants in that constitutive equation as well as
A and .

As mentioned in the introduction there is really

insufficient knowledge of the elastic/plastic nature
of the red cell membrane to allow such an approach
to be implemented directly. Instead we will compare
the experimental data at these intermediate shear
rates with some admittedly oversimplified membrane
models in an attempt to find trends which would sug-
gest not only superior models but also some clues as
to the nature of the membrane deformation itself.
First it is to be noted that in the context of the present
formulation purely elastic deformations of the mem-
brane will yield little energy dissipation and will not
therefore contribute to the relative viscosity of the
suspension. Thus only visco-plastic membrane de-
formations will be considered; the analysis and re-
sults of some simple models are as follows:
[A] “Viscous Membrane”. The form of the equation
for membrane stress and strain rate are such that
the simplest model is to assume that the membrane
behaves like a Bingham solid with a negligibly small
yield stress (see model [C]) so that

gi; = —1)61'1'-1—277*0;'1-{- S8 E, i,j=40.,¢
where §,; is the Kronecker delta, n* is the coefficient of
viscosity of the membrane, £* the dilation modulus and
E the dilation rate, €5, + €,,. Using the relations for o,
¢; this constitutive equation leads to three conditions
one of which is redundant so that

(P2 — 2P3)/m
=8 (V1 —4Ve) +8E (V1 —3Va). ...l (49)

(Py 4+ 2P3)/u1 = 80 Viau oo (50)

where n = n*a/t and ¢ = £*a/t. The solution of these
equations for (Ae*/q) and (C/q) given the defini-
tions (24), (25), (35) and (36) enables one to ob-
tain a relative viscosity w*/u. as a function of A, 7, £
and of course y(= ¢*). It transpires that the results
are to all intents and purposes independent of the
dilation modulus ¢; they are altered very little
whether ¢ is 0 or 10%. It is for this reason that the
results of this model are omitted since they are vir-
tually identical with those of the following model.
[B] “Shear Viscous Membrane”. Here it is assumed
that as the red cell is distorted a segment of mem-
brane does not change in area; that is to say the
dilation E is zero or V; = 3V.. If in addition there is

VOLUME CONCENTRATION, ¢

viscous resistance, n¥, to its changing shape then this
second condition merely Trepeats Equation (50),
namely (P:+ 2Ps)/p = 87V The consequent rela-
tive viscosity becomes

u*
531

1093 [23A(1 ~¥") —16 + 23v7 + 16n(1 —¥7)]
128 + 40073 — 33675 — 100y7 — 92y10 }

=14 (61)

+ (92 — 575v5 + 96675 — 57577 + 92y10
} J 7(64 — 40073 + 67275 — 40077 + 6471)

The results of this model (which are virtually iden-
tical with those of [A] for the reasons given above)
are shown in Figures 4 and 5 for A =5 and A =10
respectively and a series of values of the membrane
viscosity 7. When 7n— « Equation (51) reduces to
the case of solid particles (Equation (43)) and when
17— 0 the numerical result is very close to that of
Equation (47). The data of Brooks, Goodwin and
Seaman®” for suspensions of normal red cells in
plasma (A = 5) and in saline (A = 10) are also shown
in Figures 4 and 5 for shear rates, ¢, of 0.5, 5 and
50 sec*.

This model is however not particularly satisfactory
gince even if the membrane could be characterized by
a simple viscosity, Figures 4 and 5 illustrate how
that viscosity would have to increase with decreasing
shear rate in order to correlate with the experimental
data. (The limits of the validity of the comparison in
Figure 4 due to aggregation at low shear rates are
more conveniently delayed until later). Though such
a trend is not beyond the realm of possibility there
is insufficient data on the membrane properties to
adequately evaluate the results of this model at the
present time. It can only be pointed out that the
membrane viscosities are the same order of mag-
nitude as the figure of 100 — 200 cp quoted by Frye
and Edidin®” for a different biological membrane.
For these reasons a somewhat different model based
on known properties of the red cell membrane but
fitting the data rather more crudely is presented be-
low.

[C] “Plastic Membrane”. Comparison of the model
[B] with the experimental data indicated (Figures 4
and 5) that the “apparent membrane viscosity” in-
creases with decreasing shear rate. This suggests
that a purely plastic membrane model might be worth
investigation; this would represent the membrane as
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undeformable up to a certain membrane yield stress
and unable to sustain any greater stress. It also hap-
pens that there exist experimental observations from
which a value for this membrane yield stress can be
deduced. It is worth emphasizing, however, that the
yield stress referred to is not the rupture stress meas-
ured by Rand and Burton®, Leverett et al®” and
others but merely the stress required to initiate de-
formation of the erythrocyte. :

Brooks, Goodwin and Seaman“” report that the
height of a column of sedimented red cells in which
deformation is first detected is .042 cms. At this
height the force on the bottom layer of cells due to
the weight of those above and in terms of an average
pressure over the mean cross sectional area of each
cell is about 8.8 dynes/cm?® If this is then equated
to a membrane yield stress of £ dynes/cm?® it follows
that 2 At/a = 3.8 dynes/em® where o is the average
radius of the cross sectional area and ¢ the membrane
thickness. The. -membrane yield stress, E=19 a/t
dynes/cm® will be employed in this membrane model.

The plastic yield criterion which will be used is
that of von Mises (Hill*®); that is to say the mem-
brane stresses at yield will satisfy

3 igo — 00)% + Tooluax = k2. ... (52)

Substituting for a4, ¢4, Te, from equations (40), (41) and
(42) this condition becomes

| Pod 2Ps] = BU/G. oo (53)

Then if Ps -+ 2P; is less than kt/a the red cells will
act like solid particles and the suspension will conform
to Equation (43) of section 5. Using the details of
that section to evaluate P, Ps the condition (53) be-
comes

B8 4 7v5 + 15Y7)/(4 — 2578 4 42y5 — 257 4 4v'0)
=4ktjaprg = T,8a¥.. ... (54)

Note that this condition also involves u: and the
shear rate ¢. Further assume that once the yield has
taen place the maximum membrane stress will remain
at the yield value; it follows that Equation (53) is
the first condition required for solution. Retaining
from model [B] the second condition of zero dilation
(or Vi=387V.) leads to a post-yield relative viscosity
of )

Y3 [—-80 + 115Y7 + A(115 — 11577
S R + T (96 + 84y5 — 180v7)]
e 64 + 2007® — 168y —50y7 7T
~ 46710 + \ (92~ 57573 + 96673:, :
~ B75Y7 4 92y19)/2

Using the above mentioned value for kt/a, the
values of T which correspond to the experimental
data of Figure 4 and 5 for shear rates of 0.5, 5.0 and
50 sec™! are respectively 220, 22 and 2.2 for the plasma
suspension and 420, 42 and 4.2 for the saline sus-
pension of normal red blood cells. The appropriate
results of equation (55) are compared with the ex-
perimental results for the plasma and saline sus-
pensions in Figures 6 and 7.

As mentioned previously there is some question
concerning the validity of the comparison in Figure 6
(also Figure 4) since aggregates may be present in
the plasma suspension at low shear rates. Brooks,
Goodwin and Seaman™” estimate that the force re-
quired to disaggregate red cells is less than the force
required to initiate deformation of an erythrocyte
and may be as little as 1/100 of that value. Thus
when the shear rate and hematocrit in the plasma
suspension are sufficiently large for red cell deforma-
tion to occur {(the dashed lines in Figure 6) we
would not expect significant numbers of aggregates
to be present and comparison with the theoretical
model would then be appropriate. But, furthermore,
the other portion of the model (solid line, Figure 6)
corresponds to essentially solid or undeforming par-
ticles the equation for which, (43), is independent
of particle size in the first order and would hold
equally well for aggregates. Of course, this is overly
simplistic but indicates that the effect of rouleaux
on the viscosity of blood is not entirely obvious. In-
deed comparison of the experimental data in Figure 6
with that of Figure 7 (where aggregation is not a
factor) for unyielded flows suggests that if rouleaux
is present in the plasma it has a relatively small effect
on that relative viscosity. The only substantial dif-
ference occurs at the lowest shear rate and with in-
termediate hematocrits; the reason for this is not
clear. We conclude that though Figure 7 (and Fig-
ure 5) represent a more reliable comparison - of
theory and experiment the data of Figure 6 (and
Figure 4) are also worth some thought.

It is to be expected that there would be some dis-
crepancy between theory and experiment considering
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the oversimplification of the plastic membrane model.
No real plastic material has the step-function like be-
havior; assumed here and we would expect that there
would be-a smoother transition from the state of no
deformation to the state of maximum stress as Fig-
ures 6 and 7 suggest. With this in mind the quantita-
tive agreement at the higher shear rates and the gen-
eral qualitative agreement at lower ¢ is most re-
markable. It suggests that, aside from the questions
of aggregation discussed above, good quantitative
agreement at all shear rates may be achieved with
better detailed knowledge of the structural prop-
erties of the red cell membrane. It is worth stressing
that this model [C] has employed only properties of
the red cell membrane and contents which are known
from other experiments and that no additional factors
or properties have been introduced.

Conclusions

The simple cell method approach to concentrated
suspensions has been employed in an attempt to con-
struct a model for the rheological properties of
blood. Predictions of the gross viscosity of red cell sus-
pensions have been found to agree very well with the
experimental data for the case of hardened red cells
(or normal red cells at very low shear rates) and
the case of normal red cell suspensions in the asymp-
totic limit of high shear rates. The latter case re-
quires the appropriate value of the ratio of the vis-
cosity of the surrounding medium to that of the red

cell content, namely a solution primarily of hemo-

globin.

In order to analyze the rheology at intermediate
shear rates a knowledge of the stress/strain relation-
ship for the membrane is required. A number of
simple membrane models are investigated. Most sig-
nificantly the model based on a membrane yield stress
whose value is known from other experiments leads
to results which are compatible with the experimental
observations at intermediate shear rates. The sig-
nificance of these results lies in the fact that the
model incorporates properties of the red cell membrane
and red cell contents which are known from other
sources and that no additional factors or unknown
properties are incorporated.
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Nomenclature

a = volumetric radius of red cell
A, C. E, = constants

G K,

b = “cell” radius

€ = membrane strain rates

E = membrane dilation rate

= membrane yield stress
pressure

oA
N
I

P, Py, Py stress component magnitudes

q = shear rate

7, 6, ® = spherical coordinate system

t = membrane thickness

T = kt/au q

v = velocity vector

Vi, Ve = velocity component magnitudes
Y = a/b

&4; = Kronecker delta

n = n*a/t

n* = membrane viscosity

A = M2/ .

M1 = exterior fluid viscosity

728 = interior fluid viscosity

u* = suspension viscosity

¢ = §*a/t

£* = membrane dilation modulus _
™ = fluid stress dyadic

o, T = internal membrane stresses

P = external stresses on membrane
@ = volume concentration, y3
Superscripts

(0) = exterior shear flow

(&) = particle generated exterior flow
(2 = interior flow
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