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The Dynamic Behavior and Compliance
of a Stream of Cavitating Bubbles

The role played by turbopump cavitation in the POGO instability of liquid rockets
motivates the present study on the dynamic response of streams of cavitating bubbles
to imposed pressure fluctuations. Both quasisialic and more general linearized dy-
namic anolyses are made of the perturbalions to a cavitating flow through a region of
reduced pressure in which the bubbles first grow and then coilapse. The results when
coupled with typical bubble number denstly distribution functions yield compliances
which compare favorably with the existing measurements. Since the fluids involved
are frequently cryogenic, @ careful examinalion was made of the thermal effects both
on the mean flow and on the perturbalions. As a result the discrepancy between theory
and experiment for particular engines could be qualitatively ascribed to reductions
in the compliance caused either by these thermal effects or by relatively high reduced

frequencies.

1 Introduction

TBE importance of the POGO instability in the
operation of liquid propellant rockets {1, 2]' and the role played
by the fuel and oxidizer turbopumps in that instability has
focused renewed attention on theoretical means for predicting
the response of cavitating inducers to oscillatory pressure and
mass flows. The pump transfer function relating the inflow and
outflow pressures and mass flows is, in general, a matrix with
four complex components yielding eight separate characteristics.
Of these, the cavitation compliance {2, 3], Cp, defined by
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where py, is the liquid density, V¢ is the total volume of the vapor
or gas cavities, and P, is the suction pressure, appears to be of
particular interest to the dynamieists [2]. This generally complex
quantity represents the dependence of the difference between
the inlet and outlet flows (or cavity volume growth) on the
fluctuating suction pressure which causes it. It will, in general,
be a function of the frequency, 2, of the perturbations.
Cavitation appears in a number of forms in a typical axisl
inducer [3, 4, 5]. Nuclei, present in the inflow, may grow ex-
plosively (cavitate) as they are convected through the low pres-
sure region on the suction side of the inducer blades, finally
collapsing when they are convected to regions of higher pressure.
Though it is not possible to establish a precise line between the
various forms of cavitation, this will be termed bubble cavitation.
As the cavitation number, ¢, is reduced a single vaporous wake,
or full developed cavity, will form on the suction side of the
blade. This is termed blade cavitation and, in turbopumps,

Nomenclature
A = local constant crr, = specific heat of liquid kz = thermal conductivity of lig-
A; = inducer inlet area D = thermal diffusivity of liquid uid
Cp = turbopump compliance f = nondimensional frequency L = typical reduced pressure

Cp = pressure coefficient, (P —

F,, Fa, F3 = thermodynamic functions

length

Po) Mg U? G = thermal effect function £ = latent heat of evaporation
Cpy = mean flow pressure coef- j = imaginary unit M = mass rate of vapor produc-

ficient Kp = dimensionless total compli- tion
Cpy = minimum pressure coefficient ance, CglU?/2LA; N* = bubble pumber density dis-
Cp1 = pressure coefficient oscilla- K¢ = total unit compliance tribution funection

tion amplitude K; = local unit compliance (Continued on next page)
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Fig. 1 Schematic illustrating forms of cavitation for an axial inducer

commonly occurs alongside bubble cavitation. In addition, it is
useful to identify a third type associated with the tip clearance
flows which in the highly loaded inducers of rocket engine turbo-
pumps often produce backflows. Then the term backflow cavita-
tion refers to the cavitation in the vortices shed by the blade
tips and any other bubbles convected by this reversed stream.
These characteristic cavitation forms are illustrated in Fig. 1.

Blade cavitation in & turbopump and the compliance it yields
have been explored by a number of authors [3, 6, 7]. Brennen
and Acosta [6, 7] obtained theoretical results for the quasistatic
or low frequency compliance due to blade cavitation in a num-
ber of existing turbopumps by employing a finite cavity cascade
theory. (The corresponding general dynamic problem has been
addressed by Kim [8] with the objective of finding the frequency
dependence of the blade compliance.) The real and positive
compliance values obtained were substantially smaller than the
existing experimental measurements [6, 7]. However, serious
doubts are expressed concerning the validity of these indirect
experimental observations and a satisfactory comparison must
await more direct measurements of pump transfer functions.
Nevertheless it is clearly of importance to explore other sources
of compliance and therefore the contributions from other forms
of turbopump cavitation. Since both bubble and backflow
cavitation involve streams of bubbles it is important to know
some of the general features of the compliance of a stream of
cavitation bubbles. It is worth noting at this point that helium
bubbles are sometimes introduced into the feed lines in order to
provide the total system with additional compliance. The
nuclei gas content referred to later would thus include this
situation.

Therefore, the purpose of this paper is to investigate both the

quasistatic and more general dynamic response of a stream .of
cavitating bubbles to fluctuations in the basic suction pressure.
This will form a theoretical base from which teo explore the com-
pliance of bubble and backflow cavitation and empirical ob-
servations such as those of Ghahremani {310]. No attempt has, as
vet, been made to reproduce the conditions in the main stream
or backflow of a particular turbopump. Instead a general, simple
mean pressure distribution for the stream has been employed
with the objective of establishing general trends without exces-
sive computation. It should be pointed out that values for the
compliance of a stream with uniform mean pressure are available
in existing works [11] though it is not termed ‘“‘compliance.”
For example, the ‘frequency response funetion” of Hsu and
Watts [11] is proportional to the compliance as will become
evident below. However, most of the following ealculations differ
in that they are concerned with a cavitating stream in which
the mean pressure is far from uniform.

Most of the experimental data mentioned above have been
obtained from tests in which water has been used as the working
fluid, rather than the actual liquids (commonly cryogenic) for
which turbopumps were designed. But the thermodynamic
properties of these liquids at the operating temperature may be
radically different from those of water. For this reason, the
thermal effects on both the mean flow and on the perturbations,
which depend in turn on the respective time-scales of the two
motions, are considered and evaluated. Thermal effects on cavi-
tating (mean) flows and the difference between cavitation and
boiling have been extensively examined in the past, particularly
by Plesset [12, 13, 14]. 1i was, however, considered appropriate
to include in Section 4 a variation on Plesset’s analysis in order to
present an explicit formula which may permit a determination
of whether a particular flow of a given liquid will cavitate or
boil. Additional thermal effects on the fluctuations are evaluated
in Section 8.

2 Bubble Motion

A number of simplifying basic assumptions concerning the
bubble motion are necessary in order to create a tolerably soluble
problem. Tt is assumed (I) that the bubbles have their origin in
nuclei present in the inflow, (I1) that relative motion between
the bubbles and the fluid immediately surrounding them can be
neglected, and (IIT) that the bubbles are sufficiently far apart
for each to be unaffected by the growth or collapse of neighboring
bubbles. Then the bubble growth will be governed by the
Rayleigh-Plesset equation [12]

Nomenclature.
N = N*L4 R = bubble radius vs = ratio of specific heats of gas
P = pressure Ry = nuclei radius vv = ratio of specific heats of
P, = remote pressure in liquid Re = Reynolds number, UL/v vapor
Py = total pressure in bubble 8 = surface tension e = local constant
Py = vapor pressure { = dimensionless time, LU /L § = temperature deviation (7' —
Py = partial pressure of gas t: = time Tw)/Te
Qr = heat flux into bubble T = temperature 0 = (Ts — T'x)/Tw
Q¢ = rate of heat absorbed by gas Tw» = remote temperature in liquid 0p = amplitude of 8p oscillations
Qvo = rate of heat absorbed by Ts = temperature in bubble » = kinematic viscosity of liquid
vapor Tr = triple point temperature pr = liquid density
# = dimensionless bubble radius, Te = critical point temperature pv = vapor density
R/L U = velocity of stream ¢ = cavitation number, (Po —
ry = dimensionless nuclei radius, Ve = total cavity volume Py (T.)) /Y, U?
Rx/L We = Weber number, pnt/:./8 ) thermad effect Munetion
ro «= menn flow nize history Y = radiug from bubble center w -« 2mf
r* = perturbed flow size history a = thermodynamice funetion, wa = nibural bubble frequency
ri = radius oscillation amplitude &£ pv/Py ! = dimensional frequency, Uw/
rv* = perturbed nuclei size B = 2Py/p U3 L
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di? 2\ dt pL pLR R dt
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where t is time, R the radius of the bubble, pz the liquid density,
S the surface tension, and v the kinematic viscosity. Given the
pressure history along the trajectory of the bubble in the latter’s
absence, P(#), the solution of this equation yields the size/time
history, £(t;). Only the internal bubble pressure Pg(7's) re-
quires further comment. It is assumed to consist of the vapor
pressure Py(T5) of the liquid at the internal bubble temperature
Tp and a partial pressure, Pe(7s), due to 8 mass of gas in the
bubble; this mass is assumed to remain unchanged throughout
the motion since the typical time for gas diffusion in the liquid
is usually large compared with the growth time. Then assuming
the nucleus (of size B = Ry) from which the bubble grows is in
equilibrium at a constant pressure, P, upstream of the low pres-
sure region it follows from (2) that

28 .
(PB)R-EN = Pxn + E (’3)
In this region the bubble temperature will be identical to the
remote stream temperature, T, so that the vapor pressure in
the nuclei will be Py(7'); it follows that the partial pressure of
gas, Pg, is

28 :
(PG)R—RN = Py + IE_N - PV(TOD) (4)

Obtaining the partial pressure of the gas at any radius and tem”
perature from the perfect gas law, the pressure term in equation
(2) can be replaced by

Py(Ts) — P(t) = — (P — Po) — (P — Pv(T)) + (Pv(T5)
~— Py(Tw) + {Po + 28/Ry — Pv(Tw)} (Ba/R)M(Ts/Tx) (5)

where the last term represents the partial pressure of the gas.
It is convenient for future purposes to nondimensionalize the
equations at this stage and to assume that the bubble tempera-
ture deviation g = (Ts — Tw)/Tw is sufficiently small to ex-
pand in Taylor series

Py(Tg) — Py(Tw) = ~ Oy { T— = — gpvls (6)
where the latent heat of vaporization, £ , and saturated vapor
density, pv, may be evaluated at T = T,. The last relation

follows from the Clausius-Clapeyron equation. The resulting
dimensionless momentum equation for bubble growth becomes

dr dr \? 8 dr 4
” i +3(JE">+C”(‘)+"""60”+7ﬁ;712+?’v6;
N 3
= 1 =
(0s + )( r) la+WerN] 7}

where, if.U and L are typical velocity and length, r = R/L,
1
t = 4U/L,Cp = (P — Pm)/é prU?, the cavitation number, ¢

1
= (Po ~ PV(Tw))/é p1U3, the Reynolds number, Re = UL/»,

the Weber number, We = p,U2L/S, « is the thermodynamic

1
property, £ pv/Py, and 8 = P|z/~2 pLU

The basic difference between cavitation and boiling has been
extensively examined in the past, particularly by Plesset [12, 13,
14}, Cavitation generally oceurs at low liquid temperatures
where the bubble growth is impeded only by liquid inertia and
not by thermal diffusion. The temperature of the bubble con-
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tent remains virtually unchanged. Thus for a given Cp(f),
cavitation bubble motion can be described completely by
equation (7) with 05 set equal to zero. At higher temperatures
however, bubble growth may be severely restricted by the rate
at which heat can diffuse toward the interface in order to va-
porize the liquid. Tn such a situation the process is termed
boiling in order to distinguish it from cavitation. Indeed in
many liquid flows there is a transitional temperature range be-
low. which bubble growth will take the form of cavitation and
above which boiling will occur. In order to examine these ther-
mal effects the thermodynamic equations for the growth of a
vapor/gas bubble are outlined in the next section.

3 Thermodynamic Equations of Bubble Motion

The inclusion of thermal effects requires an energy equation
to supplement (7) and allow simultaneous solution for both
7(t) and B5(t). This, in turn, requires the solution of the equation
for heat diffusion in the liquid [14]

29T }
+ = 5 (®)

aT R? dR OT T
il =D ] —
ay: Y 9y

W traar
where D is the thermal diffusivity of the liquid, 7 is the tem-
perature at a point in the liquid of radius, ¥, and (T)y-z = Ts.
The heat flux into the bubble, @r, is then

X ar
QT = 4kaL( W )Y—R (9)

where &y is thermal conductivity of the liquid. But if v¢ is the
ratio of specific heats of the gas in the bubble, the heat, Qg,
absorbed by this mass of gas is

4 28
Qo = - TRx* | Py — Pu(Tw) + l
3 Ry ]
1 AT g 3Ts dR
e — — /Ty 10
[(’)’G— 1) di R d / (10)

and the rate at which heat is absorbed by the mass of vapor in
the bubble, Qv,, is
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Fig. 2 The thermodynamic function = In m/sec:: for oxygen, hydrogen
and water
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where M is the mass rate of production of vapor at the interface,
v is the ratio of specific heats of the vapor, and pv(7Tp) the
saturated vapor density. Now the total mass of vapor in the

bubble is 4wR3pv(T's)/3 or
1_ dgz dTB
pvdT T=TB dt )

4 R3py(T's) {}@
3 Rdy
But since the heat flow remaining to evaporate the liquid is
(Qr — Q¢ — Qvo) the mass rate of production of vapor must
also be

M =

(12)

= @Qr — Qo — Qvo}/ £(Ts).

Eliminating M from the above and using the Clausius-Clapeyron
relation yields the energy equation

(13)

iR l ¢ (Taypr(Ta) + 22 T2 (Pm — Py(Tw) + 2 )}

dly Rs Tw
R dTs £(Te)pr(Tr) 2
- 222 | pyry) | TEETCE
3Ts di v(Ts) l Py(T5) }
S
Py(Ts) . B Ty ( w = Py(Ta) + ——-)
(“YV - 1) RS Tw
(y¢ — 1)

or
=k == 14
L ( ay ),,_R (14)
The nondimensional, small perturbation form of this equation
which is to be used later is obtained by assuming that 8z < < 1.
To the first order the variation of £, py, and Py with 63 can be

neglected since the quantities occur in the coefficients of dr/dt
and dfp/di. Then

ﬂ[aﬁ (—:1)8 (0 + 4/Wery) ]

0z
[B((a—l)’-i-(‘)’v—l) ‘)+( )(’)/a—l)1

00
-— 15)
) ( 0y > y=r (
The nondimensional form of (8) is

W  pase (D) (0 2
UL dy? y dy J’

a taady
4 Cavitation and Boiling in Water and Cryogenic
Liquids

To investigate the dynamics of a cavitating (or boiling) flow
both a mean flow and an oscillatory perturbation to that mean
flow will be established. Both will have their own, possibly
radically different thermal effects. But since a complete solution
of equations (7), (15), and (16) is excessively complex for present
purposes, a phenomenonolgically selective course of action has
been taken. The primary objective of this paper has been to
study cavitating mean flows, their compliance and the thermal
effects on that compliance. The bubble growth in boiltng mean
flows is much less rapid than in the cavitating case; thus as a first
approximation, the latter can be regarded in the light of results
for a uniform mean flow.

=N

+

& I

T
3
2k T
prU%;,

(¢ + 4/Wern) ] = [

(16)
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It is clearly of importance to be able to establish a priors
whether the mean flow is one which will cavitate or boil. Strange-~
ly, though some particular exarnples have been delineated in the
liverature [12, 13, 14| there exists no explicit formula froma which
an estimate can be made of the transitional temperature in a
particular liquid and for a given flow situation. Since such a
formula is relatively easily obtained by employing a variation on
the analysis of Plesset (14] it was considered appropriate to in-
clude the following short digression in this paper and to suggest
such an explicit formula.

Consider the condition required for boiling., If the inertial
terms in equation (7) can be neglected and the influence of the
surface tension and gaseous terms are also, for the present
purpose, neglected then
Ce(l).

1
033-—

af

If the diffusion layer surrounding the bubble is small then an
approximate local solution to (16) is

an

8§ = A exp { E]I—)ze’l — ely — 1) } (18}

where 4 and ¢ are local constants which may be eliminated to

yield
y=r

A study of the thermodynamic properties of most liquids re-
veals that at the higher, boiling temperatures the prominent
terms in the energy equation (15) are

(19)

dT 2kLTm 60
= = T = 20
af i +[ UL l (6y )v_ (20)
Substituting 65 from (19) and (17) it follows that
dr 1. (DATcrrpe dCp \}
2oy - = . 21
dt o8 ‘ Py} } (C” dt) @1

But, returning to the original premise the condition for boiling
rather than cavitation is that the inertial terms in (7) be small
compared with say Cp; thus one condition is

dr \?
— Cp.
(dt) << Cp

Comparing this with (21) yields a condition on dCp/dt. But
dCr/dl is of the same order as ¢ so it follows that boiling will
oceur when

Usg\# 28%y2
S —_ Z(D.
( 7 ) << [Dmeprﬁ] =Z(T)

This defines a trapsitional temperature for a particular flow
process. When the flow property, (USe/L}1?, is much smaller
than the thermodynamic property of the liquid/vapar, Z(T),
boiling will oceur; in reverse circumstances, cavitation Will take
place.

Values of Z(T) for water, normal hydrogen, and oxygen are
plotted against a dimensionless temperature, (T — T'r)/(Tc —~
Tr) (where T'r is the triple point, T¢ the critical point tempera-
ture) in Fig. 2. Given the value of (USc/L)¥? for a particular
flow, the transitional temperature is then easily obtained from
this figure. For example with typical turbopump values of
U = 100 m/sec, L = 0.5m, and ¢ = 0.1 it follows that (Usc/
L)1 = 400 m/sec’?, Under these conditions liquid oxygen
would cavitate rather than boil below about 70 deg K, liquid
hydrogen would virtually always boil and water would cavitate
below about 60 deg C.

(22)
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Unfortunately there does not appear to be a great awareness
of these distinetions in the literature. Thus despite the fact that
liquid hydrogen will boil rather than cavitate in virtually all
practical flow situations, experimental investigations with LH,
such as those of Stinson and Strickland [15) and Hord, Ander-
son, and Hall [16] still regard the bubble growth in “cavitating’’
terms.

5 Cavitation Bubble Motion—The Mean Flow

In order to study the response of a cavitating flow to imposed
perturbations, a basic or mean flow must first be established.
Toward this end numerical solutions for the eavitation form of
equation (7) (j.e., with 6z = 0) were obtained by means of a
second order Runge Kutta procedure utilizing the initial condi-

tions
d.
r @ =, [ 2 = 0.
at ]

In order to reduce the total number of variables, typical values
for We and Re were chosen as 108 and 107, respectively, and
these parameters whose effect is relatively small remain un-
changed throughout the data presented. In addition, a simple
but typical mean pressure history of the form, Cp(f) = Cpoft)
was assumed where, as indicated in Fig. 3,

Cro(t) = 0
Cpolt)

(23)

, i< 0andt >t
(24)

i

Cea sinfirt, Cpy negative, 0 < ¢ < 1.

Though pressure histories along particular trajectories of flow
through a given turbopump could easily be incorporated, there
are indications that the solution in terms of the bubble size
history is not especially sensitive to the precise form of the
pressure distribution; of greater importance is the relative
magnitude of (— Cpy) and ¢. It is generally recognized that in
most cavitating flows the values of these two parameters do not
differ greatly.

Since typical cavitation numbers are quite small and Cpy is of
comparable magnitude, the fluid velocity does not change great-
ly from iis value, U, at { = 0. Hence the nondimensional dis-
tance along the trajectory, z, can replace t as far as the mean
flow is concerned.

The number density of nuclei in the stream in the size range
Ex to Ry + dRy is denoted by N*(Ry)dRy bubbles per unit
liquid volume where N*(Rx) is the bubble number density dis-
tribution funection. It will be assumed that no bubbles are
created or destroyed. Then the total bubble volume per unit

cross-sectional area of the stream in a length Ldz of the tra-
jectory is

4T
f —; N@w)fro(z) lsl‘dxdm (25)
f‘v 3

where N{ry) = N* X L4 is the nondimensional bubble number
density distribution function.

It will become clear in the analysis to follow that the bubble
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Fig. 4 Some bubble number density distribution functions derived

from the experimental measurements of Schiebe{17] (Group A) and
Ripken and Killen [18]) (Group B)

number density is of considerable importance in assessing the
compliance of this form of cavitation. Unfortunately there
appears to be little or no data available on the form of this dis-
tribution, and none specific to the inflow of cryogenic turbo-
pumps. For want of anything more appropriate, some meas-
urements of bubble numbers in water tunnels by Schiebe {17]
and Ripken and Killen [18] have been reduced to the appropriate
distribution function form and are presented in Fig. 4. Tentative
conclusions based on the form of these curves are included in
later sections; it is possible however that the numbers of nuclei
present in & typical turbopump operation are somewhat greater
than in the relatively deaerated water of & water tunnel.

The above mean flow staie will now be perturbed and the
change in total bubble volume calculated prior to assessment of
the compliance, Cp. A nondimensional compliance is defined by
Kp where

U2
Ka = Cpe 2LA:° (26)
This is very similar to the form used by Brennen and Acosta (6]
for blade compliance; I/ may be assessed as the relative fluid
velocity at inducer inlet, 4, the inlet area, and L as some char-
acteristic length of fluid trajectory through the inducer.

Quasistatic or low frequency results are most easily obtained

and are presented prior to the more complete dynamic approach,

6 Quasistatic Analysis of Compliance

In the quasistatic approach to perturbations of the mean flow
characterized by Cpo(z) and ry(z) are assumed to take place at
such a low frequency, €, that the perturbed states are them-
selves solutions of the mean flow equations. The perturbation is
assumed to consist of & small, uniform static pressure change,
C'p1, so that as shown in Fig. 3

Cr*(z) = Cpolz) + Cr1. 27

The inlet flow also experiences this ehange: henee the correspond-
ing nucleus will assume n slightly different size, 7a*. However
the quantity of gas in Lhis modified nueleus should be the same
as in the original; then it follows from equation (7), the up-
stream conditions and the perfect gas law that
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o + r/Wery
g -*- Cm + 4/We TN*

(28)

?"N* 3
N

When the perturbation is small the linearized solution of this
equation for ry™ is

* Cp

Y .
N =1 30 + 8/We TN. (29)
It follows that the bubble motion in the perturbed state is given
by the solution of (7) (with 6z = 0) with ryx replaced by ry*,
g replaced by (¢ + Cp1) and Cp(¢) remaining as Cpy(l).

The total bubble volume in an incremental Eulerian liquid
volume is given by (25) with 7(z) replaced by r*(z). Thus the
change in volume per unit pressure change is easily computed
and from the relations (25) and (26) the dimensionless com-
pliance, Kg, is given by

4
—T (@) — (@)

Kip(x) = — 30 (30)
Ke = [Ki(x)dz (31)
Kp = [Kolry) X N(ry)dry. (32)

Most of the results will be presented in the form of “unit com-
pliance’’ or compliance per unit bubble number density, Kc¢;
K1 is termed the local unit compliance.

Some compromise must be made concerning the limits of
integration in (31). The nuclei in the stream prior to z = 0,

= 0 have some compliance as do the remnant bubbles in the
flow downstream of the reduced pressure region. However since
the local compliance in these regions is small compared with
that in the low pressure region and since our interest is the com-
pliance contributed primarily by a turbopump, the integration
for K¢ is initiated at x = 0, { = 0 and continued to one of the
bubble collapse minimums.

Computed values of total unit compliance up to the first and
second bubble collapses are presented in Fig. 5 for various
nueclei sizes, 7x, and cavitation numbers, 0. The predominant
contribution during the integration comes from the region of
bubble maxima; the additional contributions from further bubble
rebounds are rapidly attenuated.

The logarithmic plots of K¢ with either ry or o are close to
linear; indeed they roughly follow the empirical relation

K¢ 22108 X ry? X o4, (33)

In order o obtain a total compliance, K s, which can be compared
with experimental observations, a bubble number density dis-
tribution function is required; the typical distributions in Fig.
4 suggest a rough empirical relation of the form

N@rw) = 107(ry)~¢ for Ry 2> 3 X 107%m (34)

where the bubbles smaller than 3 X 107%m are neglected. Taking
a typical value for L in turbopumps of 0.3m (so that the distribu-
tion is for ry > 107) the resulting total compliance from (32),
(33), and (34) is

Kp=oh (35)

In actual fact, of course, L will also be dependent on flow quanti-
ties such as angle of attack, blade angle, and cavitation number.
Nevertheless when the above result is compared in Fig. 6 with
the nondimensional experimental values of compliance for the
fuel (—F) and oxidizer (—0) pumps of the J2, F1, and Hi
rocket engines quoted by Brennen and Acosta [6] the result is
quite satisfying considering the inndequacies in the experimental
measurements  (see and  Acosta), the approximate
uature of the present caleulation and the lack of data on bubble
- number densities.

Brennen

538 / DECEMBER 1973

In the next section & more complete dynamic analysis examines
the frequency dependence of the bubble compliance.
7 Linearized Dynamic Analysis

Above a certain but as yet undetermined reduced frequency,
w = QL/U dynamic effects will become important and the in-
dividual bubble as it moves along its trajectory will experience a
pressure history of the form

Cp(z) = Cpolz) + Cprei® (36)

where w is the dimensionless frequency QL/U. Assuming that
the pressure fluctuation amplitude, Cp;, a real constant, is suf-
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ficiently small for a linearized approximation to be valid, then
the resulting bubble motion will be of the form

r(x) = ro(x) + n(x)e™ (87

where 7,(z) is the amplitude of the radial fluctuations of bubbles
at a particular Eulerian position along the trajectory. However,
the fluctuations in radius and pressure seen by an individual
bubble will be given by (36) and (37) with = replaced by .
Then substituting into (7) (with 8z = 0), subtracting out the
mean motion and neglecting quadratic terms one arrives at
the following relation between r, and Cpy

dafl dT] 3i‘o 4
—_ —_— 2' —
dz? + dx g + To + Re ro’}
Py Sy b 4/We 2
+ n { To T 21‘05 We Tos
7.'1) 4 ‘I"n CP[
3jes w - 2 bt 38
+ ol To + Re To2 ‘Jw To ] } 27'0 (3 )

where the dots refer to differentiation of the mean motion ry(x)
with respect to z. This is a linear, second order differential
equation whose coefficients are known functions of z once the
mean motion has been determined. Solutions for (r1/Cpi) were
obtained by means of a complex, second order Runge Kutta
procedure. When the compliance given by the expression (30)
is similarly linearized it transpires that the local unit com-
pliance K1 is proportional to r/Cp;:

T1
—agraf{ = ).
TTo ( Cm )

This is easily integrated to obtain the total unit compliance
K¢. Both (r1/Cp) and K, are in general complex and the results
presented later include both the real and imaginary parts.

It is instructive to examine the limiting solution of (38) for
high frequencies. Assuming that as w becomes very large the
term w?; on the left-hand side will dominate all other terms it
ean then be concluded that as @ ~» @

K, = (39)

A i

271,
. Y A i
Cpy

- . =
2row? w?

(40y
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Thus prior to any detailed results it can be anticipated that as
the frequency is increased (i) the real part of the total com-
pliances, K¢ and K g, will shift from an initial positive quasistatic
value to negative values which will then tend to zero at large
frequencies (ii) the imaginary part will approach zero at both
high and low w, with presumably some maximun: (or minimum)
at intermediate {requencies.

Calculations were performed only up to the first bubble col-
lapse. Examples of the variation of the real and imaginary parts
of the local unit compliance with position 2 are presented in
Figs. 7 and 8 for various reduced frequencies, nuclei sizes and
cavitation numbers. These were then integrated to yield total
unit compliances, K¢, up to the first minimum and typical values
are presented in Figs. 9 and 10 as functions of reduced frequency
for several nuclei sizes and cavitation numbers. Also shown in
the latter figures are the natural frequencies of the initial nuclei

given by
of_2 i)
- Re N '

1| 3¢ 4
- 41
O TN[2+WerN (1)
This can be derived from equation (38) by stipulating the case
of a uniform pressure stream (ro = ry, o = fo = Oand # = # =
0) so that

/ ny I—2 " 4 B0 4w -1
\C’z—u B L i We ryd  2ry? Re 7x?
(42)

The compliance is again given by equation (39). Incidentally,
the expression (42) is similar to the frequency response function
of Watts and Hsu [11] when thermal and viscous effects are
neglected.

The dotted portions of the curves in Figs. 9 and 10 are less
accurate than the rest. Indeed the resonant behavior near the
nuclei natural frequencies is not of particular concern here since
typical reduced frequencies for the POGO instability appear to
be in the range w = 1072 to 1 and thus considerably below these
bubble resonant frequencies.

One conclusion which can be drawn from Figs. 9 and 10 is
that the magnitude of the compliance will decrease from its
quasistatic value as the frequency increases. This is at least
qualitatively consistent with the trend exhibited by the experi-
mental observations of Fig. 6: it so happens that the reduced
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Fig. 8 Values of local unit compliance up to the first bubble collapse
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frequency for the J2-F results is significantly smaller than for
most of the other turbopumps.

§ Thermal Effects on Cavitation Compliance

In order to assess the relative influence of thermal effects on
cavitation compliance, the analysis will be confined to flows with
uniform mean pressure; thus the objective is to find how the ex-
pression (42) is modified. The general perturbations are then

Cp(t) = Cpiei®t, r = ry + 1ei®t, O = Opei®t

(43)

where 71, 0p are, in general, complex amplitudes. The ap-
propriate solution to the diffusion equation, (16), assuming a
relatively small diffusion layer thickness is

0 = Op exp {jwt - (L‘%’E)‘ (y —r) }
(&)

Substitution into the energy equation (15) yields a relation be-
tween 0p and ry

(0 + 4/Wery)
3(yve — 1)

so that

a9 WG+ 1)
dy 2

i

0516j“‘.

1 .| DicpTo
;;(aﬁ + o + 4/Wery) = 0 {2(1 —])[ m

+ g{(a — D2 (v = DY+ }

Finally when this is substituted into the momentum equation
(7) the parameter (ri/Cpi) which is proportional to the com-
pliance through the relation (39) is found to be

(
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This differs from (42) by virtue of the last term which includes
thermodynamic properties of the liquid and vapor. It is the
magnitude of this term relative to the term 3o which will be
examined in assessing thermal effects. Also it is easily seen that
the heat content terms involving vy, ye contribuie little to the
denominator of the thermal term. Thus an estimate of the
thermal effect is given by comparing the value of the nondimen-
sional function, G, with unity where
‘)2

( ocU? +
CPLTUJ g_I_J_V
3pL

3gU® [2(1 -5 {m

RyB

ZJ.’/pv
PL

)

Notice that G is a function only of the bubble flow quantities
oU? and RyQl2 and the temperature for a particular liquid. In
order to display the functional behavior graphically G will be
divided as follows

Q@ =

F, 28pv 2
G =—-——-—— whereF, = { oU? + ——
A=pFa+ by o ( pL ) )
3ol ((
Fy; = 2Dcpp,Too/Ry2
Fy = 2Py(a — 1)/3p1,

The component, F, is a function only of ¢U? and temperature for
a particular liquid; its values for three typical cU? of 0.1, 10 and
1000 m?/sec? are shown by the solid lines in Fig. 11 for water,
liquid hydrogen, and oxygen. The component F, on the other
hand is a function of Ry} and temperature; its values are in-
dicated by the dotted lines for three values of Rx{l of 1073,
1073, and 10~* m/sect. The component F; is a purely thermody-
namic function and is shown by the dashed lines.

In order to assess the order of magnitude of G and therefore of
the thermal effect, it is first noted that Fy is unimportant com-
pared with F; when Ry} is significantly less than 10-? m/sect

Dicpr T,
Ry

]
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(¢ + 4/We ry)
3(ve — 1)

]\ . (44)
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Fig. 11 Thermodynamic function for assessing the thermal cffect on
bubble compliance:

Solid lines: F, = {elh + 25, £/p1) /3«1 for values of oU1 as shown
(in m2/sec);

dotted lines: F,=2Dvicpr Too/Ryal for values of Ryqi: as shown(inm/
secl)

dashed lines: F,=2P, (x-1)/3pf.

and this is normally the case. Then it can be concluded from
equation (45) that the thermal effect is only significant when
F, > F.. This point is readily determined from Fig. 11 knowing
the relevant values of ¢U? and Ry{. For example when gU? =
10m?2/sec? and Ry{? = 107%m/secl’? there will be a significant
thermal effect upon the compliance when the temperature ex-
ceeds 400 deg K (127 deg C) in water or 90 deg K in oxygen or at
virtually all temperatures in hydrogen.

It can also be concluded from the form of equation (44) that
the thermal effect will generally cause a reduction in the value of
the quasistatic compliance.

Conclusions

This paper has been concerned, essentially, with the dynamic
response of a stream of cavitating bubbles to an applied, oscillat-
ing pressure. Both quasistatic and more general dynamic anal-
yses have been made to obtain the cavitation compliance of
such flows. Estimated values of the total compliance for the flow
through the turbopumps of the rocket engines, J-2, F-1, and H-1
compare favorably with the experimental observation, despite
some doubts that surround the validity of the latter and lack of
data on the nuclei number density distribution. Auxiliary in-
vestigations included in this paper suggest that the following
three effects may all contribute to a reduction in the theoretical
value of the compliance: (i) thermal restrictions on the mean
flow bubble growth during transit through the low pressure

. region (ii) a large reduced frequency, w, (greater than about 0.1),
and (iii) thermal effects on the oscillatory bubble motion.

Lack of experimental data precludes an assessment of which
of these, if any, cause the lower experimental values in Fig. 6.
Nevertheless the degree of quantitative correlation and the
qualitative behavior of the experimental deviations from the
theory strongly suggest that bubble cavitation whether in the
backflow of a turbopump or in the mainstream is a major con-
tributor to the cavitation compliance. Systematic analyses such

Journal of Fluids Engineering

as that presented in this paper should enable estimates of the

compliance in a turbopump to be made during the design stage.
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