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Abstract

Shock propagation through a bubbly liquid filled in a deformable cylindrical tube is considered. Quasi-one-
dimensional bubbly flow equations that include fluid-structure interaction are formulated, and the steady shock
relations are derived. Experiments are conducted in which afree-falling steel projectile impacts the top of an air/water
mixture in a polycarbonate tube, and stress waves in the tubematerial are measured. The experimental data indicate
that the linear theory cannot properly predict the propagation speeds of shock waves in mixture-filled tubes; the shock
theory is found to more accurately estimate the measured wave speeds.

Introduction

A fundamental understanding of fluid-structure interac-
tion (FSI) is of great importance in industrial piping sys-
tems, underwater explosions and turbomachinary (Wylie
and Streeter 1993; Cole 1948; Brennen 1994). These
flows often involve gas (or vapor) bubbles that alter
the dynamics of the fluid dramatically (Brennen 1995,
2005). Dynamic loading of fluid-filled, deformable
tubes has been extensively studied as an FSI model prob-
lem (Tijsseling 1996; Ghidaoui et al. 2005). Liquid-
filled tubes were first studied by Korteweg (1878) and
Joukowsky (1898), who introduced a linear wave speed
that accounts for the compressibility of both the liquid
and the structure. The Korteweg–Joukowskywave speed
in the case of bubbly liquids was later validated by Ko-
bori et al. (1955). However, to the authors’ knowledge,
a (nonlinear) shock theory that includes both structural
compressibility and bubbles has not been presented pre-
viously.

The goal of this paper is thus to develop the steady
shock theory for a bubbly liquid in a deformable cylin-
drical tube. We describe the bubbly flow model and for-
mulate quasi-one-dimensional equations for cylindrical
tubes, and derive the steady shock relations. Also, we

report on experiments in which a free-falling steel pro-
jectile impacts the top of a polycarbonate tube filled with
air/water mixtures with void fractions up to one percent.
Stress waves in the tube material are measured and used
to infer wave speeds. The measured wave speeds are
compared to the shock theory, and the model limitations
are discussed.

Nomenclature

Roman symbols
a Internal tube radius (m)
A Internal tube area (m2)
B Tensile strength of a liquid (Pa)
c Sonic speed (m s−1)
cJ Korteweg–Joukowsky wave speed (m s−1)
E Young’s modulus (Pa)
h Tube wall thickness (m)
K Bulk modulus (Pa)
Ms Shock Mach number (−)
n Bubble number density (m−3)
p Pressure (Pa)
R Bubble radius (m)
t Time (s)
u Velocity (m s−1)
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Us Shock speed (m s−1)
x Spatial coordinate (m)

Greek symbols
α Void fraction (−)
γ Stiffness of a liquid (−)
ǫθ Hoop strain (−)
κ Polytropic index (−)
ξ Fluid-structure interaction parameter (−)
ρ Density (kg m−3)
Υ Surface tension (N m−1)

Subscripts
g Gas property
H Quantity (far) behind a shock
l Liquid property
s Solid property
0 Initial (undisturbed) value

FSI bubbly flow model

Mixture-averaged equations. The liquid and disperse
phases are treated as a continuum in order to evaluate
the average mixture dynamics. We first review the bub-
bly flow model (Ando 2010) based on the ensemble-
averaging technique of Zhang and Prosperetti (1994).
The continuum model assumes that (a) fission and co-
alescence of the (spherical) bubbles do not occur; (b) di-
rect interactions between the bubbles are negligible; (c)
wavelengths in the mixture are large compared to the av-
erage inter-bubble distance; (d) the bubbles advect with
the ambient liquid velocity; and (e) density and velocity
fluctuations in the liquid phase due to the bubble oscil-
lations are uncorrelated. The assumptions (b) to (d) are
generally valid in the dilute limit. The model limitations
are further discussed in Ando (2010).

With these assumptions, we write the one-
dimensional mixture conservation equations with
no FSI as

∂ρ

∂t
+

∂ρu

∂x
= 0, (1)

∂ρu

∂t
+

∂

∂x

(

ρu2 + pl

)

=
∂p̃

∂x
, (2)

∂n

∂t
+

∂nu

∂x
= 0, (3)

whereρ is the mixture density,u is the mixture velocity,
pl is the averaged liquid pressure, andn is the number
of bubbles per unit volume of the mixture. For dilute
mixtures, the mixture density is well approximated by
(1 − α)ρl whereρl is the liquid density and theα is the
void fraction defined as

α =
4π

3
n

∫ ∞

0

R3f(R0)dR0. (4)

Here,R is the bubble radius,R0 is the equilibrium bub-
ble radius corresponding to the ambient pressure (pl0 =
101 kPa), andf(R0) represents the normalized bubble
size distribution. Assuming that the liquid-phase flow
is homentropic, the averaged liquid pressure will be de-
scribed by the Tait equation of state (Thompson 1972),

pl + B

pl0 + B
=

1

ργ
l0

(

ρ

1 − α

)γ

, (5)

whereρl0 is the reference liquid density atpl0, andγ
and B denote the stiffness and tensile strength of the
liquid, respectively. For water, we takeγ = 7.15 and
B = 304 MPa. The termp̃ in equation (2) repre-
sents pressure fluctuations due to the phase interactions
and vanishes in the equilibrium state. If one neglects
the phase interaction term, the ensemble-averaged mix-
ture equations are essentially the same as the volume-
averaged equations of van Wijngaarden (1972).

Quasi-one-dimensional FSI equations. In what fol-
lows, we include the effect of FSI in the mixture-
averaged equations (1) to (3). LetA be the internal
cross-sectional area of the cylindrical tube. We now
make the following simplifications: (f) the tube area
changes are small and gradual in the flow direction; (g)
the tube inertia is negligible; (h) the liquid pressure is
only balanced by the hoop stress; and (i) the viscous
shear stress on the inner wall is negligible. As a result of
these assumptions, the tube area is given quasistatically
by (Tijsseling 1996)

A = A0

[

1 +
2a0

Eh
(pl − pl0)

]

, (6)

wherea is the internal tube radius,h is the wall thick-
ness,E is Young’s modulus of the tube material, and the
subscript0 denotes the initial (undisturbed) values.

With a conventional control volume analysis, the
quasi-one-dimensional versions of equations (1) to (3)
become

∂ρA

∂t
+

∂ρuA

∂x
= 0, (7)

∂ρuA

∂t
+

∂

∂x

(

ρu2A + plA − A0a0

Eh
p2

l

)

=
∂p̃A

∂x
,

(8)

∂nA

∂t
+

∂nuA

∂x
= 0. (9)

Steady shock speeds

Sonic speeds. We first derive the sonic speeds of the
bubbly liquid with and without FSI. For convenience,
we define the bulk modulus of the mixture,K, as

1

K
=

1 − α

Kl

+
α

Kg

, (10)
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where Kl and Kg are the bulk moduli of the liquid
and gas, respectively. For Tait liquids, we haveKl =
γ(pl + B). If the effects of the vapor and the surface
tension are neglected, we may takeKg = κpl whereκ
is the polytropic index of the gas. With the mixture bulk
modulus (10), the sonic speed of the mixture (in which
the bubbles behave quasistatically) becomes

c =

√

K

ρ
=

√

√

√

√

Kl/ρ

1 + α
(

Kl

Kg
− 1
) . (11)

In the dilute limit (α → 0),

c → cl =

√

Kl

ρl

, (12)

wherecl is the sonic speed of the liquid alone.
We now include the effect of the structural compress-

ibility on the mixture sonic speed (11). The Korteweg–
Joukowsky wave speed for the mixture is evaluated as

cJ =
c√

1 + ξ
=

√

√

√

√

Kl/ρ

1 + α
(

Kl

Kg
− 1
)

+ ξl

, (13)

whereξ and ξl determine the extent of fluid-structure
coupling for the cases of the mixture and the liquid
alone, respectively:

ξ =
2Ka0

Eh
, ξl =

2Kla0

Eh
.

Note that the structural compressibility reduces the lin-
ear wave speed in the mixture (i.e.cJ < c). In the dilute
limit,

cJ → clJ =
cl√

1 + ξl

, (14)

whereclJ is the (non-dispersive) wave speed for the case
of the liquid alone.

Steady shock relations. We develop the steady shock
relations for a shock in a bubbly liquid in a deformable
cylindrical tube. In front of the shock, the bubbles are in
equilibrium at (R0, T0, pl0) whereT0 is the initial tem-
perature of the bubble contents. Far downstream of the
shock front, the bubble dynamics are finally damped out
and the bubbles are once again in equilibrium at (RH ,
T0, plH ) whereRH is the new equilibrium radius cor-
responding to shock pressureplH > pl0. The quasi-
one-dimensional equations (7) to (9) are now written in
a coordinate system (x′ = x − Ust) moving with the
shock velocityUs:

∂

∂x′
(ρu′A) = 0, (15)

∂

∂x′

(

ρu′2A + g(pl) − p̃A
)

= 0, (16)

∂

∂x′
(nu′A) = 0, (17)

where

g(pl) = A0

(

1 − 2pl0a0

Eh

)

pl +
A0a0

Eh
p2

l . (18)

Integrating equations (15) to (17) from upstream (de-
noted by subscript0) to far downstream (denoted by sub-
scriptH), it transpires that, independent of the detailed
shock structure,

−ρHu′
HAH = ρ0UsA0, (19)

ρHu′2
HAH + g(plH) = ρ0U

2
s A0 + g(pl0), (20)

−nHu′
HAH = n0UsA0, (21)

whereρ0 = (1 − α0)ρl0 andρH = (1 − αH)ρlH .
The shock pressure,plH , may be written as

plH =

(

pl0 − pv +
2Υ

R0

)(

RH

R0

)−3κ

+ pv − 2Υ

RH

,

(22)
whereκ is set to unity because the bubble temperature
finally returns toT0. If vapor pressurepv and surface
tensionΥ are neglected, equation (22) reduces to

plH = pl0

(

RH

R0

)−3

. (23)

It follows from equations (19) and (21) that

nH = n0

[

(1 − α0)

(

pl0 + B

plH + B

)
1

γ

+
4π

3
n0

∫ ∞

0

R3
Hf(R0)dR0

]−1

. (24)

With the aid of equations (22) and (24), the void fraction
αH corresponding toplH is computed by equation (4).
With the neglect of vapor pressure and surface tension,
equation (24) reduces to

nH = n0

[

(1 − α0)

(

pl0 + B

plH + B

)
1

γ

+ α0

pl0

plH

]−1

,

(25)
and the void fraction atplH is

αH =
4π

3
nH

∫ ∞

0

R3
Hf(R0)dR0

=

[

1 +
1 − α0

α0

plH

pl0

(

pl0 + B

plH + B

)
1

γ

]−1

. (26)

From equations (19) and (20), the steady shock speed
becomes

Us =

√

√

√

√

g(plH) − g(pl0)

ρ0A0

(

1 − ρ0A0

ρHAH

) , (27)
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and the induced velocity far downstream of the shock
front is then given by

uH = u′
H + Us =

(

1 − ρ0A0

ρHAH

)

Us. (28)

It is readily shown that the shock speed (27) approaches
the Joukowsky wave speed (13) if the shock strength
is infinitesimal. Consequently, the shock Mach number
may be defined as

Ms =
Us

cJ

. (29)

Gas-phase nonlinearity. We document the steady
shock relations for the case of bubbly water withξl =
6.14 where the value ofξl is computed based on the
properties of the polycarbonate tube that is used in the
experiments. For simplicity, we ignore the effects of va-
por pressure and surface tension. Figure 1 demonstrates
the effects of the initial void fraction and the shock pres-
sure on the shock speed and Mach number. Note that
plH = pl0 indicates the linear wave cases, in which the
shock speeds reduce to the sonic speeds. It follows from
figure 1 (top) that the reduction in the shock speed due
to structural compressibility is minimized for finite val-
ues ofα0 since the gas-phase compressibility dominates
over the compressibility of the water and structure. It
is also seen that the shock speeds are greatly reduced by
even a tiny void fraction. Moreover, unless the void frac-
tion is extremely small, the finite shock strength yields a
significant deviation from the linear wave speed due to
the nonlinearity associated with the gas-phase compress-
ibility. As a result, the shock Mach number increases as
the void fraction increases as seen in figure 1 (bottom).
We note that the shock Mach numbers are only slightly
greater than1 for the case of water alone (α0 = 0) since
the pressure perturbations up to several hundred atmo-
spheres remain very weak (Thompson 1972).

To quantify the effect of the gas-phase nonlinearity,
we further examine the steady shock relations. For the
case of infinitesimal shock strength (∆pl = plH−pl0 ≪
pl0), the shock speed (27) can be approximated by

Us ≈ cJ

(

1 +
∆pl

K̂

)

, (30)

whereK̂ is defined as

K̂ = cJ

(

dUs

d∆pl

∣

∣

∣

∣

∆pl=0+

)−1

. (31)

In the limits of α0 → 0 and ξ → 0, we find K̂ →
4Kl/(γ + 1); K̂ may thus be called themodifiedbulk
modulus. It follows from equation (30) that the linear
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Figure 1: Steady shock speeds (top) and shock Mach
numbers (bottom) in bubbly water. The curves are pa-
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theory (where the relationUs = cJ holds) is effectively
valid under the condition̂K ≫ ∆pl. Hence, the modi-
fied bulk modulus,K̂, of the mixture can be regarded as
a measure of the nonlinearity in the sense that larger val-
ues ofK̂ make the linear theory applicable to a broader
range of the shock pressures. The modified bulk moduli
of bubbly water are plotted as a function ofα0 in fig-
ure 2. It turns out that even a small void fraction yields
a several-orders-of-magnitude reduction in the value of
K̂. This implies that the applicability of the linear theory
is limited in the case of bubbly mixtures.

Waterhammer experiments

Experimental setup. Experiments were conducted in
order to examine the steady shock theory. The experi-
mental apparatus depicted in figure 3 is similar to that
of Inaba and Shepherd (2010), and consists of a verti-
cal polycarbonate tube (PCT0021.25, San Diego Plas-
tics; E = 2.13 GPa,ρs = 1200 kg m−3, a0 = 3h =
19.1 mm) filled with an air/water mixture. A barrel is
mounted above the tube and a1.50-kg cylindrical steel
projectile falls under gravity,g. The free-falling pro-
jectile (with drop heightHp = 2 m or 0.5 m) im-
pacts a0.42-kg polycarbonate buffer inserted into the
top of the tube rather than directly hitting the bubbly
liquid surface. Stress waves in the tube are measured
using six strain gauges (SR-4, Vishay; denoted by g1
to g6 in figure 3) placed at intervals of100 mm along
the tube and oriented in the hoop direction; the sig-
nals are processed using a signal conditioning ampli-
fier (2300 System, Vishay), and are stored in a digital
recorder (NI 6133, National Instruments; sampling rate
2.5 MHz).

Method of bubble generation. The bubbles are cre-
ated using a bubble generator consisting of an aluminum
plate and capillary tubes (TSP020150, Polymicro Tech-
nologies; inner diameter20 µm); the intent is to create
small bubbles and as homogeneous a mixture as possi-
ble. Up to an initial void fraction ofα0 = 0.0056, 91
capillary tubes are used; for higher void fractions, the
number increases to 217. The capillary tubes are located
in the drilled holes of the plate and are fastened with
epoxy. One side of the plate is tightly covered with a
chamber. The chamber is pressurized, and the air is in-
jected, due to the pressure head, into the fluid column.
The injected bubbles rise upward to the column surface,
and eventually escape from an air outlet in the buffer.

Distilled water is used for the case of no air injection;
otherwise, tap water is used. Note that the number of
tiny bubbles present in tap water is negligible compared
to that of the injected air. The water temperature is kept
23 ◦C so that the vapor pressure is much smaller than
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Strain 
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Polycarbon. 

tube 

Air 

outlet 

Polycarbon. 

buffer 
Barrel 

Steel 
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Figure 3: Schematic of the experimental setup.

α0 = 0.0013 (before) α0 = 0.0013 (after)

α0 = 0.0081 (after)α0 = 0.0081 (before)

5 mm 

Figure 4: Images of the injected bubbles before and af-
ter the primary wave passage.
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one atmosphere.
Images of the bubbles are captured by a high-speed

video camera (Phantom v7.3, Vision Research) with
recording rate20000 frames per second. A white LED
lamp (Model 900445, Visual Instrumentation Corpora-
tion) is used for backlighting. A water jacket is attached
outside the tube to minimize image distortion. Images
of the initial bubbles and the collapsing bubbles due to
the shock loading withHp = 2 m are shown in figure 4.
The initial bubble size is found to be broadly distributed
(i.e. the mixture is polydisperse), and the mixture is
nearly homogeneous. Moreover, for the higher void
fraction case, we observe fission of the larger bubbles.
Possible mechanisms for the fission are a re-entrant jet
and a Rayleigh-Taylor-type instability (Brennen 2002;
Johnsen and Colonius 2009).

The initial void fraction (up to one percent) is esti-
mated based on the difference in the column height with
and without the air injection. Uncertainty in this mea-
surement is±0.1 mm except for the case of the high-
est void fraction,α0 = 0.01, in which the column sur-
face waves increase the uncertainty to±0.5 mm. In the
waterhammer experiments, the following void fractions
were tested:α0 = 0 (no air injection),0.0013± 0.0001,
0.0024±0.0001,0.0056±0.0001,0.0081±0.0001 and
0.010 ± 0.001.

Buffer dynamics. In the present experiments, the liquid
pressure is unknown. Hence, the buffer velocityẋb (or
the piston velocityuH in the shock theory) is critical to
estimate to validate the shock theory. Three experimen-
tal runs were conducted for each case ofHp andα0. For
every run, the buffer positionxb was recorded using the
high-speed camera with recording rate of32000 frames
per second, and the position history was extracted from
the movies with MATLAB image processing.

The buffer dynamics may be described by Newton’s
second law (Dashpande et al. 2006; Shepherd and Inaba
2009). For simplicity, the buffer is treated as a rigid body
and wall friction is neglected. The equation of motion of
the buffer is then given by

Mbẍb = −∆plA0, (32)

whereMb is the mass of the buffer and the right-hand
side represents the pressure force acting on the bottom of
the buffer. In the linear case, this pressure force may be
approximated by∆plA0 = ρ0cJ ẋbA0 as can be derived
from equations (19) and (20). Integrating equation (32)
once, we get a solution of the form,

ẋb = ẋb0 exp

(

− t

τ

)

, (33)

whereẋb0 is the initial buffer velocity andτ is the relax-
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linear theory

Figure 5: The initial buffer velocity (top) and the relax-
ation time (bottom).

ation time for the exponential decay:

τ =
Mb

ρ0cJA0

. (34)

Thus, the evolution of the buffer position is expressed by
an exponential function.

The measured buffer positions were fitted to an expo-
nential by the least-squares method. The resulting buffer
velocity ẋb0 and relaxation timeτ are presented in fig-
ure 5. We find that the buffer velocitẏxb0 is only weakly
dependent on the void fraction and therefore seems to
depend only on the drop heightHp; it is 7.9± 0.5 m s−1

and2.9 ± 0.2 m s−1 for Hp = 2 m and0.5 m, respec-
tively, where the error bounds represent the standard de-
viation of all the runs. It follows from figure 5 (bottom)
that the linear theory (34) is in qualitative agreement
with the experimental data and is particularly good for
the case of no air injection. Moreover, the relaxation
time decreases as the initial buffer velocity increases.
Since a stronger shock leads to a more violent bubble
collapse, the buffer momentum may decay more rapidly
due to bubble-dynamic energy dissipation. Note that if
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Figure 6: Evolution of hoop strains (top) and the loca-
tions of the primary wave fronts (bottom) forHp = 2 m
andα0 = 0. The dotted lines (top) denote the threshold
values used to determine the wave fronts.

the relaxation time is longer than the time required for
the shock to reach the last strain gauge (g6), the piston
velocity will not change within the measurement period.

Primary wave speeds. We examine the shock (or pri-
mary) waves in the experiments that are characterized by
the drop heightHp and the initial void fractionα0. To
confirm repeatability in the measurements, three experi-
mental runs were conducted for each case ofHp andα0.
In what follows, we choose some particular cases, and
investigate the wave structures and the wave speeds.

The evolution of the hoop strains for the case of
Hp = 2 m andα0 = 0 is shown in figure 6 (top). Every
strain gauge records the primary wave following a small-
amplitude precursor that propagates essentially with the
sonic speed of the tube material (Skalak 1956). It also
records a wave reflected from the tube bottom, and sig-
nificant wave dispersion. Moreover, the primary wave
noticeably decays within the measurement period; thus
the decay time is comparable to the relaxation time of
the piston velocity computed in figure 5. Consequently,
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Figure 7: As figure 6, but withHp = 2 m andα0 =
0.0081.

the unsteadiness of the buffer dynamics cannot be ig-
nored.

In figure 6 (bottom), the primary wave speeds are
computed. For comparative purposes, three threshold
strain values (30, 40 and 50 percent of the maximum
strain measured at the strain gauge g1 before the re-
flected wave is observed) are used to determine the posi-
tions of the wave fronts. Then, the wave speed was ob-
tained from the slope of a linear least-squares fit to the
wave front positions; the standard deviation of the slope
was also computed. The computed speed (521 m s−1) is
in reasonable agreement with the Korteweg–Joukowsky
wave speed (clJ = 553 m s−1), and the the dispersion
due to the thresholding is very small. This suggests that
the linear theory is effectively valid for the case of pure
water, even though the wave is dispersive and unsteady.

The bubbly water case (Hp = 2 m, α0 = 0.0081)
is presented in figure 7. Now that the bubble dynamics
play a role, the structural response manifests more com-
plex structures than in the pure liquid case. The compar-
ison of the figures 6 and 7 (top) reveals that the bubbles
reduce the tube deformation. This is due to the fact that
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Figure 8: As figure 6, but withHp = 0.5 m andα0 =
0.0081.
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Figure 9: Comparison of the theoretical and measured
wave speeds.

some fraction of the potential energy of the projectile is
absorbed as bubble-dynamic work. Moreover, the wave
speed is reduced by the bubbles. To further see the ef-
fect of the bubbles, the case of the lower drop height
(Hp = 0.5 m, α0 = 0.0081) is presented in figure 8.
In this case, the wave propagation is evidently unsteady.
The unsteadiness may also result from the fact that the
relaxation time for the piston velocity and the measure-
ment time are comparable. As a result of the unsteadi-
ness, the threshold value becomes more critical, and the
standard deviation in the computed wave speed becomes
larger. We should note that the lower piston velocity re-
duces the wave speed. This is the effect of the gas-phase
nonlinearity as pointed out in figure 4.

We now compare the steady shock theory to the ex-
perimental data. Despite the unsteady buffer dynamics,
we use the initial buffer velocitẏxb0 = 7.9 m s−1 (or
2.9 m s−1) for Hp = 2 m (or 0.5 m) to complete the
steady shock relations. Since vapor pressure at the room
temperature is negligible compared to the atmospheric
pressure and surface tension may not be very impor-
tant for the bubble sizes in the experiments, we neglect
the vapor pressure and the surface tension (i.e.pv = 0,
Υ = 0) in computing the shock relations. Figure 9 com-
pares the measured wave speeds to the theory including
both the sonic and shock speeds. The error bars are small
(as seen in figures 6 to 8) and omitted for clarity. The
measured speeds for the cases with air injection clearly
show differences from the sonic speeds, and those for
Hp = 2 m are larger than those forHp = 0.5 m. These
indicate the effect of the gas-phase nonlinearity on the
wave speeds. The shock theory with FSI is found to
more accurately capture the trend with increasingα0

than the shock theory without FSI and the linear the-
ory. It is therefore concluded that both FSI and the non-
linear effect need to be considered to accurately esti-
mate the propagation speeds of finite-amplitude waves
in mixture-filled pipes. However, the agreement be-
tween the present theory and the experiments is quali-
tative rather than quantitative. The model limitations are
discussed below to try to account for the discrepancy be-
tween the present theory and the experiments.

Model limitations. One of the most obvious limita-
tions in the theory is related to the assumption of steady
wave propagation. The strain evolution in figures 6 to
8 (top) demonstrates unsteady wave propagation in the
sense that the piston velocity decays during the measure-
ment period. Hence, the unsteadiness will deteriorate
the model validity. If one quantifies the decay rate in the
relaxation process, both the structural and the bubble-
dynamic damping need to be included in the thoery. The
viscoelasticity of the polycarbonate may affect the wave
speed and damping (Meißner and Frank 1977; Gally
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et al. 1979; Suo and Wylie 1990; Covas et al. 2004). The
unsteady wall friction may also have some impact on the
relaxation (Bergant 2001). If bubble fission occurs after
passage of the shock, the fission damping needs to be in-
cluded in spherical-bubble-dynamic modeling (Brennen
2002). Moreover, because polydispersity results in dif-
ferent frequency responses for different-sized bubbles,
phase cancellations cause an apparent damping of the
wave propagation (Smereka 2002; Colonius et al. 2008;
Ando et al. 2009; Ando 2010).

Other limitations are the neglect of the tube inertia and
the quasi-one-dimensional assumption. Since the waves
are dispersive (due to the tube inertia) and of finite wave
length, the wave speed as a function of the wave length
cannot be accurately predicted by the current model. To
quantify the effect of the tube inertia, a four-equation
model describing both the fluid and the tube dynamics
could be calculated (Skalak 1956; Tijsseling 1996).

Conclusions

A quasi-one-dimensional conservation law governing
dilute bubbly flows in a deformable cylindrical tube is
formulated, and the steady shock relations are derived.
The modified bulk modulus of the mixture is introduced,
and the nonlinear effect due to the gas-phase compress-
ibility is shown to be important for shock propagation.
The present FSI shock theory is found to be in better
agreement with the measured wave speeds than the lin-
ear theory or the shock theory without FSI. This suggests
that both FSI and the gas-phase nonlinearity need to be
included to accurately predict the propagation speeds of
finite-amplitude waves in mixture-filled pipes.
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