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Hydrodynamic interactions that ococur between a centrifugal pump impeller
and a volute are experimentally and theoretically investigated. The theoretical
analysis considers the inability of the blades to perfectly guide the flow
through the impeller, and alsc includes a quasi—-one dimensional trsatment of the
flow in the velute., The disturbance at the impeller discharge and the resulting
forces are determined by the theoretical model. The model 18 then extended to
cbtain the hydrodynamic force perturbations that are caused by the impeller
whirling eccentrically in the wvolute. Under many operating condiltions, these
force perturbations were found to be destablizing. Comparisons are made between
the theoretical model and the experimental measurements of pressure distribu~
tions and radial forces on the impeller. The theoretical model yields fairly
agcurate predictions of ¢the radial forces caused by the flow through the
impeller. However, it was found that the pressure acting on the front shroud of
the impeller has a substantial effect on the destablizing hydrodynamic forces.

NOMENCLATURE
b width of impeller discharge
h total head (h" =2h/p0”R2)

3 J1

k impeller phase coefficient = cos(tan y 1n(R})) + j sin(tan y 1n(R))
r,e polar coordinate system

s length in tangential direction

t tine

\d relative velocity in impeller

W width in volute

X,¥,2 rectangular coordinate system

* Now at Sandie National Laboratories, Albuguerque, NM 87185
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moments of volute cross—sectional area (defined in Equations 1l4a-e)

A=xy,Jj=%y, componem't:s2 gf‘ generalized hydrodynamic force

matrix [A] (Aij = Aij/pnbn Rz)
(ig%x,y, 3= x.yg components of damping force matrix [C]
(Cij = Cij/pnbﬂRz)

2

?
pressure coefficient at volute inlet = 2(PV(RZ,9') - hl)/pszsz

»
force acting on impeller (F =F/pﬂbﬂzRg)

integration constant in Bernoulli's equation

Y, J=x,2v) coefficients of the jerk force matrix [J]
(J, =Jij/pﬂbﬂz/9)

p—
.—l-
"
-

lex,y, J= x,éf) components of stiffness force matrix [K]
(K, =K. ./ prb®°R%)

ij = tig'P 2
(1gx,y, 3= x,g) components of inertia forece  matrix [M]
(l\‘I:LJ =M, ,/pnbR,

pressure in impeller (PI =2Pi/ pang)

pressure in volute (P; =2F / pﬂZRZ)

impeller radius ( with no subscript, R= R2/ Ry)

radius of pressure tap ring

velocity in volute ( with no subscript, V"= =V9,/QR2)
width of impeller at R, (W, =W,/b)

perturbation function for impeller flow

angular location of the impeller center (= wt = constant)
angle of flow path through impeller

distance between impeller and volute centers (e* =g/ Hz)

fluid density

2

flow coefficient = flowrate through pump/ :anSZRZ

2

total head rise coefficient = (ha - hy)/p anz

orbit speed of impeller center (whirl speed)
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Qo rotational speed of impeller (shaft speed)

Subseripts:

c,8 co2 wt and sin wt components (non-dimensionalized)

é downstream of pump

exp experimental resulb

m force component due to momentum exchange

p force component due to pressure

r,o radial or angular component

Xy components in reetangular directions (real = x and imaginary = y)
1,2 impeller inlet and discharge

Superscripts:

4 measurement made in volute reference frame

" measurement made from frame fixed to rotating impeller
* non—-dimensionalized quantity

Special Notation:

v underbar denotes vector quantity

v overbar denotes centered impeiler value (non-dimensionalized)
[4] square brackets denote a matrix quantity

é dot represents a time derivative

INTRODUCTION

Several sources, both dynamic and hydrodynamic have been identified as
contributing to the forces on centrifugal pump impellers., Figure 1 shows a typ—
ical configuration for a centrifugal pump with a few of the key components
identified. The primary emphasis of this study was to investigate the forces
that result from the hydrodynamic interaction between the impeller and the
volute. The usual design criterion for a volute is that it should provide
minimum interference to the symmetric impeller discharge flow that would occur
if no volute was present. However, the discharge flow pattern will depend upen
the overall flowrate through the impeller. Once the flowrate changes, the
discharge conditions around the impeller become asymmetric for any given volute.
Even at the volute desigh flowrate, the discharge conditions could still become
asymmetric if the impeller is displaced from the "design"” center of the volute
by shaft deflection, bearing wear, etc¢.. In either case, the end result of the
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asymmetric discharge conditions is that there will be a net radial force on the
impeller (see Figure 1),

It is customary in rotordyhamic analyses to linearize the radial forces

acting on the rotor in terms of a steady portion acting on the centered
impeller, and a time dependent part due to the impeller whirling in a small
circular orbit. Referring to Figure'l, these terms may be expressed as

* —_ * A* * t
Fy Fy Bex Xy e cosu
= + (1)
» - x * *
F F A e sin wt
¥ ¥ Aoy vy

where F._ and F_ result from the interaction of the centered impeller with the
volute, and th matrix [A} relates the perturbed force to the eccentric position
of the impeller. The [A] matrix will be a function of the whirl speed, w, and is
often expressed as a gquadratie in o 30 that the system resembles a simple stiff-
ness, damping, and mass model.

The steady or mean forces, FY and F_, have been examined in several studies
and an understanding of them has been grgatly enhanced through papers by Iversen
et al. [9], Csanady [7], and Agostinelli et al. [2] to name a few. All of these
authors have shown that there is a particular flowrate where forces on the
impeller will be minimized for a given volute. Previous experimental [5,10] and
theoretical [6]1 investigations have also shown that the components of [A] are
such that a whirling motion of the impeller would be encouraged rather than
dissipated by the hydrodynamic effects. This has created concern that the rotor
assembly may whirl at one of its coritical speeds even though the shaft may be
rotating well above this speed. There also existz the problem of the alternating
flexural stress that would be developed if the impeller whirls at a
subsynchronous speed (see Ehrich and Childs [8]).

In the current study, a theoretical model of the volute and impeller flows
will be developed and compared to experimental results. Previously, a potential
flow model for the steady forces on a centered impeller was given by [7]1 and
this work was later extended by [6] to include the effects of the impeller whir-
ling within the volute, Although the potential flow model presents a more clas-
sical approach of solving for Lhe forces, pProblems arize in relating the two
dimensional theoretical volute profile to the three dimensional geometry of =a
real volute. For this reason, a bulk flow description of the flow through the
volute is chosen for the current work. A similiar treatment of the volute flow
was presented by [9]1, but the influence of this flow on the impeller discharge
conditions was largly ignored and only the non-whirling impeller was considered.
The impeller/volute interaction will be included along with the effects of
impeller whirl in the present analysis,

THEORETICAL ANALYSIS

In developing the theoretical model, the problem is broken into dits twe
natiwral parts; models are constructed for the flow through the impeller and in
the volute. The equations that are generated in these +two parts are then
combined by matching the pressures and velocities at the impeller discharge to
those at the volute inlet. A full development of this model <¢an be found in

470



reference [1] and only brief summary will be presented here.
Governing Equations for the Impeller

Figure 2 illustrates the geometries used in developing the impeller model.
To relate the pressure between the inlet and discharge of the impeller, a
simplified unsteady form of Berncoulli's Equation is written as
2 2.1,2
P—i+-v——a i +_f 8y 45"~ mzej. cos(ot - Qt - 6'')dr"’
P2 2 5" at g
-o“e [ sin(et-Qt-6'")r"de"” =F(t) (2)
sll

Here the flow is assumed to be two dimensional and the impeller whirl speed
constant.

To simplify the model, certain assumptions must be made about the veloeity
field within the impeller. Specifically, the flow in the impeller is assumed to
follow a spiral path with inclination angle, v, which is fixed relative to the
impeller for a given flowrate and head rise so that

e; =0 +tany ln(r'/R,) (3)

"
Here (r'',0') and (Rz,e ) are the coordinates of a general point on a stream—
line within the impefier and at the position of discharge respectively. The
flow path angle, vy , of the streamlines 1is permitted to deviate from the
impeller blade angle. It is determined in a manner described in Section 2(c¢) so
that the theoretical and experimental head/flowrate characteristics coincide.
To account for the asymmetry caused by the volute, a circumferential perturba-
tion is superimposed on this impeller flow. This flow perturbation is assumed
to be stationary in the volute reference frame., Together, these observations
require that

v=(v2,, +v*

e 9”)% =dsaR§ﬁ(e”,r",ﬂt,mt,e)sec v/r" (4)

The perturbation function g, must from continuity considerations be constant

along a streamline, For whirl motions with small eccentric orbits, p may be
linearized as

po’,r'" . 0t,ut,e) =l—3-(92) ve {ﬁe(ez)eos ot + B _(8,)sin ot} (5)

Equations (4) and (5) can now be substituted into Equation (2). The pressure at
the impeller discharge is then given as a function of B and the inlet pressure.
The pressure is not known at the inlet of the impeller, but it can be written in
terms of the inlet total hsead which is assumed to be circumferentially constant.
If there is no pre—-swirl at the inlet, this will give the inlet pressure as
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* Znt B 5 *25ince
Pi(Rl,el) =h, - dRB(OZ) (6 RB(O,) +2¢ g S+n(8; —wt)}

- 20"6% B B(6,) (B (8,) cos ut + B_(8,)5in ut] (6)

for small eccentric displacemenjjs. By utilizing Equations (4) through (6) and
neglecting terms of order s and higher, Bernoulli’s Equation can now be
separated into harmonics with steady, s cos wt, and e sih ot dependence as

2 dp - =
d sec 7[21n(R)a-a—+dB]+D -1=0 (7a)
) p
dp ab
2 —c rY W _ P
2d sec” vI1n(R) T +d BB, * g ln(R)ﬂS] + Dp’:= sin @, dez
+2 % [dRP sin(8, + tan y 1n(R)) - cos(8, + tan y 1n(R) ) /R]
m2
-2~ [c0s 8, - ¢0s(8, + tan y 1n(R))/R1/tan” v = 0 (7b)
Y]
ap _ ap
2 —= [} —P
2d sec ﬁln(R)dez +d Bﬂs - a 1n(R)ﬂc] + Dps +cos 0, dez
-2 3 [ R P cos(8, + tany 1n(R)) + sin(e, + tan y 1n(R))/R]
NZ
-2 ) [sin 8, - sin(8, + tany ln(R))/R]/tan2 v=0 (7e)
0
where
— ]
DP(B ) =Dp(6') +8 [Dpc(a Jeos wt +Dp3(«9 )sin wt] (8)

In Equations (7a-c) the impeller discharge pressure coefficient, D_(6'), has
been tragsformed into the impeller reference frame by the appgoximation,
02 =9'+¢g sin(@’' —wt). This will prove convenient in the future, because the

pressure at the impeller discharge is assumed to be equal to that at the volute
inlet.

Governing Equations for the Volute
The geometries used in developing the volute model are shown in Figure 3.

The volute flow will be described by a continuity equation, a moment of momentum
equation, and an equation of motion in the radial direction. Bach of these three
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equations can be written respectively as

3(wV,,) a(wr'V_,)

20’ ar’ (9)

alwr'Va,Va,) alwr'r'va,V.,) av ap
e' g’ 8' r! ' __uwr' . ¥
26’ * ar’ twr'r! 5% o 28’ (10)
and
Dy _ lorler (11)
ar' r'

Here it has been estimated that V_, and V_, (and their gradients) are much less
than Vy,, except at the inlet of the volufe.

Within the volute, the flow is considered to be primarily in the 6' direc-—
tion and to have a flat veloecity profile. This will allow Equations (9), (10),
and (11) to be integrated over the volute cross—section. When these equations
are combined with Equations (4) and (5), the pressure and velocity distributions
in the volute will be given in terms of moments of the volute cross—-sectional
area and the perturbation function, p. Both Equations (9) and (10) can then be
separated into three parts (steady, e cos ot, and e sinwt) as follows:

Continuity:
d(V B)
T = dﬁ (12a)

d(VcK) *d(ﬁ cos 6') " d(E sin®’)
— D ——— -4 3 ’ ————————————————
qer - Wy 30 +gEine +d[ﬁc+ Y 1 (12b)
ry P ! rY .
'—Ld(v p =W, ——-————d(v sind? -2cos 0 +dIp ———'—"—d(ﬂ 20597 (12¢)
qae’ i de’ 0 8 do’
Moment of momentum:
rA dD d(ra V) 4@ -
2 ae’ -~ 3 - rinrd —os + d(1 - dtan y B)B (13a)
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rA dD d(rAV V)

—_—— P _ _,a—__C .0 * Y o
STY 2 FrY +Q(Wisin9V reA V)
. — d(Vzcos()') d(ch)
+(Wi+ rA)T—Zx*lnr-A Fry

+dzsin9'.§2 + ¢ cos 9’(%+2 - 24 tany BB

- * —
_ dp Wy aD
+d¢(1 -~ 24 tanyﬁ)(Bc+sin9' ‘(E:) +-2—cose'—-2de, (13b)
—dD A(rAV V)
rA_ps_ ., 8. _o..* g _
2 a8’ - 2 Y Q(Wicos(-)v rrA V)
. — d(vzsina') d(VVS)
+ (Wi+ ra) e - 2rlnrh Y

- dzcos 9'52 + ¢ sin G'(%+2 - 24 tanYE)E

— * —
_ g W. dD
+d(1—2dtan7B)(Bs—eose'a‘éT)+"5':‘L‘sin6'33‘l;)' (13¢)
where
’ 1]
_ R L Ry
A(e") =IR2wdr'/bR2 . Tark(e") =jR21n(r'/nz>wdp'/baz
. R3 ) . R3 .
rA(e’) =IR r"wdr"/bR2 , rrA(8") =IR r"r"wdr"/sz
2 L)
Ry
rInrA(*) = [ r'ln(r’/R,)wdr' /bR2 (14a-e)
Rz 2 2
and
* - * ~ 9’
V (0') =V(0') +& [V (8")cosat +V_(8")sinwt] = -~ (15)
c s QRZ

In Equations (12a-c¢) and (13a~-c¢) the perturbation function, PB, has been
fransformed into the volute reference frame for convenience in obtaining a solu-
tion.

To complete the basic equations for the volute problem, Equation (11) may
be integrated to give the radial pressure variation in the volute as
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£ — * *® —
Pv= Dp + 272'[1n(r"/R2) -5 cos(8' ~wt)] +¢ [Dpc + 4VV0 ln(r‘/RZ)]cos wt

x -
+ e [Dps + 4VVSln(r'/R2)]sin at {16)

Closure Conditions

Equations (7), (12), (13), and (16) will describe the flow in the impeller
and the volute after certain boundary conditions are satisfied. Even though B
is referred to as the perturbation function, it was never assumed to be small.
However, from the definition of the flow coefficient, 8 is required to have an
average of one. The flow perturbation is further assumed to possess at least
zeroth opder continuity around the periphery of the impeller. This restriction
on B can be met by satisfying the condition,

B(R,,0) =@ (Ry,2m) (1

To account for what happens to the volute flow at the tongue, it is assumed

that the average total head of the recirculated flow will be constant across the
tongue, that is,

J.th(()) R3(0)

. (B sV, /2)] wirt = [, (B + oV /2] war (18)
R, (0) 8'= 2n R, (0) 0'= 0

From the remaining flow that is discharged, the flow path angle, vy, will be
determined. Previcusly it was stated that this angle will vary with flowrate and
total head. Using this stipulation, y can be found by equating the predicted and
experimental total head rises across the pump. Thia® requires that

- =2
‘/’exp =i = [Dp(zn) +C V¥ (2m1/2 (19)

where

C,=1+2[1lnrA(2n) - 1nrA(0)1/1A(2n) - A(0)]

Admittedly, using an experimental result does limit the preliminary design
applications of this model. However, the "H/Q" curve (in dimensionless form the
funetion 'ﬂex (d)) is normally available for any pump and it is dimportant that
this fundamengal characteristic is properly represented in the model.

This completes the development of the equations necessary to obtain g, D_,
and V. The nine ordinary differential equations of (7), (12), and (13) webe
solved using centered differencing. The initial conditions of $, D, and V were
chosen ih an iterative manner to satisfy the clesure conditions stited above.
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Rydrodynamic Forces on the Impeller

Basically, there are two sources that contribute to the radial hydrodynamic
foreces on the impeller. One part is due Lo asymmetric pressure distribution
around the impeller. The other iz caused by the asymmetric momentum fluXes at
the impeller inlet and discharge. The first contribution is evaluated by
integrating the pressure around the inlet and discharge of the impeller:

3o, 2 38,

n
ae, —wijo P, (R,,0,)Rye “d6, (20)

27
E, = (Fy+ 3 =bfy P (R0 )R e
where j denotes the imaginary part that corresponds to the y direction (see Fig-

ure 2). The second contribution is found by applying the momentum equation to
obtain

R

F (F_+ jF_) ) 27 2 .
m__ X *ym__ 0t R, [ 1L A
pb pb V5 Jo IRl(vr'+Jv9 Je  rfdrtds
‘qt 2n T )
- eJ [J-() (an+ jvg")vr,”ea r''de n]l
R
1

2n 2 .
— adiit ity yad® '
e Zﬂ_fo J‘Rl(;wr vg''e r''dr''de’

+ mzen(Rgu Ri)ejml” (21)

When the pressure distributions of Equations (6) and (7) and the veloeity
profilea described by the no inlet pre—swirl condition and Equations (3)-(5) are
applied to Eguations (20) and (21), the resulting force on the impeller is

F*=F +F =F+¢ (F i
E =l +E =E+e F,cosut +E_ sinet) (22)

where
2n je
Y+KR-2+2j tan'r]j‘o -5-2(02)‘5 246/ 2n

- id * 2 2-31'_ 392
9w sec’y In(®) +11f  B(8,)e “d0,/n (23a)

F= dzlwzsecz

3 9 2n_ 3‘92
F, = [W;sec’y +kR-2+2§ tanylf, B(8,)B (8))e ~d6,/n
27 392
v 1n(R) +11f B _(8,)e “d0,/n
2n je
* 2
+ % W sec”y 1n(R) +k/R- 11 B (9y)e” “a8,/n
. 2T 392
+ B dRW, !o B(8,)sin(8,+ tany In(R))e “d0,/n]

*
- jd[WiSecz
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2
@ * w » 2 2
- 'ﬁ[Zjd+W./(k R)] - —{W.[1-1/(k R))/tan"y - 1 + 1/R"} (23b)

2. # 2 2m_ 392
F,=d [Wisee Y+*+KkR-2+2jtan 'y]fo ﬂ(OZ)BS(Oz)e 40,/ n

2 39,

27
- JoIW sec’y 1n(R) +11[ B (0y)e “d0,/n

* 5 n sz
dIW;sec®y 1n(R) + k/R- 11[ B (9,)e ~d8,/n

e

BlE Die

2m_
[d RN, [ B(O,)c08(8,* tany 1n(R))e ~d8,/x]

2

rms * w * 2 2

31236 + Wi/ (e R - — 3 (W3 (1 - 1/ (k R /tan’y - 1 + 1/R%) (23c)
Q

=]

and, k=cos(tanyln(R)) + jsin(tanyln(R)). Expressed in the terms wused in
Bquation (1), these components are

— - * % *
E=F + JFy o Eo = At JAyx » and E_ = hyy * Ja (24a-c)

Presentation of the calculated results will be postporned so that the
experimental and theoretical results can be discussed together,

TEST FACILITY

The experimental results presented in this paper were obtained using the
Rotor Force Test Facility at the California Institute of Technology. Pasadena.
Details of the eguipment have been given in previous papers [3.4,101, 50 only a
brief description will be presented here. Figure 4 shows the test section where
the centrifugal pump being examined is located. The impeller is mounted on the
internal balance and the entire assembly is turned by the main shaft. The main
shaf't passes through an eccentrically drilled c¢ylinder, which when rotated,
causes the impeller to whirl in a 0.09%0 inch diameter c¢ircular orbit. Forces on
the impeller are sensed through strain gauges on four posts located in the
internal balance. The relationships between the strains and forces were found by
static calibration tests.

Descriptions of the impeller and one of the volutes that were tested are
given in Figures 5 and 6. The impeller (referred to as Impeller X) is a five
bladed cast bronze impeller with a specific speed of 0.57 and blade angle of
65°., The 86° spiral volute (Volute A) is constructed of fiberglass and designed
to be "well matched” with Impeller X at a flow coefficient of 0.092, The dimen—
sions of the volute cross—aections, shown in Figure 6, were used in evaluating
the integrals of Equaticns (l4a-e).

Two modifications have been made on the test facility for the benefit of

this research. They were considered necessary in order isolate the interaction
betweon the impeller and the volute from external influences. The modifications
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are illustrated in Figure 7. To separate the flow in the volute from the annular
gap region, rings were installed 0.005 inch from the edge of the impeller. In
addition, the flange of the test section was removed so that the front shroud of
the impeller was exposed to the "reservoir-like” conditions of the test chamber
(see Figure 4).

The removal of the front flange of the test section was judged to be essen-
tial after pressure mnmeasurements were made in the annual gap region with the
flange in place and the rings removed. The measurements indicated that the fluid
trapped in this region was responsible for a hydrodynamic stiffness (see Equa-
tion (26)) given approximately by

K K -1.6 0.3
XX Xy
= |-o. -1.6
Koy Kyy~ 3

When compared with Chamieh’s [5] direct measurements of the total hydrodynamic
stiffness on the impeller (annular gap plus volute) given approximately by

lex ny -2.0 0.9

-0.9 -2.0
KYX kyy

w

it is seen that the contribution from the annular gap is significant. With the
flange removed, it was anticipated that the fluid forces on the front shroud of
the impeller would be largely eliminated.

COMPARISONS BETWEEN EXPERIMENTAL AND THEORETICAL RESULTS

A preliminary step in the theoretical calculations must be the estimation
of the impeller flow path angle, y (see Section 2(a)). 1In practice, information
on the actual total head rise as a function of flowrate is almost always avail-
able; an example for Impeller X and Volute A is presented in Fig.8. By setting
¢h=¢é , the flow path angle, vy, shown in Fig.9 was obtained. Note that the
typicgf magnitude of y is about 80° while the blade angle of Impeller X is 65°.

Measurements of the static pressure of the discharge from the impeller were
made vusing holes drilled at the inlet to the volute (see Figures 6 and 7). The
circunferential pressure distributions are compared with the theoretical results
in Figures 10 and 11. The pressure taps were alternately placed in the front and
back of the volute, resulting in the slight oscillation of the data. The
results were obtained for a range of shaft speeds from Q = 800 to 1200 RPM, but
the non—dimensionalized pressures were found to be ' independent of the speed.
Figure 10 shows that the theory gives a good approximation of the the pressure
distributions over a moderate range of flow coefficients., For flow coefficients
larger than this range, the correlation begins to falter as shown in Figure 11.
It was concluded that the deviation was caused by the inadequacy of a one dimen-
sional treatment of the flow near the tongue of the volute. At the higher
flowrates, it has been suggested [11] that there is a reversal of the direction
of flow in the region Jjust inside the tongue. The effect on the pressure
distribution of displacing the impeller is also demonstrated in Figure 11. The
model appears to follow the changes that occur, even when the absolute pressure
predictions are rather poor.
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A comparison between the experimental and theoretical steady forces on the
impeller is given in Figure 12. One set of experimental results was obtained by
placing the impeller in four equally spaced orbit positions and then averaging
the internal balance force measurements. The second set (for ¢=0.06 and 0.10)
was obtained by integration of the discharge pressure measurements. The theoret-
ical nmodel tends to overpredict the steady or average radial forces somewhat,
but it does give reasonable results considering the crudeness of the model.
Colding-Jorgensen's [6] steady force calculations for a 67.5° blade angle
impeller in an 86° spiral volute are also shown in Figure 12. The present model
appears to give a more accurate assessment of the steady forces when compared
with the experimental resultsa. The agreement between the two sets of experimen-
tal data indicates that the primary cause of the radial force is the asymmetric
pressure distribution at the discharge of the impeller. Moreover, the theoreti-
cal model predicted that the discharge pressure was responsible for 99% of the
total force on the impeller while the net momentum flux contribution was essen-
tially negligible. It might also be of interest to note that over the entire
range of flowrates for which theoretical resulta are presented, the predicted
perturbation in the impeller discharge flow never exceeded 6% of the mean flow.

Figure 13 presents the components of the generalized hydrodynamic force
matrix, [A], that result when the impeller whirls in an eccentric orbit at the
pump design flowrate (4 =0.092). From the experimental data, it is seen that
the cross~coupled terms (i.e. A__, A_ ) imply that forces act in the direction
of the whirl orbit up to w/ﬂ==0396. fg&s destabilizing influence is predicted
by the theoretical model to occur up to o/R=0.14, Due to the coupled nature
of Equations (7b) and (7e¢), it was not possible to calculate [A] beyond the
range of whirl ratios shown in Figure 13. This problem is believed to be the
result of the current limitations of the iterative technique used in obtaining
the solution. .

As was mentioned in the introduction, it is a standard practice to express
the matrix elements of [A] in powers of w. By examining the A__ term in Figure
13, it is apparent that a quadratic in ¢ will -not adequatei§ describe the
features of the matrix element. A cubic, however, can approximate all of the [A]

matrix element variations with o giving the coefficients of such an expansion
as

2 3 2 3
B Axy ~ Kyx mC’xy toM o ny ny taCypto Mxy — 0 ey
- (25)
A A 2 3 2 3
- - +o M 4+ d - +wC +o M -od
yx ¥y Kyg 7 0Cyy v o My Tudyy Kyy * oCyx 0 Mgy~ @ dyx
or alternatively as
Ix ‘Ix X ¥ X
0 = — K - . -_— M .« - J ans 26
[A(w/Q)] [X] [c] v [M] § [J1 ¥ (26)

LY LY
where
x=gcosot and y=2 sin ut
The [K1, [C], and [M] matrices correspond to the stiffness, damping, and iner-
tial components that are commonly employed in rotordynamics. Since the [J]

matrix is related to the third order time derivative of the impeller displace—
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ment {(which is conventionally known as the jerk), it will be referred to as the
" jerk"” matrix.

The resulting [K] matrix elements of the cubic expansion are given in Fig-
ure 14, and the [C], [M], and [J] matrix elements are presented in Figure 15.
Included in Figure 14 are the stiffnesses that were calculated using the force
measurements (from the internal balance and the pressure distributions) taken at
four impeller positions. Also shown in Figure 14 are the stiffnesses predicted
by Colding-Jorgensen [6] for an 86° spiral volute. With the exception of the K
term, the current model does a fair job of describing the variation of stiffne§§
with flowrate. The magnitudes, however, tend to be underpredicted by the theory.
Over most of the range of flow coefficients, the stiffness is such that it would
encourage the whirling motion of the impeller. The same is also true of the
damping when the flowrate drops below ¢=0.07 as shown in Figure 15. The
magnitude of the damping components computed by [6] (not shown here) were less
than 10% of those predicted by the present model. In general, the inertial
force would discourage an orbital motion of the impeller, but it will tend to
drive the impeller in the direction of the displacement. The jerk force attains
significant values only at the lower flow coefficients.

CLOSING COMMENTS

A theoretical model has been developed to describe the flow in the impeller
and the volute, along with the interactions that occur between them. This
investigation was undertaken to provide a better understanding of the
destabilizing hydrodynamic forces that have been observed [5,10] on a whirling
centrifugal pump impeller. To implement the model requires only a Knowledge of
the dimensions of the volute and impeller, and the total head rise across the
entire pump. Comparisons between the predicted and experimental results are
encouraging. Experimentation with different volute geometries and over a wider
range of operating conditions (flow coefficient and whirl ratio) would provide a
more crucial test of the theoretical model. It might also prove insightfull to
incorporate the effects of inducers and diffuser vanes into the theoretical
model. These devices are now commonly employed on many high performance
centrifugal pumps.

Previous experimental results [5,10] have tended to over-estimate the
contribution of the volute/impeller interaction to the total stiffness force
acting on the impeller. The over—estimation came about because of an asymmetric
pressure distribution in the fluid trapped on the front shroud of the impeller.
Since real pumps do have fluid in this region, it will be important in the
future to perform a detailed study of this area.
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Figure 14, Hydrodynamic stiffnesses as functions of the flowrate. Experimental
results are from internal balance and pressure measurements.
Colding~Jorgensen’'s [6] results are for an 86° spiral volute with a

67.5° blade angle impeller.
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Figure 15, Damping, mass, and jerk force coefficients as functions of the
flowrate as predicted by the current theoretical model.
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