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Theoretical, Quasi-Static Analysis
of Cavitation Compliance in Turbopumps

C. BRENNEN* AND A. J. ACOSTAT
California Institute of Technology, Pasadena, Calif.

The serious POGO instability experienced by many liquid propellant rockets results from a closed loop interaction
between the first longitudinal structural mode of vibration and the dynamics of the propulsion system. One of the
most important features in the latter is the cavitation compliance of the turbopumps. This report presents calcula-
tions of the blade cavitation compliance obtained from free streamline cascade theory and demonstrates the various
influences of angle of attack, blade angle, blade thickness and cavitation number. Discrepancies between calculated

and experimentally derived values are discussed.

Nomenclature

A = real constant
A; = inducer inlet area
B = real constant
Cy = dimensional cavitation compliance of the turbopump
d = blade thickness
f = frequency
h = distance between the leading edges of the blades
H = tip blade spacing, (h),.
K* = cascade and local dimensionless cavitation compliance

= —0v*/0o
K * = local dimensionless cavitation compliance at blade tip,

(K*)r=R
K, = over-all dimensionless compliance of turbopump
i = point corresponding to cavity closure in { plane
I = cavity length
D, = upstream static pressure
P. = cavity pressure
r = radial coordinate at inducer inlet
R = blade tip radius
Ry, = inducer hub radius
U, = velocity components in the x,y directions
v* = V*/h?
vV = total volume of cavities in the inducer
" = magnitude of upstream fluid velocity relative to the blades
V, = magnitude of downstream fluid velocity
V. = magnitude of cavity surface velocity
Vi = tip fluid velocity, (V}),. r
V* = cascade cavity volume per unit depth of flow
w =u—ir
X,y = coordinates parallel and perpendicular to the cascade
Vg = foil profile
Ve = cavity profile above the foil
z =X+ iy
z = number of inducer blades
o = angle of attack
B = blade angle
{ = & + in = complex variable in the transformed plane
{, = point corresponding to upstream infinity in { plane
Z, = complex conjugate of {,
p = liquid density
¢ = cavitation number, ¢ = (p, — p.)/2pV,?
ogc = choked cavitation number
o, = local cavitation number at a position, r
or = tip cavitation number at r = R
Oer = choked tip cavitation number
[ = reduced frequency

Introduction

URING the first or booster stage of flight many liquid
propellant rockets have experienced severe longitudinal
vibrations caused by a closed loop interaction between the first
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longitudinal structual mode and the dynamics of the propulsion
system. This, POGO instability,! has been the subject of
intensive research since it was first encountered. One of the
most important transients in the dynamic modelling of the pro-
pulsion system is the cavitation compliance of the turbopumps,?
Cy, defined as the rate of change of the mass of propellant
within the pump with respect to the inlet or suction pressure,
p,- When the pump is cavitating it follows that

Cy= —p 3V/dp, (1)

Thus the compliance describes the oscillatory source/sink
behavior of the pump due to fluctuating cavity volumes. Past
analyses such as those of Ghahremani® have suggested dividing
this compliance into two components corresponding to the two
major types of pump cavitation, namely blade cavitation and
backflow cavitation.

The purpose of this paper is to present some theoretical
calculations of blade cavitation compliance obtained using
cascade analysis. The usual philosophy behind such analyses
involves considering the flow through every axisymmetric
annular section of the inducer or impeller as being modelled by a
planar cascade flow such as that sketched in Fig. 1. Then the
most satisfactory starting point would be a theory for oscillatory
flow through a cascade with finite, fluctuating cavities. Un-
fortunately no such theory has, as yet, been completed. The
present paper explores the quasistatic or low frequency approach
by employing modifications of existing steady flow theory for
cavitating cascades. Comment on the validity of such an
approximation in typical turbopump operation is presented in
the comparison with experiment section.

Linearized Theory for Cavitating Cascades

Free streamline potential flow models of a cavitating cascade
have been employed extensively in the past to study blade cavita-
tion in turbomachinery. Most of the methods have been based
on a linearized approach*~” though Stripling and Acosta® also
consider the nonlinear problem. However, virtually all of these
solutions represent the blades as being infinitely thin, thus ne-
glecting the important-effects of finite leading edge curvature and
finite blade thickness. The present theory attempts to include
these effects through a modification of the simple solution of
Acosta and Hollander* for the flow through a cascade of infinitely
long foils with partial cavitities (as shown in Fig. 1 where the

Fig. 1 Physical plane (z = x + iy) of the cascade.
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symbols used below are defined). This geometry is then con-
formally mapped into the {-plane of Fig. 2 by

2n(z/h) = e~ * In(1 — {/,) + €®In(1 — {/E,) @

With the conventional linearization and infinitely thin blades,
Acosta and Hollander were then able to write down the solution
for w({) = u — iv by inspection as

w(l)/Vy = BILAL — DI — AIC - D2+ Vv, (3)

where A, B are real constants determined by the conditions at
upstream and downstream infinity. Further, from the definition
of cavitation number, it follows that V,/V, = (1 + o)'/2.

The present authors, however, considered the question of how
a finite blade thlckness might be most easily incorporated into
this solution. This was accomplished by the addition of the
simple round-nose singular component —id cosB/{ (d real) to
the expression for w({); then

wl)_ _idcosp L (ﬂ)m 12
v = +B(C_ A : + ({1 +0)? 4

The boundary conditiong which determine A, B are then 1) at
x—=-—wor{={ =ie¥ wl,=e"s0

o—ia_ _ 14 COSﬂ { ) 46— l)1 " +(1+a)'? (5
1
2atx— +ooor |t} = o0, WiV, = Vo/V, so
Vy/Vi=B— A+ (1 + o) (6)

3) a continuity condition between upstream and downstream
infinity so that

Va/Vi = cosla + B)/(1 — d)cosp ™

Thus the solution and the cavitation number can be rewritten in
terms of d, a, B, h, V;, and the parameter [.

The foil shape and cavity profile must now be determined.
The ordinate, y, of a point in the z-plane which corresponds to a
point on the real axis, # = 0, of the {-plane is given by

e = j:%dx=— llmag[fw—dc] ®)

Outside the interval 0 < & < [ this yields
yp(&)/h = n"'d cosf tan™*[¢ cosB/(1 — & sinp)] 9)

which must therefore represent the foil profile. It will be as-
sumed that the same equation also represents the foil profile
within or underneath the cavity. The foil therefore has a para-
bolic leading edge of radius d?cos*f/n and tends to finite
thickness further downstream, the ratio of the foil thickness/
normal spacing of the blades being d. Thus d may be fixed
either on the basis of the blade thickness or on the basis of leading
edge radius; however these features cannot be varied indepen-
dently in the present model.

Performing the integral in Eq. (8) within the interval 0 < & < {
demonstrates that the cavity profile is described by an additional
ordinate y(£) on top of the foil profile where

e [ = = ke

Dy
/ (e = (1 +0)'" + id cosp/L,) x
/ A ({cl/(cl I ’)}”ﬂ) (10)

{Ll — DI + {EhE — D72
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The coordinates of the foil and cavity profile are then completely
determined parametrically by Eqgs (9) and (10) along with the
real part of Eq. (2) which gives x(£)/h.

One slight inconsistency in the solution arises if y,(I), which
should be zero, is evaluated using Eq. (10). Instead it is found
that y (l)iszero only if ¥,/V, = [cos(« + f) + dcosp)/cosf. When
o and d are small this condition is virtvally identical with the
continuity condition {Eq. (7)] so the inconsistency is very small
and proved to be negligible in all the presented data; it is inherent
in the linearization effected in Eq. (8).

Numerical integrations were then performed in order to deter-
mine the volume of the cavity/unit depth of the plane, V*. The
ratio v* = V*/h? was calculated for various values of «, §, d, and
o. A dimensionless cavitation compliance, K*, is then given by
the derivative (—0v*/do). Sample values with o = 5°, f = 75°
are shown in Fig. 3; note that a) the cavitation number at which
the flow is choked increases with foil thickness ; b) the compliance
tends to infinity in this limit because the cavity becomes infinitely
long; c) the unexpected inflexion in the curves occurs at a value
of ¢ at which the closure point of the cavity is roughly opposite
the leading edge of the neighboring foil. It was discovered that
while the cavity length increases monotonically as o is reduced,
the maximum height, which also increases over most of the range,
in fact may decrease as the end of the cavity passes this location
on the foil. The net effect on the derivative of the cavity volume
will then be of the form illustrated by Fig. 3. Indeed, under some
circumstances, K* may even become negative over a short range
of 5; d) eventually as o becomes very large, K* tends to zero.

Blade Cavitation Compliance in an Inducer

Values for K* calculated in the preceding section must now
be related to the typical dimensional pump compliance which
we would expect to measure. Unfortunately C, is given dimen-
sions I in the literature; but, from a strict hydrodynamic point
of view, the correct dimensions are LT? and experimental results
presented in the past should be divided by the gravitational
acceleration, g, giving units for C, like m x sec?.. The appropri-
ate nondimensional version of Cy is therefore not the often used
Cp/A4, (A; being the inducer inlet area) but some other grouping
which is determined below.
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Fig. 3 Typical values of theoretical blade compliance for a cascade.




MARCH 1973

CAVITY

Blr)
vi(r)
Fig. 4 Inducer inlet section a(r) -~
~

with nomenclature.

- \ h. . d
hir) \ cos(B).d(r)

T

Now consider an annulus of depth dr at radius r in the inlet
section of the inducer (Fig. 4). In the following approximate
treatment, fluid velocity components normal to the axis of the
inducer will be neglected so that each annulus can be treated as
hydrodynamically separate. Since o, B, and d, will vary with r
in some manner to be prescribed in a particular problem, it
follows from the preceding section that v* can be considered as a
determinable function of both r and the local cavitation number
o, where

oL = (ps — P3PV’ (1)

But V; is a known function of r and p, and p, are constants;
indeed since the component of ¥, due to the rotation of the inducer
is usually large compared with the axial fluid velocity, the follow-
ing relations are sufficiently accurate for present purposes.

V, ~ rVy/R 12
Conventionally, o, is considered as the over-all cavitation
number for the pump.

It follows from the definition of v* that the total cavity volume

in the annulus dr is v*(c,,r) x {W(r)}?* x Z dr where h(r) = 2nr/Z.
Then the total cavity volume in the pump is

2, 12
o, ~ R0 r

V= fR (o) x {hr)}> % Z dr 13)
R"

To obtain the compliance Cy note that from Egs. (11) and (12)

0/8ps = 2/pVy? - (R*/r*)(9/0a)
It follows that

C. = _pﬂ_Sanz j‘R {_ 61}*}‘4r
i op, Vi*Z R, doy

4nHR?* ! # r
=2 . /RK (6.r/R) d (R) (14)
where K* may be calculated by the method of the previous
section knowing the local values of o, f, d, and o,. Because of
the relation [Eq. (12)], K*, which is dimensionless, can also be
regarded as a function only of o, and r/R.
For example if it transpired that K* were linear in r so that
K*(,,r/R) = r/R- K;*(oy), then

K* = (VT2/2HAi)CB
This demonstrates the correct kind of grouping to be used in

nondimensionalizing Cy. Indeed we will define a general over-
all, nondimensional compliance, Kj, for the inducer as

K. — V2 O 2

* T (@HA) [ (Ry/RY]
This choice is based on the observations of the following section
in which at least under some conditions, K* is very roughly

proportional to r so that the numerical values of K and K,*
are close to ane another.

1 r
J K*(o,,1/R) d(E) )

Ry IR
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Theoretical Calculations of Blade Compliance for
‘ Saturn Turbopumps

In this and the following sections theoretical calculations and
comparison with measured data will be made for the fuel {— F)
and oxidizer (—0) pumps of the Saturn booster engines J2, F1,
and H1. In this section the radial integration derived in the last
section will be applied to the pumps, J2 — 0 and F1 — 0. The
approximate radial variation of «, B, d for the inducers of these
pumps was taken from Vaage, Fidler, and Zehnle® and is pre-
sented in Fig. 5. This was used to calculate the dimensionless
compliance K* and the choked cavitation number, o, at six
radial stations. The o, data was converted to values of the tip
or pump cavitation number, 6.7 at which the flow at that radial
position would be choked using 6. = r?a/R%. The results are
shown in Fig. 6. It is especially notable and surprising that as
o7 is reduced the flow should first become choked fairly close
o the hub; this is primarily due to the greatly increased blade
thickness and angle of attack in this region compared with that
at the blade tip.

The practical phenomenon of turbopump breakdown is
normally associated with flow choking in the pump and thus it
is of interest to compare the theoretical data with the measured
pump cavitation numbers at which breakdown occurs. Values
of the breakdown cavitation number for J2 — 0 and F1 — 0 when
the liquid is LOX and when it is water are quoted by Ghahremani?

roroT T T T
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\ }/
20 60 05— \ —
o 18] | NN\
(deg) \\\
{deg) 04— \Y \ .

\

RADIAL POSITION, r/R

Fig. 5 Radial variation of geometrical parameters for the inducers of

J2-0 and F1-0 turbopumps.
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Fig.6 The tip cavitation number at which the flow at each radial position

becomes choked plus experimental breakdown cavitation numbers.

and are included in Fig. 6. It is noteworthy that for both pumps
the two values bracket the calculated curves.

The radial distributions of compliance, K*, are shown in Figs.
7 and 8 for various values of the tip cavitation number, .
Figure 7 shows that K* for the pump J2 — 0 is very roughly
linear in r except at high ¢, but the same cannot be said of the
pump F1 — 0. The curves reflect inflexions in the curves of K*
against o for particular r/R as was discussed in section 2. For

0.7 T T T
TIP CAVITATION
B NUMBER , o = 0.025
*
~ -
wl
Q
z
<
T
—
S ol
o
(5] -
o »
<C
o |-
s}
-~ -
(]
v -
W
-
z
9 -
w
z
w
= L
o
00l
] 0.2

RADIAL POSITION, r/R

Fig. 7 Radial distributions of compliance for various ¢, in the J2-0
turbopump.
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Fig. 8 Radial distribution of compliance for various ¢, in the F1-0
turbopump.

example at the blade tip in the case of F1 — 0, the K* actually
becomes negative in the approximate range 0.07 < o, < 0.11
(see Fig. 10). However, these inflexions occur for different ¢
at different r/R so that the radial integration to find K, shows
(see Figs. 9, 10) that the over all compliance exhibits no such
marked deviation.

The theoretical values of K are presented in Figs. 9, 10 and
are then compared with the theoretical local tip compliance
K;*. The curves demonstrate that the preliminary temptation
to equate the theoretical local tip compliance with the pump
compliance, K, can be effective in some instances but may be
misleading in others. Nevertheless, since radial distribution
data for other pumps J2 — F, F1 — F, Hl — F, and H1 — 0 was
not available, only the local tip compliance, K;* has been
calculated in these cases (using data given by Vaage, Fidler, and
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Fig. 9 Compliance for the J2-0 turbopump.
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Fig. 10 Compliance for the F1-0 turbopump.

Zehnle® and a representative value of d = 0.1) and the results
are presented in Fig. 11 for the purposes of comparison with
experiment.

Comparison with Experiment

Total cavitation compliance values for the pumps of the J2,
F1, and H1 Saturn booster engines have been derived from
experimental data by Vaage, Fidler, and Zehnle.® These are
nondimensionalized according to the relation [Eq. (15)] and
presented in Figs. 9-11. Unfortunately, these experimental
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Fig. 11 Comparison of experimental derived X, (boxes) with local tip
compliance K;* (lines) for pumps J2-F, F1-F, H1-F and H1-0.
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values are by no means direct measurements but are inferred
from rather complex dynamic models into which experimental
observations are substituted. Much more direct measurements
of compliance would clearly be preferable but have not as yet
been made ; until such time as these become available some doubt
must remain concerning the validity of these dynamic models
and the experimental values derived from them. In addition,
the scatter in these values of the compliance approaches an order
of magnitude. Hence some caution must be exercised in inter-
preting the apparent lack of agreement between the experimental
values of total compliance and the present theoretical values of
blade compliance in Figs. 9-11. Nevertheless it is worth
reviewing in some detail the limitations of the present theoretical
approach and possible reasons for the apparent disagreement
with experiment,

A) The question arises as to whether, as Ghahremani!®
maintains, the tip clearance leakage and resulting backflow
would transport cavitation bubbles to the suction side of the
pump in a sufficient number to create a backflow compliance
which by dominating the blade compliance would make up the
difference present in Figs. 9 and 10. It is to be expected that
such an effect would be more marked for pumps whose inducer
is relatively highly loaded; and indeed preliminary comparisons
for the highly loaded inducers of the Titan pumps indicates an
even greater discrepancy than found here for the Saturn pumps.
Further analytical work on backflow compliance is clearly
required to augment Ghahremanis'® rough empirical
calculations.

B) The validity of a quasistatic approach must also be ques-
tioned. The present authors consider that an appropriate
reduced frequency, w, might be

w = 2nf1c/V;

With f in the range 5 to 25 Hz, this yields values for w in the
Saturn pump experiments of between 0.02 and 0.3. It is notable
that the values for J2 — F lie at the lower end of this range; yet
J2 — F yields the largest values of compliance, K, (Fig. 11).
This suggests two alternative explanations: a) that the real,
quasistatic compliance values are above the experimental curves
in Figs. 9-11 and that K, decreases with increasing w; then the
J2 — F line would be above the others since its w is significantly
smaller or b) that the models used to determine the experimental
compliance inadvertently include inductive or resistive com-
ponents which would cause the calculated compliance to be
smaller than the real value, the reduction increasing with
increasing .

C) While comparing the values in Fig. 11 it must be borne in
mind that the deep minimums in the middle of the theoretical
curves for K;* would most likely be eliminated during radial
integration to find the theoretical Kz, as was the case for F1 — 0
and J2 — 0.

It is therefore clear that further progress in the analysis of
turbopump cavitation compliance will require a) definitive
experiments aimed at more direct measurement of compliance,
b) theoretical analysis of unsteady, oscillatory flow, and c) further
analyses of backflow and its contribution to compliance.

In summary, this paper presents a simple yet effective method
of modifying existing linearized cavitating cascade theory in
order to include the important effects of finite blade thickness
and leading edge radius. The method clearly has applicability -
in turbopump analysis aboveand beyond its particular application
in this paper.
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