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INTRODUCTION

Until very recently numerical solutions of unsteady, free surface flows in-
variably employed the Eulerian description of the motions. Perhaps the most
widely used of these has been the marker and cell (MAC) technique developed by
Fromm and Harlow (1963) and further refined by many others. In such a formu-
lation the most difficult problem arises in attempting to reconcile the initially un-
known shape and position of the free surface with a finite difference scheme and
the necessity of determining derivatives at that surface (in a similar fashion few
solutions exist with curved or irregular boundaries). But this difficulty can be
surmounted by solving in a parametric plane in which the position and shape of the
free surface are known in advance; such mappings have been successfully employed
in steady flows (eg. Brennen (1969)). Whilst there are other possibilities (see
John (1953), Brennen and Whitney (1970)) the Lagrangian description in its general
form involves just such a parametric plane. The present paper describes briefly
a numerical method for the solution of the Lagrangian equations of motion for the
inviscid, planar flow of a homogeneous or inhomogeneous fluid, taking full ad-
vantage of the flexibility of choice of the Lagrangian coordinates (a,b). More
detaijls and other results can be found in Brennen and Whitney (1970). Very
recently Hirt, Cook and Butler (1970) published details of a method which solves
the Eulerian equations of motion in a fashion similar to the MAC technique but
uses a Lagrangian tagging space,

BASIC EQUATIONS

The general inviscid dynamical equations of planar motion in Lagrangian
form are (Lamb (1932)):
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where X,Y are the cartesian coordinates of a fluid particle at time t, F,G are
the components of extraneous force acting on it, P is pressure, p the density and
(a,b), the Lagrangian coordinates, are any two quantities which serve to identify
the particle and vary continuously from one particle to the next. Subscripts a,b,t
denote differentiation. The equation of continuity is simply

p 8(X,Y)/8(a,b) = independent of time, t (2)
If F,G have a potential and p, if not uniform,is a function only of P then
from (1) .
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where U,V are the velocities X,,Y;. It is easily shown that T is the vorticity
multiplied by the Jacobian (X_ Y} - X, Y. ) and can be calculated from the initial

conditions, By introducing the vectors Z' = X +iY, W = U-iV the equations of
motion, (3), and continuity ((2) differentiated w.r.t. t) conveniently combine to
Zawb - waa = I'(a,b) . (4)

In the case of an inhomogeneous fluid with no density diffusion (i.e.,
p =p{a,b)) equation (3) must be modified and the resulting equivalent of (4) is:
t

- 1 '
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o

The integral represents the vorticity generated by the density gradients.
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NUMERICAL METHOD FOR SOLUTION

The following method was designed to numerically solve the equations (4) or
(5) of the preceding section. It was an implicit scheme with central differencing
over a series of stations in time, t, distinguished by the integer superscript p.
The values ZP*! are determined by solving for the velocities, Z, = W, at midway
stations, p+ 1, and then employing the numerical approximation:
1
Zp-'-1 =zP + T—Wp+2 (error order 3z

et (6)

where T is the time interval dividing stations p+l and p.

The method is necessarily restricted to a finite body of fluid, S; this might,
however, be part of a larger or infinite mass provided an "outer" approximate
solution of sufficient accuracy was available to provide matching conditions at the
interface. Then S need not be fixed in time. In a great many cases it is possible
and convenient to choose S to be rectangular in the (a,b) plane. This rectangle
(ABCD, figure 1) is divided into a set of elemental rectangles or 'cells' the motion
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of each of which is to be followed by determining the Z values at all the nodes.

Equation (4) or (5) is discretized by integrating over the area of a general
cell in the (a,b) plane using Taylor expansions about the center of that cell. This
produces the first and second order terms of the Cell Equation, (7). The cell
circulation I'. is calculated from the initial conditions at t =t,. Subscripts refer
to values at particular nodes surrounding the general cell as shown in figure 1.

(Za- Z)(Wy - W3) = (Z) - Zs) (W - Wy) - 21"C First Order
o {(Wig + Wo - Wy = W) (Z) = Z5) = (Wis +Wig-Ws- Wi)(Zg - Z) Second Order Term
F AWy +Wog = Wy - Wi (Zo - Z) - (We b Wis- Wy - Wo(Zy - Z,)) 1 Foduived
+i7 {(U; - Ua) (Vg - V) - (Up - UV, - V3)} + 2i(AP- A%) /7 Continuity Corrections
+ 6P+% Inhomogeneous term (see later)

=0 = Rp * iR, = R, The Cell Residual (7)

1
Since the values referred to are ZP and {W,U,V}p.‘yE the first of the continuity
corrections is required to allow for this fact (see Brennen and Whitney (1970)).
The second prevents accumulation of error over many time steps, A being the
arealof the cell, Then the equations (7), one for each cell, are to be solved for

wP'Z, 7P pei iti
s eing 1known. Bloundary conditions most often take the form of a relation
: Ptz +z :
connecting UP 2 and VP 2, Solid boundaries will be prescribed in the form

1
F(X,Y,t) = 0 which leads to the relation F(XP+7UP"2,YP+7vP*2 1) - 0. Dynamic
free s.urface conditions are simply given through the equations of motion, (1),
’I:hus if the line AB, figure | is a free surface, equation (1) leads to the following
first order numerical constant pressure condition at a node such as 0, figure 1:

+1 1 FE 1
(X=X P(UD " 2-UPT2) + (Y, - Y P(VE 2 VP2 hg) = 0 (8)

where the only extraneous force is thatldue to gravity, g, in the negative Y direc-

. . +3 +
tion. Again {8) connects Ug 2 to Vg ¢, all other quantities being known,
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Solution was effected by the iterative method of successive relaxation of the
. cells according to

AWy = -AW;= wiR(Z[-Z3) /8A ; AWz= -AW, = wiR(Z;-Z4) /8A (9

w being an overrelaxation factor, These incremental velocity changes have a
simple physical interpretation. They contain two components, one of pure stretch-
ing and one of pure rotation of the cell which respectively dissipate the continuity
and circulation components of the cell residual, R, After one sweep over all cells,
the boundary conditions were imposed and the process repeated to convergence.

If the fluid is inhomogeneous then further advantage can be taken of the flexi-
bility in the choice of (a,b) by choosing Z°(a,b) so that p is some simple analytic
function of a and b. For example, if p is constant on the free surface, AB
(figure 1) and along the bed, CD, an appropriate choice of p may be p= pCD(1+6b).

‘ 1
Then integration over the cell area yields the following expression for 6p+§ in
equation (7) corresponding to the integral term in equation (5):

1 1 1
-5 1 +5 -z .
6f2sf = 0B3F - 7 1n (1-p) Real.l\rfi{(zl-Zz-zs+z4)1°<w113I z-wire- wg)}

+{1 (71*'2)1“(1 ”)} [Real{ Z (Zyn-17Z 0" (WZN 1+le);1 WI;N 1"VON 'Z”g)}]

where- p = §Ab/(1 + 6bsy), bs, being the value of b on the side 34.of the cell and
Ab t’ﬁe b difference across each and every cell,

More detail, including error and stability analyses are contamed in Brennen
and Whitney (1970). .

SAMPLE SOLUTIONS

The feasibility and potential of the method have been tested in a variety of
examples of free surface flow, In two simple cases of wave generation. one by
vertical wall movement (wavemaker) and one by bed movement (tsunami model)
the numerical results agreed satisfactorily with Lagrangian linearized solutions
at small amplitudes and showed the divergences expected from non-linear effects
as the wave height increased (Brennen and Whitney (1970)). Solutions involving
the interactions of waves thus generated with various boundary geometries such
as a beach or a shelf have also been obtained. Only two examples can be presented
in the limited space available here. In both cases the results are non- ~dimension-

alized using the original water depth, h, as typical length and (h/g)2 as typical
time,

In the first example fluid is originally at rest in the container ABCD, figure
2, The side BC then moves inward according to Xpc =M sinz(n't/ZT) in the
interval 0 <t < T thereafter remaining at Xgc = M. This creates a wave which
travels across the container and reacts with the beach. The positions of the free
surface at a selected number of time stations are shown in figures 3 and 4; in
the former M = 0,30, T = 67, 7 = 0.571, « = 27°, in the latter the values are 0.6,
87, 0,571 and 18° respectively. The reaction with the beach is similar in both
cases. Prior to maximum run-up the motions are fairly smooth. However the
downwash and its associated fluid motions rapidly become rather violent. Posi-
tions t/T =21, 22 of figure 3 and t/T = 23, 25 of figure 4 suggest that this causes
'downwash wave breaking', By the last times shown the cells have become very
distorted and the mesh points excessively widely spaced to allow further progress.

In figure 5, the fluid is originally at rest in a container, half of which is
shown as ABCD. In this position it has a vertical, linear density gradient,
P=r, (1 + 8Y), 6 being negative, Symmetric with the center line, BC, a portion
of the bed then begins to oscillate sinusoidally in time as shown in figure 6, the
shape of the bed disturbance also being sinusoidal., With the same excitor fre-
quency {w = 0,125) solutions were obtained for various & with a view to observing
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1
internal waves when the bed Vdis#l3 frequency N, = (-g6)% exceeded the excitor
“frequency. In figures 7 and 8, the configuration of three originally horizontal
lines (at Y = 0.667, 0.883 and 1.00) at the half cycle (@), 3/4 cycle (@), full
cycle (A) and 1 1/4 cycle (4 time stations are shown for the cases N,/w= 0,8 and
1.2. The profiles in the former case differ only slightly from the homogeneous
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results with N,/w= 0, Clearly the latter case is very different, Internal wave
troughs can be observed in the 3/4 cycle profiles and peaks inthe 1 1/4 cycle
profiles, These peaks and troughs lie1 close to the line FF, drawn through the

origin at an angle of ta.n—if(No/w)Z—i] 2 to the horizontal (GG is drawn through
the end of the excitor, E). This is the slope of the characteristic predicted by
linearized theory (Wu (1966)) for a point disturbance., Positions of the cells after
one cycle are shown in figure 9 with the lines of zero vorticity (~--) and the lines
FF, GG superimposed. 1Also included is a line, HH, drawn so that its slope is

everywhere [(N/w)z- 1]%, N being the Viis3l3 frequency at each particular vertical
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elevation (N = -g8/(1 +8(¥), o).

Other types of examples which have been only briefly investigated thus far
are: the matching with a semi-infinite region in which some analytic solution is
used; the inclusion of surface tension; extension to three dimensions. It is hoped
to present such results in the near future.

'ﬂiis work was partiaily' sponsored by the National Science Foundation under
grant GK 2370 and by the Office of Naval Research. The author deeply appreciates
the considerate help given by Professor T. Y. Wu and Dr. A, K. Whitney.
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