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ABSTRACT
The effect of distributed bubble size on shock propagation

in homogeneous bubbly liquids is computed using a contin-
uum two-phase model. An ensemble-averaging technique is em-
ployed to derive the statistically averaged equations and afinite-
volume method is used to solve the model equations. The bubble
dynamics are incorporated using a Rayleigh-Plesset-type equa-
tion which includes the effects of heat transfer, liquid viscosity
and compressibility. For the case of monodisperse bubbles,it is
known that relaxation oscillations occur behind the shock due to
the bubble dynamics. The present computations for the case of
polydisperse bubbles show that bubble size distributions lead to
additional damping of the shock dynamics. If the distribution is
sufficiently broad, the statistical effect dominates over the phys-
ical damping associated with the single bubble dynamics. This
smooths out the oscillatory shock structure.

INTRODUCTION
A fundamental understanding of the dynamics of bubbly

flows is of great importance in engineering (e.g. underwater
explosions, turbomachinery, hydraulic equipment). Shockdy-
namics in bubbly flows have been extensively studied for many
years [1–8]. Most of the previous studies have focused on shock
propagation in monodisperse bubbly liquids (i.e. all the bubbles
initially have the same size.). However, in flows of practical in-
terest, the nuclei size is broadly distributed; thus the size distri-
butions need to be included for more realistic modeling. We treat
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the liquid and disperse phases as a continuum mixture and solve
statistically averaged equations to determine the shock structure.

First, we present the model assumptions, closure conditions
and bubble-dynamic modeling. Then, we solve one-dimensional
shock propagation in dilute bubbly liquids with bubble sizedis-
tributions and describe the effects of the size distributions upon
the shock dynamics.

METHOD AND RESULTS
We use an ensemble-averaging technique [9,10] to derive the

averaged governing equations. This model assumes that (a) the
bubbles are spherical, (b) mutual interactions among the bubbles
are negligible, (c) wavelengths in the mixture are large compared
to the bubble radius and (d) the bubbles advect with the ambient
liquid velocity (no slip). Assumption (a) implies that fission and
coalescence are not permitted, so that the bubble number is con-
served in time. Assumptions (b) to (d) are valid in the dilutelimit
(low void fraction,α → 0), which is used for the model closure.
Under these assumptions, we write the conservation equations as
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whereρm is mixture density (≈ (1−α)ρl , ρl is liquid density),
um is velocity, pl is liquid pressure described by the Tait equa-
tion of state,n is bubble number per unit volume of the mixture,
and p̃ represents pressure fluctuations due to the phase interac-
tions [11]:
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(
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R3
−ρm

R3Ṙ2

R3

)

. (4)

Here,R is bubble radius andpbw is bubble wall pressure. The
bars denote moments with respect to the (normalized) bubblesize
distributions,f (R0), whereR0 is equilibrium radius.

The Gilmore equation [12] is used to evaluate the spherical
bubble dynamics. Heat conduction and vapor flux at the bub-
ble wall are estimated using the reduced-order model of Preston
et. al. [13]. The bubble-dynamic equations can be written in a
conservation form using equation (3):

∂nϕ
∂t

+
∂nϕum

∂x
= nϕ̇, (5)

whereϕ represents bubble-dynamic variables (e.g. bubble ra-
dius, bubble wall velocity).

The system of equations thus consists of the ensemble-
avereaged equations (1) to (3) and the bubble-dynamic equa-
tions (5). A third-order TVD Runge-Kutta scheme [14] marches
the system forward in time. The spatial descretization is handled
by a fifth-order finite-volume WENO scheme [15] coupled with
an HLLC approximate Riemann solver [16]. Linear wave propa-
gation is computed using this method and the dispersion relation
agrees well with the theory of Commanderet. al.[17].

Figure 1 shows liquid pressure distribution for steady shock
propagation in an air/water mixture. The initial bubble size is
assumed to be lognormally distributed aroundRref

0 = 10µm with
standard deviationσ. We examine the effects of bubble size dis-
tributions by changing the value ofσ. Note that other distribution
functions can be used in this model. Att = 0, Hugoniot relations
for a steady shock corresponding topl/pl0 = 2 are imposed by a
diaphragm atx= 0. For the monodisperse case (σ = 0), the relax-
ation oscillations appear behind the leading shock as expected.
It can been seen that in the polydisperse case, the bubble size
distributions damp the relaxation oscillations. If the distribution
is sufficiently broad (σ = 0.7), the oscillatory structure is com-
pletely smoothed out. This new “apparent damping” mechanism
results from phase cancellations amongst the different-sized bub-
bles [18]. We quantify the “statistical damping” effect by com-
paring to the single-bubble-dynamic damping and show that the
bubble statistics play a major role in the shock dynamics forthe
cases with a broad size distribution. Additional parameterstudies
will include shock strength and initial void fraction.
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Figure 1. Liquid pressure distribution at t = 26.9µs for shock propaga-

tion in an air/water mixture of Rref
0 = 10µm and α = 0.5%at STP.
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