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ABSTRACT

The effect of distributed bubble size on shock propagation
in homogeneous bubbly liquids is computed using a contin-
uum two-phase model. An ensemble-averaging technique-s em
ployed to derive the statistically averaged equations dirta-
volume method is used to solve the model equations. The bubbl
dynamics are incorporated using a Rayleigh-Plesset-tgpa-e
tion which includes the effects of heat transfer, liquidcaisity
and compressibility. For the case of monodisperse bubibliss,
known that relaxation oscillations occur behind the shaok &
the bubble dynamics. The present computations for the dase o
polydisperse bubbles show that bubble size distributiead to
additional damping of the shock dynamics. If the distribatis
sufficiently broad, the statistical effect dominates oher phys-
ical damping associated with the single bubble dynamicss Th
smooths out the oscillatory shock structure.

INTRODUCTION

A fundamental understanding of the dynamics of bubbly
flows is of great importance in engineering (e.g. underwater
explosions, turbomachinery, hydraulic equipment). Shdgk
namics in bubbly flows have been extensively studied for many
years [1-8]. Most of the previous studies have focused ooksho
propagation in monodisperse bubbly liquids (i.e. all thblidas
initially have the same size.). However, in flows of pradtioa
terest, the nuclei size is broadly distributed; thus the diistri-
butions need to be included for more realistic modeling. W&att
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the liquid and disperse phases as a continuum mixture amd sol
statistically averaged equations to determine the shouktstre.

First, we present the model assumptions, closure condition
and bubble-dynamic modeling. Then, we solve one-dimeiasion
shock propagation in dilute bubbly liquids with bubble sitis-
tributions and describe the effects of the size distrimgiapon
the shock dynamics.

METHOD AND RESULTS

We use an ensemble-averaging technique [9,10] to derive the
averaged governing equations. This model assumes thdtga) t
bubbles are spherical, (b) mutual interactions among thbles
are negligible, (c) wavelengths in the mixture are large jgared
to the bubble radius and (d) the bubbles advect with the amhbie
liquid velocity (no slip). Assumption (a) implies that fiegsiand
coalescence are not permitted, so that the bubble numbenis ¢
served in time. Assumptions (b) to (d) are valid in the dilurtet
(low void fraction,a — 0), which is used for the model closure.
Under these assumptions, we write the conservation eqss®
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wherepm is mixture density & (1—a)p;, pi is liquid density), 2.2
Unm is velocity, py is liquid pressure described by the Tait equa- 5
tion of staten is bubble number per unit volume of the mixture,
and p represents pressure fluctuations due to the phase interac- - 1.8
tions [11]: \; 1.6 0=0
1.4 =03
« Pow R3|'?2> 1.2 0=05
p=a({p——= —Pm—= |- (4) 6=07
< R3 R3 1 ; ‘
0 0.25 0.5 0.75

z [em)]

Here,R is bubble radius angy,,, is bubble wall pressure. The
bars denote moments with respect to the (normalized) bisitee Figure 1. Liquid pressure distribution at t = 26.9 s for shock propaga-
distributions,f (Ry), whereRy is equilibrium radius. tion in an air/water mixture of R[)ef =10pumand o = 0.5%at STP.
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